im“ STUDIA MATHEMATICA T. XLIL. (1972)

Examples of nuclear systems

by
ED DUBINSKY* (Warszawa)

Abstract. The purpose of this paper is o present a detailed study of some
concrete examples of nuclear systems, whose general theory has been presented by
the author in previous papers. There are three classes of examples. First we consider
nuclear systems generated either by a sequence of commuting normal operators or
a sequence of permutations. Next, certain matrices which are. zero everywhere except
on the main diagonal and the diagonal directly above it are considered. Finally a very
simple type of lower triangular matrix is discussed. In most cases it is shown that
the resulting nuclear Fréchet space has-a Schauder basis, but an example is constructed
in which all of our methods fail to yield a basis.

The theory of nuclear systems (insofar as it has been developed)
was presented in [1], [2]. This theory provides a method of constructing
nuclear Fréchet spaces which in prineiple produces all such spaces whose
topology is defined by norms and in practice permits the construction
of examples not previously studied. Moreover, several criteria for the
existence of Schander bases have been established. It is the purpose of
this paper to study in detail some of the examples of nuclear Fréchet
spaces provided by nuclear systems, in most cases proving the existence
of a Schauder basis.

We recall now the definitions and results which will be used. Proofs
and further explanations arve to be found in [1] and [2].

A nuclear system is a sequence (4,) of injective nuclear operators
in I, with dense range. The associated space, written

b= {(@): @ ey, mp = Aglmegn), B =1,2,...1,

is a subset of the countable product of copies of I, so it may be equipped
with the subspace topology whence it becomes a nuclear Fréchet space

* Most of the research deseribed in this paper was done during academic year
1969-70 while the author held a research associateship at McMaster University,
Hamilton, Ontario. The opportunity was made possible, under extraordinary cir-
cumstances, through the efforts of B. Banaschewski and T. Husain. The author retains
the deepest gratitude and highest respect for these colleagues, their department and
MecMaster University, whose actions in a crisis were exemplary.
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whose topology is defined by a sequence of norms, and all such spaces
are obtained in this way ([1], p. 373). The projection operators, P,: . Iy
k=1,2,... are defined by setting P, (#) = ;. Iach P, is continuous,
linear and has dense range ({1], p. 376). We define B, to be the identity
map on I, and we set By =A,... 4;, k=1,2,...

We recall that a Schauder basis in a topological vector space F is
a sequence (b,) with the property that for each x ¢ F there is a unique

n
sequence (£,) of scalars such that # = lim Y'&b,. We shall call a sequence
o gl ’

(b,) in a topological vector space fotal if the vector subspace it generates
is dense.

For each positive integer n we denote by ¢" ¢ I, the sequence which
is 1 at the nth term and 0 elsewhere and by /7, the projection of an element
of I, onto its mth coordinate. We denote by ¢ the subset of I, consisting
of those sequences all but finitely many of whose terms are 0.

A continuous linear map D: I, — 1, is a diagonal map with diagonal
element (4,) if D(¢") =2,6", n =1,2,... The identity map on I, wil
be denoted by I.

The following results from [1], [2] will be used quite often. throughout
the paper, so we quote them here for easy reference. Proposition A is
essentially proved in [1], p. 378 and appears in the following revised
form as Theorem 3 in [2]. Propositions B, C are proved us I’ropdﬁitions
4, b respectively in [2]. :

PROPOSITION A. The associated space of a nuclear system (4,) has

a Schauder basis if and only if there emist diagonal nuclear maps Dy:
b >, and continuous linear maps fo: 1, —>1,, k =1, 2, ... such that

(i) -Akfk-(—l =fIcD)c1 k= 1727

(i) f, maps kﬂl Dy ... Dy(ly) injectively onto () A, ... A (1),
= fe=1 )
.PQOPOSITION B If (4z) is o nuclear system, then B has a Schauder
basis if and only if there ewists a linear injective map St @ - () By(l,)

wifﬁh B{; '8 () dense in 1, for each k= 0 and such that for each I ‘j 0 there
. 6xists j = k such that ’

< 00,

sup | By 811,8 B, |
.zJ

i ls(zp)}
In this cage, if we consider & to De represented by (M) By (L) (via,
-~ . I
Py(B)), then the basis is the sequence (8(e),. c
- ProrositioN C. Let ~(.Ak) be a nuclear system and (b,) a total, linearly
independent sequence in T. Then (by) is a Schauder basis for boj if and only

e ®
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if for each k= 0, there exisis j =k such that

sup || By SIT,8~ j}B_ | < oo,
» J

lsw)|

where S: ¢ — 1, is defined by S(e") = P,b,.

In Section 1, we consider nuclear systems with the property that the
eigenvectors of each 4, can be easily computed and have a relatively
transparent dependence on k. In Section 2, we consider nuclear systems
generated by a single operator, 4, that is, 4, = A for all %, where 4 is
2 matrix whose terms are 0 everywhere except the main diagonal and
the diagonal just above it. We are able to give sufficient conditions for
the existence of a basis and also construct an example in which two
methods for obtaining a basis fail. This leads to an example of a Marku-.
schevitch basis in a Fréchet nuclear space which is not a Schauder basis.
In Section 3 we consider A4, to be a matrix which is 0 except on the main

diagonal and the first N columns (N independent of k). Here B always
has a basis.

1. Normal operators and ‘permutations. In the next proposition we
give a generalization of the result in [4]. The idea is that if the operators
in a nuclear system all have the same set of eigenvectors,
then this set ean be wused to construct a basis for the associated
space.

ProPOSITION 1. Let (4,) be a nuclear system im which each Ay, is normal
and Ay Ay, = Ay, Ay for all k. Then the associated space possesses & Schauder
basis.

Proof. Let A, be an eigenvector of 4, with eigenspace F, which is
finite dimensional since 4, is compact. If # ¢ B, then 4, 4,(%) = 4,4,(x)
= Ml As(x) so Ay(x)eB,. Thus A,(B;) c B, and A4,|E, is a normal
operator on E, so we can choose a maximal eigenspace H, = H, whose
dimension is positive. Repeating the process indefinitely, we obtain
a decreasing sequence (F,) of finite dimensional spaces with positive
dimension and hence there exists %, such that B, = H, for all k= k.
It then follows that an orthonormal basis for B is a non-empty set
whose elements are eigenvectors for each 4,, ¥ =1,2,...

Repeating the process a number of times at most equal to the dimen-
sion of H,, we obtain an orthonormal basis for F, whoge elements are
eigenvectors for each A4,. Again repeating for each eigenvalue of A4,,
we obtain an orthonormal basis (z,) for I, such that each #, is an eigen-
vector of each 4,.

Finally, define 8: I, -1, by S(¢") = », and apply Proposition B.
Clearly S(¢) < B,(I,) and B;'S(p) is dense in I, for each k. Moreover
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we have 4, = 8D, 8" where D, is a diagonal operator so B, = 8D, ... D,8*
and so we have,
sup | B, S11,,8 7 By|| = sup||S(D, ... D)~ T, D, ... DS¥| < |88 = 1
» n

so Proposition B applies to yield the desired result. W

In view of Proposition 1 one might try to construct a nuclear Fréchet
space without a basis by making the eigenvectors of the maps 4, dif-
ferent for each k. This is perhaps also suggested by the proot of Proposition,
2 of [2]. However this does not seem to work as is indicated by the next
result in which we construct a basis in eages for which the eigenvectors
are quite different.

Prorosirron 2. Let (o%) be a sequence of permutations of the natural
numbers and let (a*) be a sequence of elements of 1y each of which has no
0 terms. Define Ay: 1, -1, by

A4(e" = o™ k=12, ...

Then (4y) s a nuclear system whose associated space has o Schauder basis.

Proof. It is clear that (4,) is a nuclear systen.. To see that it has
a basis, we apply Proposition A. Let * = ¢'... 0% 79 = identity and
define diagonal operators D,: I, -1, and continuous operators fi:
l, ~1, by

Py K i~ , -
Di(e™®) = afe™ ™, Fi(e" ) = Bymo=1,2, ...
Then we have
Xy . ol o y
Aufern () = Ay (e") = ulie™0 = gl (o MM
o ok . i '
= fk(ﬂiﬂtcm) = fiDy(e r(n))’
s0 that Aufy,, = f,D,, b =1,2,...
Fially, define f*el;, k =1,2,... by By == uf so that Dy(l,)

=B, B° = (Bl
Then we have,

7 1 . L ) &
Al T Ak(e ) = (102“.57"(11) v ("gl"(vll)“:ha”(”) = /3);/?(“) vea ﬁglr(“‘) ar (“).
Hence, using the fact that I, is invariant ander permutations,

]

Ay Ayll) ={ Y 6 Ay A6 £ = (&) e L

n=]

o ‘

i\ T

= {‘Z Enﬂiic(n) v /9’,%(“) ;£ ¢ Lz}
n=1

={n); Eubi o BEC™: Ecl) = B B5(1) = D, ... Dy(L).

e ©
icm Beomple of e systoms 5

0

Hence, fl(kﬂ D, ... Dy(L)} = kﬂl_Dl o Dy(ly) =kﬂ A;...4;(1) so the
=1 = =1
conditions of Proposition A are satisfied and we may conclude that the

associated space has a basis. ‘

Remark 1. A slight improvement of Proposition 1 is possible. If we
assume that each A4, is similar to a diagonal matrix via the same simi-
larity transformation; that is, there exists an isomorphism 8: I, — s
such that each §7'4,8 is a diagonal matrix, then the last half of the
proof of Proposition 1 will still work showing that B (4z) was a basis.

2. p—v matrices. Let #,v be elements of I, with 0< |v,| < |y,
and define 4: I, -1, by

Ae'y = me',  A(e") = pe"—v, 6", m>1.
Then A(x) =0 if and only if

Hon,
Tppp =— &p = ... =— &y,
Vp Yy oo V1

so that |@,| > || for all n so0 if 4 l;, then 2 = 0. Thus 4 is injective.
Moreover, it is obvious that 4(p) =¢ so A has dense range. Thus A
generates a nuclear system. We now wish to study the existence of a basis
with various additional restrictions on g, ».

PROPOSITION 3. Let o = v and suppose that for each &> 0, (|u,|*p),, is
unbounded. Let (b,) be the sequence in B defined by taking b, = ("),
where b°™ = AT, m, k& =1,2,... Then (b,) is a total, linearly in-
dependent sequence in B which is not a Schauder basis for B

Proof. Since 4 (p) = @ it follows that the given expression estab-
lishes (b,) as a sequence in B. If

n
Db =0
=1

then it follows by taking k = 1 and evaluating the sum of sequences
ab its first coordinate that '
&

n
Ztiei =0
g=1

which implies that ¢ = ...¢, = 0. Hence (b,) is linearly independent.
Moreover, for each k, the vector subspace generated by (b%"), is
A7 (g) = @ which is dense in I, so it follows that (by)s is total in .
To show that (b,) is not a basis we apply Proposition C. Clearly we
have B, = AF, § is the identity and B;'S8(p) = @ 80 we must show that
for some £ < j that by choosing a suitable index p we can make || 4~%17, 47 |

3 — Studia Mathematica XLII.1



GUEST


34 E. Dubinsky

arbitrarily large. We take £ = 1 and we compute the matrix represen-

tation,
v

—T _
1 0 0 0 —1
010 ... 0 =1
0 0 1 0 -1
AL A =] - . <00 ],
o .. . 01 -1
or, expressed in more compact form,
e, n<p,
AL A(E =1 —(¢4...+¢), n=7p+1,
0, n>p-+1.

From this it follows that |41, A|‘p|| it ...
sequence is unbounded if we choose j = 1.
Now choose any j > 1. We shall show that sup|[4-11T, A”“[ || = o
»

which will complete the proof. Let the matrix of A7 be (wﬁt) and take
p > j. Then we elaim

46| = 1/17 so that the

0 if s<p—j,
agﬂ,“:[ 0 if s>p+1,
o i s =p41.
Indeed, if j =1 this is immediate from the definition. Suppose that it

holds for some j—1. Then to compute the (p+1)-st column of (af) we
multiply each row of (a}) by the (p-+1)-8t column of (af;?). Thus we have,

oo

J — 1 j—-1 1 J1, 1 J=1
Api1pi1 = Z P10 %541 == Op2,p1d Ot d,pat T O, pa Ot 2,041
n=1

= :“w-l/‘z‘;-ll_l"p-(-l'o = Ui
¥ s>p41,
841
3-27"'1 —Zasﬂ n,p+1 _2 g, O ,p—[l =0
n=1 n=g
and it s p—j,

oo
a’ al F—~1
a bl = D, g o = K 8- H :usas—}vl.p—l-l
n=1

icm°®
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and s < p —j implies that s <p—j+1 a.gd s%1<p~j+1 8o by the indue-
tion hypothesis, both terms vanish and af ., = 0. Thus the claim is proved.
From this it follows that for some scalars ¢, ;,,,..., ¢, we have

n

A = 3 o6+, e

so that s=p—j+1
Ed )
AT, AT () = 2 cses“/‘fzﬂ(zﬁs)
s=p—j+1 a=1
j 7
== Z#;+lgs+ (05— i 1) €°.
Therefore, =1 s=pjt1
»—, 1 ) -
4=, 474 | ;[2 A e 2 — ) ]2 > il VD —j
7=1 s=p—j+1
s VP —j
= ]/‘17-‘-1] 1 ]/ T 1 .

By our hypotheses, this last term is unbounded in p so we are finished.
Remark 1. The hypothesis of Proposition 3 is easily obtained, for
instance if we choose u e, such that

1
Bogn =5my M =1,2,...
Then if we take p = 2°", we obtain
271.
lplp = —gr > 00 a8 m— oco.

92nj

Remark 2. In a sense one may consider that Proposition 3 shows
that the most naive approach to construeting a basis in a nuclear Fréchet
space cannot in general succeed. Indeed we may think of ¥ as. a dense
subspace of I, with a sequence of (Hilbertable) norms on it, the first being
the original I, norm. Then we have taken a complete orthonormal sequence
(with respect to the first norm) and shown that it was total and linearly
independent in E. Such a procedure is exactly what worked in the cases
treated in Seection 1, but it fails here.

Actually, we can show more. Recall that a Markuschevich basis in
a linear topological space ¥ is a sequence (b,, f,), where (b,) is total in
B, (f,) is total in E'[T,(B)] and f,(b,) = 6pm- In [3] it is shown that
if B and its strong dual are separable then a Markuschevich basis always
exists. A Markuschevich basis is not necessarily a Schauder basis. For
an example in the case of Banach spaces, see [5]. We know of no previous
example for Fréchet nuclear spaces, so we show that y—» matrices provide
such examples.
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PROPOSITION 4. With the hypotheses of Proposition 3 there is & sequence
(f) in B such that (b,,f,) is @« Markuschevich basis but not a Schauder

basis.
Proof.-For each n = 1,2,;.. let f,
continuous it follows that f, ¢ B'. Also,

fn(bm) = l]n-Pl(bm) = ﬂ-n(bl’m) = '”11/(6n) = 61@1)7,'
Finally, if o < B and fo(@) = 0 for all n, then P,w<¢l, 80 we can write

(=]

M

Pz = mee ’
m=1

Hence, for each #,

= II,P,. Since I, and P, are

& el, and convergence in I,.

= D bngale™) = &,

M=l
go it follows that Py(z) = 0 and since P, is injective, # = 0. Thus (f,)
is total in #’ [T, (B)] and we are finighed.

We can try to find a basis for b using other methods. Let us assume
for the rest of this section that u, # u,, for # 3 m. Then it is possible
to (formally) diagonalize A. Let D be the diagonal maitrix with diagonal
elements (u,) and let U be the following matrix:

0 = ful®) = 1T, P, ()

—1 73, P1Vs Yy VoV 7
g — ey (p— g) (pa— s) (o — pa) (oo — tg) (pha — t4)
Vg Vg
o 1 - 2 S
Ba— s (s — paa) (s — i)
0 0 1 I
Ha— fha
0 0 0 1

" One can easily verify by direct computation that AU = UD. Moreo-
ver, U has a (formal) inverse, U~' given by the following matrix:

-1 Y1 V1V V1V N
po=piy (g ) (s — 1) (e — po) (b 2a) (pta — pa)
0 1 Y2 T
My~ hy (s — pis) (40— tan) 7
0 0 1 s
ey
0 0 0 1

icm

Boamples of nuclear systems 37

and hence we can write 4 = UDU™". Indeed all of the above statements
are rigorously true if we only apply the operators to ¢. It would be quite
eaxy (Remark 1) to conclude that 7 has a basis if we knew that U was
an isomorphism on 7,. Unfortunately, as we shall see below (Remark 3)
this is not necessarily the case. However we can give a simple condition
under which U is an isomorphism. More detailed computations could lead
to sharper results than the following.
PROPOSITION 5. Let u, v be such that u, 5 p,, for n % m and

1

< -
9

vi

— M

7 = sup
i<n

Then B has a basis which is obtained by applying P to each of the columns
of U (as an elemeni of 1,).

Proof. In view of Remark 1, we need only show that U is an isomor-
phism. The explicit deseription of the basis follows from the application
of Proposition B.

To show that U is an isomorphism, let S: I, — I, be the operator
defined by S(¢") = ™" and let B,: I, - I, be the diagonal operator whose
diagonal is given by the sequence
"’m+n—-1 «

- :um+n) )m:l ’

Vi Vit - - -

Famn) -~

( (/“m -

. (lu'm-}-'n——l

Then clearly we have U = I+ 3Y'8"H, = I+ U,. It suffices to show that

n=1
Ul < 1. But ||| =1 and [|B,]| is the maximum of the moduli in the
given sequence, that is,
m+n—1
= sup

m n
1=m

) Vi

My Mmpn

'm s Yman—1

<7t
(:um._ F‘m-&-n) . (.umq‘-n—l -

I1B,]l = sup
m

Hongn)

Hence we have,

=)

17 < S’HS"Enn 2 mi< Mr< Y 2=t

n=1 n=1 n=1

b2

Remark 3. There are some simple cases in which the hypotheses
of Proposition 5 are satisfied:
. 1 2(¢+1)2 1
@) b =— Sﬂp—— Il <<
n i i

. 1
(i) s =2as

=

Returning now to the situation in Proposition 3, we may well ask if the

: 1
milp 2% |n,] <-Z.
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method of Proposition 5 will always give a basis. The answer is no,
and this will give us an example in which U is not an isomor-
phism.

PROPOSITION 6. Assume that u = v, 0 < t, 7 uy for n # m and for
each integer j = 0, the sequence

( Fo iy 11 )°°

"o — Pt ] p=1

is unbounded. Then the sequence (b,) given by b, = P (b"™), where b is
the sequence in the n-th column of U, is a total, lmmrl Y mdependem sequence

in I which is not a Schauder basis.
Proof. Clearly U(p) = ¢ and U is invective on p. Hence U (¢") e U(go)
= UD*U (p) = A"(«p = A’“(l 50 B = ﬂA”(l,,) and b, B T
2 ,b; = 0 then Z‘t Uét = Zt b =0 and smee U ig injective on ¢,
&

Zte =08t =... =1, =0 and (b

for each %, the subspace generated by (6%, is A~ TU(p) =@ 80 (b,)
is total in .

Thus we may finish the proof by applying Proposition C to show
that (b,) is not a Schauder basis. We shall show that the norm criteria

) i8 linearly independent. Finally,

is not satisfied for & = 1. Let j > 0 and consider (all maps restricted ‘

to AT (g) = ¢),

ASYUIL U A = UD UL, DU AY = UIL, U 49,

Let UIL, U™ = (ty,) and we compute u, , for n =1,2,...,p-+1. Now
in IT, U™, the first p columns are the same as in U~* and the (p-+1)st
column is the same as in U~* except the (p-+-1)st row which is 0 instead
of 1. Taking the inner product of each. of these columng with the pth row
of U, we obtain,

0 n<<p,
1 " =
fin p,
Y,
. :“p"‘/"p»}—l

We have already partially computed the (p 41)st column of A7 = (ad,,)
in the proof of Proposition 3, but we also need to evaluate af, ,.,. We claim

Tp,p41 = %2%%‘!3’1, izl

icm
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and ap,,; = 0. This is clear for § = 1 so we suppose it holds for j. Then
using the information in the proof of Proposition 3, we obtain

oo
J+1 - _ \1
Gppr1 = 2, a,

i=1

7 — 7 — J
i Wiyp1 = HpOp,p 11— HpMpy1

-1 : 7
= ‘P‘p(l‘zz D T i) = — )
n=0 n=0
Hence we have,
—%2%#%1’3“ , om=p,ji>1,
a‘an-H: 0, m=p,j =0,
Bpr1s m=p+1l, j=0,
0, m>p+1, j=0.

Therefore we conclude that the element in the pth row and (p 4-1)st column
of AT'UIT, U 47 is given by

imer Hplhi .
— pp iyt — =1
PnZ pipt+1 I -"',u_p-l_l’ = -y
i
Lo Y
HBp— Pps1

Hence it follows that

A~ UIT, U~ A%+ > |4 UIL, U~ 47+ (43| > Mﬂ_
Hp ,up+1
and by hypothesis, this last sequence is unbounded with respect to p for
each j> 0 so the result follows from Proposition C.

Remark 4. It is important to note that there exist u—v matrices
which satisty the hypotheses of both Proposition 3 and 6. Indeed, if
we take u such that

1 m

om ?
2

1) M =
b

:)m2 ’

then (see Remark 1), the conditions of Proposition 3 are satisfied. More-

over, if we take any j> 0 and p = 2" —1, then
1 1 1
7 om + om? | gim 1
bolprr A 2m2—m(i+1)+
Hp = fpy1 1 2m

9m?
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which is clearly unbounded so Proposition 6 is satisfied. Thus all of the
methods that we know of fail to produce a basis in this case and we are
led to the following

OONJRCTURE. If A is a u—2A matriz with u =3, 0 <p, # u,, for
all m % m and such that u satisfies (1), then A generates a nuclear system
whose associated space is & nuclear lﬂréchat space which does not have
a Schauder basis.

3. Lower triangular matrices. In this section we consider a very
simple cage of lower triangular matrices which give nuclear systems and
construct a basis by direct computation.

Let N be a fixed positive integer and for each k¥ =1,2,... let
a¥*,...,a" Dbe elements of I, such that af =0 for j<+¢ and let
w¥ ely, uf + 0 for all j, k. Then we can define 4;: I, =1, by

Ay = Zm o 4 ij

4=1
As a matrix we can describe 4, by noting that 4, is a diagonal matrix
except for its ¢th column (1< ¢< N) which is the sequence ufe’+ g,
PROPOSITION 7. (4y) is @ nuclear system. For each n, the map f, = II, P,
is in the dual of B.
Proof. Bach 4, is the sum of a nuclear diagonal map and a map

with finite dimensional range so it is nuclear. If A} is the adjoint of

4y, then we can see by inspection that Aj(p) = ¢ so that A} has dense

range 80 A; is injective. Next, it is clear that ¢’ = — A, () for ¢ > N.
) My

For 1<ng

N, let >0 and define # = (2,) el, by

0, i< m,
1 .
— i=mn
oy ’
1 - .
@, = —Vc—(a By b0, ), m< 1N,
g
1 Lk N .
——wlwte . e ay), N<ig M,
{
0, P> M,

where M > N is an integer chosen such that

(3

J=n i=M 1

bt

2)E< ..

+

icm

Then

14z (@) — €7 —H (@2 + ...+ a ) 6
i= M+1

50 A, has dense range. Thus (4,) is a nuclear system.
The second statement is obvious sinee I7,,, P; are continuous.

ProOPOSITION 8. The associated space of (A,) has a Schauder basis.
Proof. For ¢ > N it follows that ¢’ e () 4, ... 4;(L,) 50 we can define
&

b; = P7'(¢") ¢ . Now P,(F) is a dense subspace of I, so if we define
II: 1, > RY by H(®) = (ay,...,5y) then IIP,(H) = EY. Hence there
exists by, ..., by in B such that IIP,(b) = ¢ ¢ RY, 4 =1, ..., .

We claim that (b;) is a Schauder basis for . Pirst suppose that
reBand o = 2 &t;- Then by Proposition 7, for each n, f,(#) = 3 &f,(b,)-
Thus we obtain,

ful®)
.

N
Fale)= D) fi(@)

n<N,

fuldy) n>N.

This shows that the representation is unique and we need only show
that for = ¢ E the series } &b, converges to @, where () is glven by the
above relations.

We consider for n =1, 2,...

¥ N N
WPr(o— Y &b =fu@) = Y & 0) =ful@) — D Fi@)f, (5)
i=1 i=1 =1
0, n<< N,
- &y n>N
~
and since P,(z— 3'&;b;) eI, we have £el, and
i=1
N 0
Pio— Y eb)= 3 g
1=1 n=N+1
Hence for M > N
M N M
Po— Y &b) =Pifo— 3 Eb)— > &Pi(b)
i=1 . t=1 i{=N+1
00 M o;
2 E/'] 6” . 2 'Si ei — ‘>—I En en.
n=N-+1 i=N+1 n=M+1
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Now let vy = up... gy ¥ =1, mk =1,2,... Then for any &k>1, we
have ¢ = (£, €l, with

M o
Pk+1(”‘"2 5#%) = deﬁn
=1 n=1

80

M M 00
P1(w‘“2 §ibi) =4,... AIcPk-H(m —‘Z f«;bq‘,) = Z”a’fdﬁen-
=1 f=1 Nl
Equating coefficients we conclude that
n

F=0for n<M and = —%’f— for > M.
. "n

In particular, applying this for M = N we conclude that

(—E%—) ely.
Vi [ne=1
And for arbitrary M > N,
Mj‘ 00 § oo 9 _J:
“Pk(m_zéribi) =’ Z Sn g z( 2 E;;L )2“
i=1 k w1 M nagry1l n

The last term goes to 0 as M goes to co and this implies

lim “P,iw —5: fibf)! =0 o that a = 5] &b,

=]

M-—>o00

Remark 5. The case described above is a very primitive example.
To go further, it would be very interesting to see what happens if ¥ varies
W‘ith respect to % and moreover if this approach could be used to appro-
ximate an arbitrary lower triangular matrix. Finally one could investi-
gate the connection between upper and lower triangular matrices.
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On operator-valued solutions of d’Alembert’s
functional equation, II

by
J. KISYNSKI (Warszawa)

Abstract. In the paper several negative examples are given, connected with
the problem of representation of a cosine operator function #(f) in the form ¥ (t)
= 39 (t)+ 3% (—1), where #(I) is an one parameter group of operators.

Introduction and results. Let X be a real or complex topological
vector space and let #(X) be the space of all linear continuous operators
of X into itself with the topology of simple convergence. A confinuous
mapping ¥ of (—oo, co) into £,(X) is called the cosine operator funetion
if it satisfies the d’Alembert functional equation

C+-8)+ €t —s) =29@)¥(s), —oco<s,t< o0

and if, moreover,
%(0) =1.

We shall say that # has an exponential representation if there is a one- -
parameter continuous group {#(f): —co< i< oo} = L (X) such that

() = 39()+39(—1), —oco<i< oo.

It was proved in [5] that if X is a complex Banach space and an
& (X)-valued cosine function is bounded on (—oo, oo) and continuous
in the sence of the norm in #(X), then this cosine function has an expo-
nential representation. Without the assumption of continuity in the sense
of norm in #(X) a similar theorem is not true. Namely, as shown in [5],
if X is the space of all complex impair continuous functions on (—oco, o)
having period 2=, or if X is the space of all complex impair functions
almost periodic in the sense of Bohr, and if

(#M)a)(s) = Ja(s+0)+dm(s—1), @eX, —oco<s,i< o0,

then % has no exponential representation.

In the present paper some other examples of this type will be presented
and the results may be summarized as follows. Consider following complex
functional spaces on (—oo, c0):
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