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sup norm. Theorem 4 shows that one can greatly enlarge the class f — gf
subject to restrictions imposed by Theorem 3. On the other hand, the
second class may be greatly enlarged (Theorem 5); however, this will
enormously restrict the first class (Theorem 6).

I thank D. Lind for seveml helpful comments regarding the presen-

tation of the results.
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An example of infinite dimensional reflexive Banach space
non-isomorphic to its Cartesian square(*)

by
T. FIGIEL (Warszawa)

Abstract. The paper gives the first example of an infinite dimensional reflexive
Banach space X non-isomorphic to X2. The sense of this non-isomorphism depends
on a difference between the structure of finite dimensional subspaces of X and those

of X2. The proof involves certain properties of subspaees of ZI,, some of them seeming
to be new.

Introduction. The problem whether every infinite dimensional Banach
space X is isomorphic to its square X* was.raised in Banach’s monograph
and remained unsolved until 1959. The first counterexamples were the
space J of R. C. James and some related spaces (cf. [2]) and the space
O(T,,) (ef. [12]).

The proofs of these non-isomorphisms were based on certain additive,
isomorphic invariants d(X) characterizing the natural embedding
x: X — X™ (additive in the sense that (X, B X,) = 6(X,)+ 6(X,) for any
Banach spaces X, X,).

Putting e.g. 8(X) = dim (X**/x(X)) we obtain such an invariant
and since d(J) =1 # 248(J) = 6(J*) we get the non-isomorphism J & J%.

The question stated nowadays by several authors (ef. [1], [2]),
whether X can, in addition, be reflexive required other methods and
remained unsolved until today.

Below we show that spaces with such properties can be constructed
from familiar spaces I3, i.e. spaces of all n-tuples a = (ay,...,a,) of

<p< oo and [a] = max |a,

k3
numbers with [lo] = (3 |a7)® if 1
=1 I<i<n

p = oo. (Letters 4,4, k, m, n will always denote in the sequel positive
integers.)

(*) The paper is a part of the author’s Ph. D. thesis written at the Warsaw
University under the supervision of Professor A. Pelezyhski.
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Tt (X, I+l ))iz1 be a sequence of Banach spaces and let 1 < p < oo,
The space of all sequences @ = ()5, Such that z,eXy for & =1,2,..,

and ||z = (:f llo][2)* < oo, will be denoted by (721@ Xl
k=1 o=

‘We shall prove that for every p > 1 and each decreasing sequence
()2, of reals with limp, > max(2,p) there exists a sequence (m,),

such that the space X = (3 @), is not isomorphic to X* (*).
i=1

" All the spaces we shall consider are supposed to be over the same
(veal or complex) field.

The spaces we have described above as we‘ll as their duals have
certain positive properties which the previous (non-reflexive) counter-
examples could not possess. They have unconditional bases and for every n
are isomorphic to the nth power of a space of similar type. They are also
uniformly convex, moreover it follows from Propositions 1 and (K) thab
if p > 2 then the dual X* of such an X has the Orlicz property (i.e. for

every unconditionally convergent series Z' @} in X*, 2 k|2 < oo).
k=1 k=1

These spaces are also interesting in connection with a problem of
contractibility of linear groups of Banach spaces. Similarly as J and
O(I',,) they do not satisfy the conditions of, worked up by Mitjagin [9],
general scheme of 4ll known contractibility proofs. However, the non-
contractibility of GL(X) cannot be established as simply as that of
GL(J) or GL(C (Fa,l)) (cf. [107]). It seems that the homotopy type of GL(X)
is different than the previously known ones.

Using some recent results of Mankiewicz [8] one can prove that
there exists no Lipschitzian embedding of X? into X. The question of
existence of uniformly continuous embeddings and, in particular, of
uniform homeomorphisms between X? and X remains open.

The main result. In the present and the following sections let (p,)2,
be a fixed, strictly decreasing sequence of real numbers greater than 2,
and p be a fixed number from the interval (1,limp,].

The main theorem reads as follows.

TeROREM. There ewists a sequence (n,)%; such that the space X
(Z@Z’%) has the following property:

Il’or omy n there exists mo isomorphic embedding of X"” into X" (In
particular any two different positive powers of X are not isomorphic.)

(1) These results have been presented at the Colloque International d’Analyse
Fonetienelle held in Bordeaux in April 1971. Their statements will be published in
the Proceedings of the Conference. . .
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© and every my-dimensional subspace Z of the space (3 @ [
=1 -
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We deduce this theorem from two propositions to be proved in the
sequel.

Let d(Y,Z), ¥,Z being isomorphic Banach spaces, denote the
greatest lower bound of numbers {|T| | 7Y, where T is an invertible
linear operator from Y onto Z. ‘

Now we can formulate the results we need.

PROPOSITION A. There emisis a sequence (m;)2, such that for every i
o the distance
3

a(Z, lj’;;i) 8 greater than i.

ProposITION B. For every sequence (m;)2, there ewists a sequence
(n;)52, such that

1) ni>i2n; fori=1,2,...

j<i

and each subspace ¥ < l""i with Aim Y > in,; contains a subspace Z such
that AimZ = m,; and d(Z, nd) < 2.

‘We shall prove that for the sequence defining X a sequence corre-
sponding to (m;);2, in Proposition A can be taken.

Indeed, suppose a contrario that for some # there exists an iso-
morphic embedding of X™*! into X™ Then, denoting by X® the space

(—Bl"" and using obvious isomorphism X* ~ X®  where k =,
) g

n+ 1, we get a linear operator T: X"+ s ¥ guch that for some positive
constants a, b and every mze X®tD

(@) alll < || Tl < bllal].

Let j be an index greater than 2max(n, 67*b). Let I; be the natural
embedding of l“)‘“)“f into X and T;, i =1,...,j, be a superposition

of T and the projection of X™ onto Loyt Cons1der the subspace Y of
l(n—‘-l]n]

= {ze Z§,’]E+”"J‘: TLs =0 for 1<i<y}.
Using (1) we get

dmY > (n41)n; — %Z L ] 2 g > Emyl
i<y i<i
Since l‘“ Y1 js jsometrically isomorphic to a subspace of the space l""f ’

we 1n£er using Proposition B that there exists a subspace Z < ¥ such
that dimZ = m; and

MHZ, ) < 2.

7137
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The operator 8 = T1I,|, defines an isomorphic embedding of Z into the
subspace of X™ consisting of those sequences which hzwe zeros on firgt

J plaees Treating the last as a subspace of the space ( Z @Sy, )1, and
using Proposition I we obtain an inequality :
(8) - dl8(2), 1) >
On the other hand it follows from (2) that
a7, 8(2) < a™'b < 3,
hence
a(8(2), Z;’;i) < 4(8(2), z)a(%, lg;f) <17,

which contradicts (3). This completes the proof of the theorem.

Proof of Proposition A. We shall need the estimate of the modulus
p-5m (Z@l ) closer than that in [4].

‘We recall that the modulus of eonvemity 0y (e) of a Banach space ¥
is defined by formula

of convexity of the I

br(0) = ntf1 - “”—;L—yH 0,5<F, loll =gl =1, Jo—yl > o.

The estimate we need i3 a consequence of the following proposition..
ProposrTIoN 1. Let p, g, I be positive numbers such that 1 < ¢ <p =2

o
that if X = (Y @ X)),
E el
(X,)ie; being o sequence of Bamach spaces with Ox (e} = Le® for 0 < e<2
and © = 1,2, ..., then the modulus of comvexity of X admils the estimate
Ox(e) = Ke?  for 0 6 2.

We shall use the lemma.

Levwa 1. If p,q, L are as above then there emists a positive constamt
K, = X\(p, g, L) such that for every Bamach space Y with 8y ()= Le?
and every x,yeY such that

Then there ewists aK = K(p,q,L)> 0 such

2]+ ly]® =2,
the following inequality holds
o +yll <1— K, (Fllz—yl)?
Using this lemma we can prove that in Proposition 1 one can take

r—q

K(p, q, =1

L) = 27K, = 27? min K (p, ¢, L
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Indeed, let z,geX, [lo] =]yl =1, ie. 2= (@), ¥ = ¥
By Y Xy for ¢ =1,2, ..., and )
2 llz = 2 w =1.

Let S ~
"= %(II%IIQHI%H") (i=1,2,...).

If r;, + 0, then, using Lemma 1 for veetors r"”q:v 7y, we obtam
the following inequality .- : )

. 2’“]I$i+?/i”q;< 7 (1 —K, (M)MQ)Q’ B

2&1,.1:- -
which is a fortiori valid with X, replaced by K, defined above.
P— Q

One can easily verlfy that if 0 < M <———, then the function

g(p—

g(t) = (L— MtP'%7 is concave on the segment [0 1] Hence denoting by
> the sum over all mdlees 4 such that r; # 0 and using the obvious
relation . -

'Ms .

ri=21'1.=1,
3

_ a\pla\a
2 42 les+yr< Y, (1—K (”moqry . )
. 2l

‘(1 = (h 2 ym“) Q)a

1—K, 27|z —y|”. - .

)

1
we geb

[+

which is equivalent to
e+l <

This concludes the proof of the proposition.

‘We pass to the proof of the lemma. Let a = |jz||, b = |y|l, ¢ = :{lz—vl.
We may certainly assume that a > b. Consider two cases.

Oase 1. a—b > ¢® Then, since a+b<2, we have b<1—3}c?
and therefore there exists an s<C 4p such that b =1—3%c¢° Consider
the function

fit)y = (1/2 —1-gfr 0<t<1.
An elementary computation shows that ‘
Cosup{f(t): 0< <1} = —a< 0,
or .
:/ZT(f;T)E<1+t~at2 for 0 < t<1.
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This inequality holds also for ¢ = 0, hence we get
4 =VI—(1=30N < 1+}e—}ac™.
Consequently,
4) lo+yll < a+b < 2—}ac® < 2(1— pac”).
Case 2. 0 <a—b< .

Let 2 =zm. Then ¢ = |¥l, llx—2| = a—b, hence
a
le—yll > lo—yl—lo—2l = 20—a+b>2c—c** > c.
Inasmuch as b <1 and 8y(e) > Le® we getb

. .
le-+yll = ‘%Jr%”@b(l_LH?_m

)

»
<2b—9bL ({-) < 2b—2Le”,

and finally
(8) lz+yll < llo—2ll +lle+yll < a—b+2b—2Le" < 2(L— Le").

Inequalities (4) and (3) show that one can take for K, (p, ¢, L) the number
min (L, }a). - _
Since the modulus of convexity of the space I” (p > 2) may be e:?m-
mated from below by p~'27%¢? ([3], [5]), Proposition 1 implies the fol-
lowing corollary.
QOROLLARY. The modulus of convewity of the space Y = (Z@Zpi N 1)1,
admits the estimate =1

Op(e) = K;ePi+l,  for 0 e 2,

where K; is a positive constant. .
In our special case the theorem of Kadec [6] can be read ag follows:
(K) If Y 4s a Banach space with 6y(e)= Ke?, K being a positive
constant, then there exists an L >0 such that for every wy,...,a,eY

(é H%H")W’ < Lﬁiﬁ Hé‘ Eiwi!l .

1(3\*
0 take L=<|—) .
ne can laxe 2(K)

Proposition A is an easy consequence of just formulated results.

icm
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Indeed, let ¢ be fixed and let Z be an n-dimensional subspace of the space
(Z@lpi +i)‘” Let T: I3 ~Z be an isomorphism such that
i=1
1T = a2, 1), 177" =1.
It follows from Corollary that

0z (e) = K e%i+1,  for 0 < e<< 2.

Let {e,, ..., ¢,} be the canonical basis of l;i. Using (K) we get the estimate
w1 — (2 ”ej”pi+l)llpi+1< (Z |[Tej||pi+1)””i+1 .
i=1 : =1

n n
< Lﬂn&x”Z s]-_’l‘ej“ < L;||T) max HZ &6
5=x1"52 sp=x17520]

|

= L;d(Z, l_;;i) '”fl/pr
or
az, zgi) > L7 inPimPit oy

The last inequality shows that it suffices to take
m; > (1L,)PiPir i Pi=Piy),

and, since ¢ was arbitrary, this completes the proof of Proposition A.

Proof of Proposition B. It is well known that every infinite
dimensional subspace of 1, contains a subspace isomorphic to l,. The
proof of Proposition IT requires an analogous faet for finite dimensional
spaces [j.

Below we get such a result in the case of p > 2. Qur proof was influ-
enced by [7]. The methods of Kadec and Pelezynski essentially depend
on infinite dimensionality of spaces they consider. We could avoid the
infinity arguments using some properties of projection constants.

We recall that the projection constant A(B) of a finite dimensional
Banach space B can be defined as the smallest number 4 such that whenever
B is embedded in a Banach space Z, there exists a projection P of Z
onto B with ||[P| <A Let us notice that '

(6) If Q is a linear projection of a space By onto its subspace B, , then

A(Bs) < 1Q)A(By).
(1) If By and B, are isomorphic, then
A(B1) < d(By, By)A(B).
In particular, since for every s, A(I%) = 1, we get

(8) A< a@,my<at?,  for p>1.
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The last inequality we need, stating that

(9) » Ml’")>]/q—n—, for m =1,2,...,

is a consequence of Rutovitz’s 1esults [11].
The crucial point in the proof of Proposition B iy the following fact

PROPOSITION 2. Let p, ¢ satisfy imequalities
p>2, 0<e<,

and lot n be a positive integer. Then in every Uinear subspace Z < 1Y with
dimZ = m = cn thete exists a vector w, such that ||z, = 1 and

Card({je {1, ..., n}: [2,(j)| = en™7}) < en,

where ¢ = (27 /c) 1/6 =)D,

Proof. Leb |-| denote the Duelldean ‘morm. in Iz, ie.

o] = ()j w()P)",  for aelz,

and leb - ' ‘
w =inf{|s|: weZ, x| = 1}.

Hence for z¢Z ) .
ulle] < |o] < W@y,

In particular we get
(7, 17) < u™'n@-2A0,

Let P be the orthogonal projection (in the Euclidean norm) of Iy onto Z.
Obviously |P| = 1, hence for every we [4

1Pl < 5~ 1Po| < u=|a| < < w0 D2 g,
We have thus proved that
- 1P|  w™tpl?=20e,
Using (6) and (8) we infer that
M2) < 2B 1P < wtni,
Applying (9) and (7) we get

m ,
]/57? <AMEY S MZ)A(Z, 1) < urn@-Din,

Recalling that m > en we obtain the estimate
4 < (2m [o)Hhp@=2it,

Bxample of infinite dimensional reflevive Banach space 303

By the definition of » there exists an z,< Z such that |lz,] =1 and |z,| < u.
Let

s =Card({je{l,...,n}: |ao(j) > en™"7}}.
Since )

(s 2P | < w < (2 f0) HAn(P— R

after easy calculations we get that s < em, which concludes the proof.
The last proposition enables us to apply an analogon of a usual
“gliding hump” procedure in the next proof.
PROPOSITION 3. Let p > 2, 0<¢c<< d<1, 0< B < 1. Then there exist
positive constants N, a such that, for every n > N, every linear subspace
Z < Uy with dimZ > dn contains o subspace Y such that

m = dim Y > en® 2062,
(X, ) < X+ )1 —8).
Proof. Denote for 0 # zel; by S(z) the seb

{jf &L, 0 ]w(])[ = m_llpHm”}:

where ¢ denotes again the number (27 /c)én(2—26P,

For » large enough we have ¢ < d—¢. Let m be an arbitrary positive
integer less than (d—e¢)/e.

‘We define inductively a sequence g4, ..., ¥, of elements of Z such that

lydl =1,
. Card (S (y)) < en,
S)n U 8yy) =98, for I<i<m.
) j<i

The existence of ¥, is guaranteed by Propositioﬁ 2.
Having defined ¥, ..., Yz, where k< m, we consider the subspace

B
T ={e2eZ: 2(j) = for js.szlS(mi)}.

Since

dimZ;, > dimZ — ken = (d— ke) n > cn,

we may apply Proposition 2 to the space Z; and find in it a ¥y 1
Define vectors wy, ..., wyel, by formulae

¥:(j) for jeS(¥;),

w;(j) = .
) 0 otherwise.
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These vectors have disjoint “supports’, hence the subspace W they Span

in Iy is isometrically isomorphic to Iy'. Since ﬁyi—wfll < for 1<igm,

we have |jw;]| > 1—¢ and therefore if w = Y¢,w;e W, then
1=1
o] < @—e) o] for 1<i<m.

Consider the operator I' mapping W into the subspace ¥ of Z spanned
bY Y1y .++5 Ym given by the formula

m

7( oy

=1

m
= 201%- '

f=1

m
For any w = Y c,w; we have
i=

1w —w] = || > (g~

i=1

< ) leulllys —wil
i=1

< me(l—e)7 .
Suppose that
(10)

then we have

me(l— &) < B,

|IT“<1+13; HT—IH—l;l_ﬂa
hence :

X, 17 < (1481 —p).
Since, by (10), for m the integer part of the number
min ((d—c)/e, B (s~ 1))

can be taken, and this number admits for n-large enough the estimate
by an®=%%? from below, where « is a positive constant independent of n,
the proof it complete.
Proposition B follows from the previous result by éasy induction.
The author iy greatly obliged to Professor A. Petezyiiski for suggestion
of the problem and valuable discussions. ‘

Added in proof. It should be noticed
is mutatis mutandis replaced by p. .

Imlleed, it is easy to see that the proof of Lemma 1 depends in fact only on
assumption that p 32, -¢ > 1. Hence, in the notation of this lemma, we have, for
every z,y¢ ¥ such that || + |y|® = 2,

that Proposition 1 remaing truc when ¢

Hle+yll < 1~ Ky (3 |lo — yl))?,

where K, is a positive constant depending only on p and L. Let X, = min (K, 1).

* ©

icm

Bxample of infinite dimensional. reflezive Banach space

Inasmuch as fjz —yll< 2 we get

Gliz-+3yI)’ < (1 Ky liz -y
' < 1-E,(}|e—yI)®
= 3=l + 1y1®) — Ky &l — gl

Clearly, this inequality holds for arbitrary x, ye ¥.

Now let # = (2;)j; and ¥ = (y)iw1 be arbitrary elements of the unit sphere
oo

in the space X = (' @ X;),. We have
i=1

@+ = 3 (@ o+ yalla)®
i=1

]

< 3 Udf + ) — Ky (bl — yall))

i=1

=1-E2 "jp—y,

and therefore, by Bernoulli’s inequality,

I} @+ 9l < 1~ K27 p—yif)H?

<1-E2Pp o —yf.

Hence we infer that dx(e) > Kz?.—pp_l &”, which completes the proof.
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