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Now let vy = up... gy ¥ =1, mk =1,2,... Then for any &k>1, we
have ¢ = (£, €l, with

M o
Pk+1(”‘"2 5#%) = deﬁn
=1 n=1

80

M M 00
P1(w‘“2 §ibi) =4,... AIcPk-H(m —‘Z f«;bq‘,) = Z”a’fdﬁen-
=1 f=1 Nl
Equating coefficients we conclude that
n

F=0for n<M and = —%’f— for > M.
. "n

In particular, applying this for M = N we conclude that

(—E%—) ely.
Vi [ne=1
And for arbitrary M > N,
Mj‘ 00 § oo 9 _J:
“Pk(m_zéribi) =’ Z Sn g z( 2 E;;L )2“
i=1 k w1 M nagry1l n

The last term goes to 0 as M goes to co and this implies

lim “P,iw —5: fibf)! =0 o that a = 5] &b,

=]

M-—>o00

Remark 5. The case described above is a very primitive example.
To go further, it would be very interesting to see what happens if ¥ varies
W‘ith respect to % and moreover if this approach could be used to appro-
ximate an arbitrary lower triangular matrix. Finally one could investi-
gate the connection between upper and lower triangular matrices.

References

{11 Ed Dubinsk.y,. Equimlent nuclear systems, Stud. Math., 38 (1970), pp. 373-379.
2] - A new definition of nuclear systems with applicalions to bases in nuclear spaces
Studia Math., 41 (1972) pp. 149-161. ’

{31 W. B. Johnson, Markuschevich bases and duality theory, Trans. Awer. Math.
Soc., 149 (1970), pp. 1-7.

f4] A, Pietsch, {ber die Braeungung von (IF)-Rémmen duroh selbstadjungiorte Operato-
ren, _Ma’uh. Ann,, 164 (1966), Pp. 219-224,
[8] I. Singer, Bases in Banach spaces, Heidelberg 1970,

INSTYTUT MATEMATYCZNY POLSKIET AKADEMIT NAUIK

Recetved November 3, 1970 (265)

® © '
Im STUDIA MATHEMATICA T. XLIL (1972)

On operator-valued solutions of d’Alembert’s
functional equation, II

by
J. KISYNSKI (Warszawa)

Abstract. In the paper several negative examples are given, connected with
the problem of representation of a cosine operator function #(f) in the form ¥ (t)
= 39 (t)+ 3% (—1), where #(I) is an one parameter group of operators.

Introduction and results. Let X be a real or complex topological
vector space and let #(X) be the space of all linear continuous operators
of X into itself with the topology of simple convergence. A confinuous
mapping ¥ of (—oo, co) into £,(X) is called the cosine operator funetion
if it satisfies the d’Alembert functional equation

C+-8)+ €t —s) =29@)¥(s), —oco<s,t< o0

and if, moreover,
%(0) =1.

We shall say that # has an exponential representation if there is a one- -
parameter continuous group {#(f): —co< i< oo} = L (X) such that

() = 39()+39(—1), —oco<i< oo.

It was proved in [5] that if X is a complex Banach space and an
& (X)-valued cosine function is bounded on (—oo, oo) and continuous
in the sence of the norm in #(X), then this cosine function has an expo-
nential representation. Without the assumption of continuity in the sense
of norm in #(X) a similar theorem is not true. Namely, as shown in [5],
if X is the space of all complex impair continuous functions on (—oco, o)
having period 2=, or if X is the space of all complex impair functions
almost periodic in the sense of Bohr, and if

(#M)a)(s) = Ja(s+0)+dm(s—1), @eX, —oco<s,i< o0,

then % has no exponential representation.

In the present paper some other examples of this type will be presented
and the results may be summarized as follows. Consider following complex
functional spaces on (—oo, c0):
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0,(—00, co) = {all bounded uniformly continuous funetions},
([ —o0, co] = {all continuous funetions with finite limits at —co
and at oo},
Cy(—o0, o) = {all continnous funetions with limits zero at — oo
and at oo},

C,. = {all continuous functions having period 2=},

AP = the space of almost periodic functions in the sense of Bohr,

IP(~o0, 00), 1< P <

L = {a]l functions lom]ly integrable w1t,h power p and having

period 2x},

M(—oco, o) = the space of all bounded Borel measures,

M, = the space of all finite Borel measures having period 2.

We shall regard M(— oo, o0), M,,, L*(—o0, co) and Lg, as adjoint
spaces of 0y (— o0, 00), Oy, I*(— oo, oo) and Ly, with the s-weak topology.
The remaining of the above spaces will be regarded as Banach spaces
with the norm topology.

Let X be any of the spaces lisbed above, let {T'(f): —oo < < oo}
c Z(X) be the one-parameter group of left translations and let X,
denote the subspace of all impair elements of X. We shall say that X has
property (B) if the % (X;,,)-valued cosine function

Lsip < o0,

@o(t) = [T +T(—1)]| Xy

has an exponential representation.

THEOREM. All spaces L* and IL. with 1 < p < oo have property (B).
The spaces Cy(— o0, o), C[—oc0, o], Oy — o0, ), Oy, AP, I} (— o0, o0),
Lipy M(—~00, 00), My, I®(—o00, 00) and L, do not have property (I).

The proof will be given in several sections, devoted to various spaces.

The author expresses his warmest thanks to professor . Ryll-Nax-
dzewski, who suggested that the problem. of the existerice of an expo-
nential representation for the cosine function %,(t) may ho interesting
not only for the space Cyp y,, considered in [57, but also for other spaces
of impair functions. Also to professor C. Ryll-Nardzewski the author
owes many technical hints and some important paxts of the proofs.

1. The spaces L and L ( — co, 00), 1 < p < oo, have property (E). Lot
l<p<ooand X =L or X = L”(—oo o), Lot

(Bz)(s) = o(—s),
Then there is a projector P ¢ #(X) such that

2ekX, —o0o< §< oo,

(a) THP =PT(i), —oco<i< oo

icm°®
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and

(b) T({)(EP+PR—R) does not depend of signt.
Indeed, if X = L., then, according to a theorem of M. Riesz (of. [4],
Chapter 9), there is a projector Pe.#(Lf) such that Pz, =z, for
7 =0;1,... and Pz, =0 for m = —1, —2,..., where ,(s) = &,
It is easy to see that this projector satisfies (a) and (b). X = L*(— oo, o)
then, according to another theorem of M. Riesz (ef. [1], Chapter X1, § 7,
Theorem 8), the Hilbert transformation H belongs to Z(X). As known,
H* = —~1, HR+RH =0 and HT(i) = T(i)H. Therefore P = }---iH/2
is & projector satisfying (a) and (b).

Now we may proceed simultaneously for X = ILf and X = L?(—oo,
co). Let P ¢ #(X) be a projector satisfying (a) and (b) and put

Q@) = T(H)P+T(—1)(1—P).

By (a) we see that {G(t): —oo< f< oo} =&, (X) is a continuous one-

parameter group. By (b) we have
RG(t) = T(—) RP+T({) R(1—P) = T(—t)(1—P) R+T(}) PR = G(}) R,
‘which, in view of the equality X,,, = {#: © ¢ X, Ry = —a}, implies that
G(t) Ximp © Xippp, —o0< i< 00,

Therefore, if () = G(t)| Xjp, then {Z(f): —co<i< 0} = &
a continuous one-parameter group such that

(Ximp) 18
G (t) =390+ 59 (—1).

2. The spaces C,,;, AP, I;,., L3 and M, do not have property (E). For
C,. and AP this was proved in [5]. Following the argumentation used
there for C,,, we shall give the complete proof for C,., L3, Lj, and M,..
Let X denote any of these four spaces. For every # =1,2,... let
z,(8) = sinns; let

2 Tt
P,z = (-—fwn(s)m(s)ds)mn, @ e Xy,
T
[

in the case when X = Cp., IS or Ii. and let

2 b
P, = (”‘f “‘n(,s)m(ds))xm mGMzn:,imp)
i

o

when X = M,

() ErIOEN

. Then P, e#(Xy,,) is a projector and, since

= (cosnt)x,,
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we have
2 ™
(b) P, =;f cosnt €, (t)dt.
' 0

Suppose on the contrary to the assertion that there is a continuous
one-parameter group {#(f): —oo< i< oo} @ Z(Xy,,) such that @)
= }%(t)+$%(—1). Then, by (b), P,%(t) = 4(1)P, and consequently,

by (a), for every n =1,2,... we have
(e) g()P, = ee,,,linlpm —o0 <4< 00,
where ¢, =1 or ¢, = —1 do not depend on #. Assume additionally that
& =0 and e, = —e_, for n = —1, —2,... and consider the impair
periodic distribution S with Fourier series’
oo
8~ 2 &, 6™,
= —00

According to a theorem of Helson [3], if the sequence of Fourier coef-
ficients of a measure on [0, 2«) consists of finitely many distinet values
only, then this sequence may be made periodic by a change of a finite
. number of its elements. The sequence {s,} takes only the values —1,0
and 1, but since le,| = 1 for all m 5 0 and {e,} is impair, it cannot be
made periodic by such a change. Therefore S is not a measure.

Now we shall obtain a contradiction by showing that S is a measure.
We shall use here the argumentation given by professor C. Ryll-Nat-
dzewski. We have

2 F
. f enising (s 1) df = — i, 6™ = (g, — § *,) (8)
0

and, by (c)
(L) (1)) (s) = en™ginn(s+1),
so that

2 ki3
Sxw = m——_f T ()% (l)wdt
T 0

for every impair trigonometric polynomial #. Hence, by an application
of the Banach—Steinhaus theorem, we infer that there is a constant K
such that

(d) 8% 2| < K |25

icm°®
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for every impair trigonometric polynomial . If X = C,, or X = L then,
8 being impair, we have

K8, @] = K8, Bimpd| = | — (8 *@imp) (0)] < Kl

for every trigonometric polynomial # with the impair part ;,, and this
implies that § is a measure.

X =1I;,or X = M, thenlety,,n = 1,2, ... bean approximative
unit in the convolution algebra Ij_, such that y, are pair trigonometric
polynomials and [Jy,|| < 2forn = 1, 2, ... Then, for everyfixed t ¢ (— oo, c0)

t t t
a§ # -—> oo, in the sense of distributional convergence. On the
other hand, applying (d) to the impair trigonometric polynomial «

i i
= T(;)’!/n—‘T( — ;)yn, we see that
”‘S't,nHLg < COnSt

for every n =1,2,... and te(—o0, o). It follows that

(e) T#)S—8eM,, and |[T@ES— S||M2,, < const

for every te(— oo, co). Since S is impair, we have fT (t)Sdt = 0 and thus
0

1 2
8 :57?[ (8 —T(1)8)dt

in the sense of distributional convergence of the Riemann approximating
sums. On the other hand, by (e), these approximating suins form a bounded
set in M,,.. It follows that SeM,,.

3. Some lemmas on cosine operator functions. In this section X
always denotes a sequentially complete real or complex linear locally
convex space and our reasonings will base on a boundedness principle
formulated in Theorem 7.4.4 of the book of Bdwards [2]. Throughout
this section ¢ denotes a Z,(X)-valued continuous cosine function. Accord-
ing to Sova [6], the infinitesimal generator of ¥ is the linear operator
A defined by the conditions

2
2(A) = {m: xeX, lim ?—(%(t)m—w) exists in X},
0

Az = hmg—(%(t)w——m) for zeF(4A).

z
>0 b
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LemmA 1. The operator A is sequentially closed and its domain 2 (A)
is sequentially dense in X. If we D(A), then € (f)w is an X-valued function
of , twice continuously differentiable on (— oo, oo) and such that € (t) w2 (4)

F)e = A% (t)s = € (t). 4w for every te(—oo, oo).

a

d 2
Proof. For every X-valued function f continuous on (—oo, oo) and

every h > 0 we have

i-h

@ ffft+ib+vdudv=(f f)f i

i4-h

[+ [ -2 fJromnf -

—h

[

f)f( v)dv

- f (0 +h) -+ (v —h) = 2f () dv-+

fh () —F(—0)do

and therefore
[

[ [ (74wt 0)—F(u+0)) dudo

iy . .
=t [ (fO)=f(=v)do+ [ [ (f(v+h)+Fo—h)—2f(0)) dodu.

‘We shall apply the former equality to f(¢)
bert equation, ¥(t) = ¥(—1) and

= % (). Since, by the d’Alem-

1
(a) —(€+n+E0—n—29() = ')727(%(]&)*1)
9
=2r (6(0)~1)% (1),
we obtain

h

0
1
- ff(‘f (+ v+ 0)o—F (u+v) z) dudy
—h 0
1

1
¢ w

f 5{ % (v - (%(h)m @) dvdu —-—/2——(%” L) — Oft f () xdoduy .

()
0
Passmg m the first and last teum of (b) to the limit as # — 0, we infer

that H% (v)wdodu e D(A4) for every te(—oo, o) and zeX. Because

icm°®
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9 tu
11m-— Il f % (v)advdu = x for every zeX, it follows that 2(4) is sequen-

=0 00
tlaﬂly dense in X.
Now we show that
t u
() Wa—a = [ [ 6(v) dwvdvdu  for every weZ(4) and te(—co, o).
00
This is obvious for ¢ = 0 and since the argumentation for ¢ < 0 is similar
to that for ¢ > 0, let us assume that ¢ > 0 is fixed. Let #e 2 (A) also be
fixed. Then, by the continuity of # and by the definition of 4, it follows

2
that B ={-—— ()2 —=): 0< [} <1p is a bounded subset of X and,

moreover, for any y ¢ X the set {#(v)y: 0 << v< 1t} i3 a bounded subseb
of X. Therefore, according to the boundedness prmclple for locally convex
sequentially complete spaces, formulated in Theorem 7.4.4 of the book

of Bdwards [2], the set {J {€(»)B: 0o <1} = {%(@)%(%(h)m»-m):

0ot 0< A sil} also is a bounded subset of X. Moreover, we have
hm%‘ (0) =5

(%(h #—az) = ¥(v) Az for every ve[0,%] and therefore, by

the Lebesque bounded convergence theorem,
B0 00

(% (h)e— ) dvdu = | f %(v) Awdvdu. Thus (¢) follows by passing in the
00

first and second term of (b) to the limit as b — 0.
By a similar argumentation, based on the Lebesque bounded con-
vergence theorem, we obtain from (c) that if a pair (,y)eXx X lies

2
in the sequential closure of the graph of A4, then ?(‘g(t)m—m)

9 tu L
== [[ €(w)ydvdu for t 5 0. Passing in this equality to the limit as ¢ — 0,
o0

we obtain that # <2 (4) and Az =y, which proves that 4 is sequentially

closed.
It zeP(4), then it follows from (a) that #(f)we2(4) and A% (t)y»

&
= #(t) Az, and from (c¢) it follows that —t—z—%(t)w = ¢ (1) A» for every

te(—o0, co). This completes the proof.

Levma 2. If K is a sequentially closed operator with domain P(K)
sequentially closed in X and range in X, such that K < A and € ()2 (K)
< 9(K) for every te(—oo, ), then K = A.

4 - Studia Mathematica XLII.1
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Proof. We have to prove that 2(4)< 2(K). Since K « 4 and
% (1) 9(K) = 2(K), 0, by Lemma 1, for every @ « 2(K)and t e (—o0, oo)

we have _fi#(g(t)m_ K%tz = ¢(@) Ko and consequently % (¥)w—

f f K% (v)wdvdu. Since 1n the last equality € (v)o and K% (v)o are con-

tmuous functions of » and since K is sequentially closed, we may transport
K before the integrals. We then obtain that

t ow

t u :

[ [ €@wdvin e 2(K) and K [ f % (v)wdvdu = C(t)w—

00

for every ¢ 2(K) and te(—oo, co0). Let now o« X\Z(K). Because
9(K) is sequentially dense in X, so there is a sequence {X,}, m =1,2,.

guch that , ¢ 2(K) and lim @, = #. Then llmef % (v) @, dodu = hm .

N->00 N-+00

(%(t)wn—mn) =% (t)o—o and lim fj % (v)z, dodu = ff%”(v advdu, by a bo-
00 0 0 00

undedness principle for locally convex sequentially complete spaces from
the book of Edwards and by the Lebesque bounded. convergence theorem.
Hence by the sequential closedness of K, it follows that (*) holds true
for every z ¢ X and te(—oo0, o). Now it is easy to finish the proof.

tu
Indeed, if #e2(4) and o, = — f { € (v)wdvdu, then lim @, = » and, by
-0

(*), @ ¢ 2(K) and lim Ko, = hm—(%(t)w a;)
=0
sequentially closed, 1mphes that 2 e D(K).
Levmma 3. If €(3) = G(t)+3G(—~1), where {@(1): —oo < i< oo}
< LX) is an one powameter continuous group with mfmwesmmal genemtor
B, then B* = A.

Proof. Let us recall that

Agp, which, K being

P(B) = {m zeX, (G(t)w w) exisgty in X},

t—>0 4

By = lixn—i-(G(i)w—m) for

-0

© < 9(B).

Then for every = =1,2,... we have

. I
i) GH2(B" < 2(B") and —7 6o = G(1)B"2 = B"G(H)o
for every t¢(—o0, o) and x ¢ 2(B"). Moreover,

(i) all the operators B® n =1,2,..., are sequentially cloged
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On operator-valued solutions of d’Alembert's Functional equation, II 51

and
(i) M 2(B") is a sequentially dense subset of X.
n=1

Having (i), (i) and (iii), the equality B> = A follows immediately
by an application of Lemma 2 to K = B®. We may prove (iii) in the
same fashion as in the book of Yosida [7], in the case of equicontinuous
semi-groups. However, if we want to prove (i) or (ii) without the assump- -
tion of equicontinuity, we have to use a new argument.

Ad (i). We shall proceed by induction in ». If we assume that
Z(B%) = X and B" =1 then (i) is trivial for n = 0. Suppose now that
(ii) is true for a certain = > 0 and let ©¢2(B™H). Then, for every h> 0
we have

3
1 ar
Z‘of (WG(H‘“)

and, passing to the limit as & — 0, we obtain that, for every f « (— oo, o),

)du ~fG(u % G (h)—1) B zdu

(*) G(u)wl fG(u VB du.

a

du”

Indeed, the only non-trivial point in this limit passage is that
¢ ) ¢

lim [ @ (u)= (6(h)—1) B odu = f 6 (w) B odu,

10 Iz ¢

and this may be proved by an application of the boundedness principle
from the book of Edwards and the Lebesque bounded convergence theorem,
similarly as this was done in the deduction of (¢) in the proof of our

Lemma 1. From (*) it follows by a differentiation that if @ e Z(B*),
n+1
then ——— yr==y

if £ e2(B"') then for ¥y = Bz e

G(f)z = G(t)B"'w for every e (— oo, oo). On the other hand,

%(B) we have

G(1) Bz = G() By = lim@G(1) = = hm%(G(h) )6y

h—0
so that B"G(f)w = G{f)B "z = Gy « D2(B)
= B"@(t)z. Thus (i) is proved.
Ad (ii). It follows from (i) that, for z ¢ 2(B™),

( Ry —v)

and G()B“"'z = BG(t)y

Gt)x = s+tBs+...+—7r

( B” -t +f 1)' G(u B"wdu
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Applying this formula and proceeding by induetion in n, it is eagy to

prove that for every n =1, 2,... the operator B” is sequentially cloged.

Indeed, if Z(B°) =X, B® =1, then B’ is closed. Let now =» > 1 and

suppose that B, BY ... and B"" all are closed. Let the pair (v, #)e X x X

lie in the sequential closure of the graph of B". Then there is a sequence

{@}, k =1,2,.,. such that a;, ¢ 2(B"), Ilim oy, = @ and ’.lim B'xy, = y. By
fi—r 00 fi» 00

the boundedness principle from the book of Edwards and by the Lebesque
bounded convergence theorem, we have

i \
C(t— u)n-l

¢

)"t .

lim. (= u) G (u)B g du = f———— - G (1) 97 de
b

Y (n—1)! (n—1)!

for every ¢ e (— oo, o). Since obviously lim G (#)a;, == G (t)w, it follows that

J—o00

) 71
Em (wk +iBwy+ ...+ B”‘lmk) exists for every . Therefore lim. B™g,

(n—1)! Fmroo

exists for every m = 1;2,...,n—1 and, B™ being closed, # ¢« 2(B™) and

lim B™g,, = B™g. Therefore x ¢ 2(B"*) and

koo

M=l 4 N1
)!

15 . L (t—a) .
Gt)w = a+1Bat ...+ —— B _f_,_.,m__n )y
(®) +.oot = - ) G () y du
for every ¢t e (— oo, oo). Differentiating this n—1 times and using (i), we
. 1 1t
obtain that 7(G(t)—1)B“"1'w =7j G(w)ydu for every t st 0. Finally
0

passing in the former equality to the limit as ¢ -0, we infer that
B 'z e 2(B) and B"» =y, so that B" is sequentially closed.

LEywA 4. Let o denote the field of scalars of the linear structure. of
X and define the L(X X #) — valued cosine function % by the formula

Ct) (@, ) = (€)@, 1), weX, Aed, —oo< i< co.

Suppose that € has an exponential represeniation and that A is invertible.
Then % also has an exponential vepresentation.

The invertibility of 4 is essential in this lemma. Indeed, let X = (!X ¢
be the two-dimensional complex space and lot #(f) = (3 ‘1“) Then.

A- 01
=lo o has no square root and therefore ¢ has no exponential

representation. On the other hand, in this case

) 011 011
F(t) = %exp|t|0 0 0] | +4exp| —t{0 0 0]].
010

010

/

On operator-valued solutions of d’Alembert’s functional equation, 11 53

Proof of Lemma 4. We shall write elements of X X7 in the form of

i),wherexeXa,ndls%’. Let {é(t): —oo < t< oo} @ F(XXA)

be a continuous one-parameter group such that

columns (

39O +19(—1) =€)
and let & De its infinitesimal generator. Then, by Lemma 3, # is the
infinitesimal generator of ¢ and so 2(#°) = Z(A)x o . It follows that

(g)e.@(g}‘l) c 9(%F) and thus
DB) =LX A,

where I is a dense linear subset of X. Therefore we may represent Z in
the form of a matrix

N B x,

4= (z lo)’

where B is a linear operator defined on L with values in X, , ¢ X, 4 e o
and 1is a linear form on L. If 7 = (j)e.@(é) = L x A then, according

to the general rule of multiplication of matrices,
=~ [B z,\ [x\ _ [Bz+iz,
# - (T30 - ()

Since #° is the infinitesimal generator of %7, we have

7 — (‘3 g) on D(F) — D)X A
which implies that
(i) Bo(4) < L
and .
. B +lzy, Boy+Am\ (40 '
(i) (IB—I—JLOI, w2 ) =\o o) O IUAIXA.

Since g)s@(ﬁ) X A = DB < D(F),

we have (”;“) = é(g)e@(éz) = Z(A)x A and consequently
0

C(idd) Ty € D(4).
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It follows from (i)-(iii) that
Ax) = Bloy+ (a3 w, = Blay— Bwy = (B— o) (Bay+Ayw,) =0

and 80 @, = 0, sinee 4 is invertible. Now, as we already know that «, = 0,
we can see from (ii) that also 1, = 0. Thus

~ _B ~
% =(z g) on D(#) =Lx A,

0
A

(i) g(5) - (5)+))
for every v ¢ X, A< and t e (— o0, o).

Let now P denote the mnatural projection of X X o onto X and
let # denote the natural imbedding of X into X X o, i.e.

d -~ [0 LN
so that E{g(i)(l) = @(t),@( ) =0 and consequently

@

fm=(0

) for we X.
Put
Z(t) = P (t)7.

Then #(0) =1 in ’?(X) and since, by (iv), P#(t) = P%(1).5P, we have
F()9(s) = PG(1)IPG(1)F = PG(1)F(5)S = PF(1+5)F = F(t+5).

Therefore {#(?): —oo<t< oo} Z,(X) is a continuous one-parameter

. group. Moreovet, $9(1)+ 39 (—1) = 4P (9(5) + G (—1)).5 = PE (1) = ©(1)
which gives an exponential representation for #. . ’

. 4. The spaces L'(—o0, co) and M (— oo, co) do not have property (E).
Since our reasonings, except of some details, are the same for I'( — oo, o0)
and for l!ll (—o0, o0), we admit in this section the convention th;;t X
?n;)}felsﬂ L' (—o0, ) or M(—o0, o). Any of our statements concerning
—LIO d be understood as a statement true simultaneously for X
_1—;1 ~(—oo, o0) and‘for X = M(— o0, o). Let us recall that we consider

.( o0, oo) under its norm topology and that we consider M (—o0, o)
‘w1th the topology of weak convergence of measuves, ie. M (‘-—-oo, 00)
is regarded as the adjoint space of (,( — 00, o0) with the *-weak topol’ogy

Let H ‘ denote the set of all finite linear combinations of Hermit(;

functions g, (s) = ;n
s

< M(—co0, co) in the obvious sense-and it is known that H is dense in

g2

¢ n=0,1,... Of course, H < L!(—oo0, co)

icm°®
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I}(—oo, o) in the sense of norm topology (this in particular follows
from the statement (I) of our next section) and that I'(—oo, oo) is
sequentially dense in M (—co, oo) in the sense of weak convergence of
measures. Therefore
@ Hipy
where H, denotes the set of all finite linear combinations of the functions
@, n=1,3,5,...

The infinitesimal generator A4, of the #(Xjy,)-valued cosine
funetion

is sequentially dense in Xy,

%o () = $T O +T(— ][ Ximp

is defined by the equality
1
Ay = lim — (T(h)w+T(—h)o—22),
10 B2

its domain 2 (4,) being the set of all those elements @ ¢ Ximp, for which
this limit exists in the sense of topology admitted in X.

Let @ denote the space of all complex-valued infinitely differentiable
functions on (— oo, co) with compact supports and let 2’ be the corre-
gponding space of distributions. In the obvious sense we have X ¢ 9.
Tor any <9 let @ denote its second distributional derivative. We
shall show that

({l) D(Ay) = {@: @ e Xy and 0 € Xy}, Ao =& for o D(4).

For the proof of (ii), for every real b 7 0 pusb

’;’F

1 8
0,(8) =max(—— \, 0), —o0 < §< 0.

n

Then it is easy to verify that
l rH
(T W+ T(=hp—2¢) = bixg

for every ¢ « @ and real h = 0. Now suppose that o ¢ Xy, and 7’ e Xi;,m.
Then T'(f)#” is an X-valued funetion of ¢, continuous in (—oo, oo).
Therefore, for every real h+ 0 the integral [ &,(#)T (t)2" df has a sense

and, as is easy to prove,

(o) lim [ 8,()T(0)e" dt = o

=0
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in the sense of topology amitted in X. Furthermore, for every ¢ ¢ @ and
real k # 0, we have

[ amTmea, o) =@, sixe> = <@, x>

- <m, %;(T(h)¢+r(—h)qy-2¢)> - <7}2- (T(~n) e+ T (h)o—2a), ¢>

go that

@ FECHCIEE (T (~B)at T (W) —2a).

It follows from (a) and (B) that, if z « KXimp a0d ' € Xy, then o e D(Ay)
and 4,z =a”. On the other hand if » < D(4,), then for every ¢ <2
we have

1
(4o, g = lim = (T (W)a+T(~h)a—2a), p)

. 1
= 1}3113 <937h—2(T(ﬁ)¢+T(—~h)¢—2¢)> =@, 9",
so that A,z is equal to the second distributional derivative of z The
assertion (ii) is proved.

It follows immediately from (ii) that

(i) @€ q (A7) and gy, = A}?% for n=1,2,...

After this preparation we shall prove the assertion stated in the title
of this section. The proof will be by proceeding ad absurdum. We agsume
that there is a one-parameter continuous group {#(t): —oo << o0}
< Zy(Xjpyp) such thatb

G () -+ 39(—1) = B,(1).

Under this assumption we shall prove some lemmag, which will lead
us to a contradiction.
For any # ¢ X let Fo be its Fourier trangform, i.e.
(‘g‘,— ’ — ) 1 F ] q ‘
»)(u) —TZ—;_£ e aé(s)ds, —oo < U< oo, if @el'(— oo, o)

and

1o "
(ﬂw)(u):v—ﬁ fe‘_””w(d,s), —oLuL o, if weM(—o0, ),

icm°®
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Then Fx e 0,(— o0, oo). In parbicular,

[

(Fww) == e,

Tt @ ¢ D(AD), then, by (il),

(FATD) (1) = (— 1) (Fo)(u).

- For any real ¢ and u put

ﬁ e (FY (1)) (u)
gy(u) =1 i

1 if w=0.

if w0,

Then, for fixed 7, g,(#) is a pair function of u, continuous in (—o0, o)
except, perhaps, of the point % = 0.
LEMMA A, For every t e (—o0, o0) and @ € Xy we have

FY(r = ¢ F%.

Proof. From Lemma 3 of Section 3 and from the property (i) of
one-parameter groups stated in the proof of this lemma, it follows thab
G DAY = 2(AY) and F@R)AJz = At ()
for every te(—oo, ), e Z(A7) and n = 1,2,... Therefore, by (iii),
for every m =1,2,... and te(—oo, oo) we have ?(Z)%,H_l = A%9 ()¢,
and (FG (1) gupa) () = (— 0 (FE Do) (w) = g:(w) (%) (F) (w) = g.(u}
(F 1) (w), 80 that our lemma is true for every @ e Hy,,. Let now
% € Xipp \Himp- Then, by (i), there is a sequence 3 gy -ee of elements
of Hy,, converging to . For any t € (— oo, oo) we have lim 4 (1), = ¥(t)2.

n—>00
It @ eI}(—oco, o0); then it follows that, for every te({—o0, o),

limZFz, =Fx
n—00

() limFg{)a, =FF @z and

N0
in the sense of umiform convergence on (—oo, o) and so, for every
% e (—00, o),

(B) (FE))(w) = Um(FF (@)z,) (v) = limg,(u)(Fa,) (W) = 9 (u) (Fw)(w).

Therefore in the case of X = L!'(—oo, co) our lemma is proved. If
% € My, (— 00y 00)\Hipp then we cannot assert that the convergence In
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(o) and (B) is pointwise, but then («) still is true in the sense of *-weak
convergence in L®(—oo, oo).

Therefore the proof will be complete, if we show that g; ¢« L®(— 00, o)
because this implies that (8) holds in the sense of *-weak converg’"encé
in tIf’"(—oo, oco). In order to prove the boundedness of ¢, for any % > 0
pu

(s) ~1 s
Y =7 @1 70— y _“°°<8;< co.

Then [l = ligll, in the sense of norm in I'(—oo, oo). By the closed
gr'a,ph theorem, the operator #(t) « $(Jlfjmp(—oo, o0)) i8 continuous also
with respect to the norm topology in My, (~— oo, co). Consequently
{#({#)yy: >0} is a bounded subset of M(—oo, co) and therefore
{F%y,: k> 0}is a bounded subset of €, (— o0, co). Bub g, ¢ Lk, ( — o0, o0)
and 8o, a8 we have stated above, F% () y, = ¢,F ;. Since (# wk)(laio) = (.;”"'q)l)
. %2
gt(u)ﬂc__’b_t_e-qﬁ

V2

<u<<oor< co and consequently, putting % = —%——, we see that g, is
bounded. .

Levwa B. We have g,(w) = ™ for every real u a -
nd ¢ = gt
JSor every real w and t. Y ) =

Proof._ For every we Xy, we have ¢ Fv =F%(0)x =Fz and
Y. FC =FG(+s)s =FIMY(s)v = gF%(s)w = g,0,®, 30 that. Since
9:(0) =1, we have '

ik —k—zuz .
{Tow) =—]7§~ e * , it follows that sup{

k>0, —o0

(@) : golw) =1, —co<u< oo,

and »

(b) Gigs () = gu(w)g,(w), —o0<s,1,u< co.
" Moreover,

é(i D<for O:)very»fixed % e(—o0, 00) g,(u) i8 a function of ¢ measurable on
IR

Indeed, let w0 be fixed and let C,

@ e Xy, be such that
(i'/f'az)l(u) = 1. Then g,(u) = gy(u)(F2)(u) = (F (1)) (u). In the case of X
= L' (—o0, o0), F fé () is a continuous O, (—oc, co)-valued function of ¢
and therefore g,(u) is continuous in ¢. If X = M(— oo, oo) then F¥(H)we

€ U,(—o0, co) depends on ¢ continuously in the sense of the *-weak topol-
ogy in I®(—o0 e
y o0) and 80 f,(8) = n [ (FI@)a)(v)dv, n =1,2,... 152
u

sequence of continuous functions of t, converging pointwise to g,(u).
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It follows from (a), (b) and (c) that for every u e (—oo, oo) there
is a complex number k(w) such that

gy(w) = e

for every ¢ (— oo, oo). Since for every z ¢ Xy, we have
(4 oMY (F0) = 3F (I (1) + G (—1)o(w)
= (F%, (1) %) (u) = costu(Fz) (%)

and since ¢ = g,(0) =1, it follows that 3"+ te M — costu for
every real 4 and ¢ and consequently for every real u we have k(u) = iu

or k(u) = —iu. But we already know that, for every fixed ?, g,(u) = <
is a pair function of u, continuous everywhere excepti, perhaps, of the
point % = 0. It follows that %(u) = i|u| for every u or k(u) = —i|u|

for every u, which completes the proof.
LemvA C. For every t e (—oo, oo) and every @ € Dyyy we have

G = G,()oL HHE(TH—T(—1)s,
where H is the Hilbert transformation, %.e.

(1)

du, — o< §< oo.

1 o0
(Ho)(s) =— V. P. f —

Proof. As known, (FHz)(u) = isignu(Fz)(v) and therefore

(F [Gott)ox JH(T ()~ T(—B)2])(w) =
= (costuT 1(6™ — ¢~ ™) signu) (Fo)(u) = et (F ) (u).

Now consider the following statement:
(8) For every te(—oc, oo) there is ¢;< (0, o) such that

HH(T ® - T(—t))mHLl(—-w,oo) < ¢l Lt —co,000

for every ¢ Diyy-

Lemma C implies (S). This is obvious if X = I*(—o0, co). If
X = M(—oco, o) then the operator (@ (1) —Z () € £ (Mipp (— 00, o)),
continuous in the *-weak topology, is, by the closed graph theorem, also
continuous with respect to the norm topology in My, (—eo, o0). On the
other hand if @ € Dy, then H(T(t)—T(—t))w € 0, so that also in this
case () follows from Lemma 3.

Now we shall show that (S) is not true. Let 0 < a < b. For any function

o defined on (a, b) let
(Ez)(s) = »(a+b—s).
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Let B, be the operator of restriction to (a, b) of functions defined on
(—o0, 00). et B and F be operators of extension of functions from
(@, b) onto (—oo, oo) defined by the formulae

z(s) if se(a,bd),

(Bz)(s) =l (F)(s) = (Bw)(s) — (Hz)(—s)

0 otherwise

Cousider the operators 4: Z(a,b) ~ 0(a, b) and B ¢ #(L'(a, b)) defined
ag follows:

: b
4 =R, HE, ie. (42)(s) =—;LTV. P. f A
U
[/

du, @eD(a,b), sec(a,b),

b
1 1 1 1
(Bz)(s) = — [ - - ~
)(s) T:af a+b+s—u  at+bts+u §—a—b—uy (u)du,
weL*(a,b), se(a,b).
Then, ag is easy to verify, AKz+Bx = R, H(T(a+b)~T(—a—
or, which is the same, in view of K* = 1, “! ( (o) (—a-Djre
Az = Ra,bH(T(a—f-b)—T(‘—a—-b))lf’Ka;——BKx

for every &76@(“ b). From this fOlllll[].cl: we see that S mlplles bhe
’ ( )

(Sf) Mzl g1 < o”w[{y(m), ¢ = const, for every ue¢%P(a,b).

However, (8) is not true. Indeed, for every ¢ ¢ (O, b= “) let @, « 2 (a, b)
3 &

have the following properties:
1
e

suppa, = (a, a--3e),
Then

1
0< o (u) <—, @,(u) = " for w e [a+e,a+ 2¢].
| 1#ellz1a,n < 8
and, on the other hand, if s ¢ (a+ 3¢, b) then

a--28

1 ot
(do)(s) == [ ﬁ”ﬁ‘—’-dwif du

s—u me §—1
a--g
| 1 1
—log(s—a—e)— —log(s —a—26) > ——
. e 7'5(8»-(:0——-6)’
80 that
b
1
Malpan>= [ 2 oL bzome
T:a+348_a—£ T 2¢ '

icm°®

On operator-valued ‘solutions of d@.Alembert’s fumctional.equation, II 61

5. The spaces 0 ( — 00, 00), O[ — o0, col; Cy( — 00, 00) and L*(— oo, o)
do not have property (E). For 0, — co, co) and €[ — oo, oo] this follows easily
from the results of the preceding section and from Lemma 4 of Section 3.
Tndeed, the adjoint space of Cggmy(— o0, c0) With the *-weak topology
may be represented as My,,(—oo, oo) with the topology of weak con-
vergence of measures, in the sense that any m e My (—o00, oo) defines
a continuous linear form on Gy m,(— oo, o) according to the formula

=

m(x) = fﬂﬁ(S)m(dS),

—o0

'J?Ecogimp(_cxﬁ Oo)

In this representation, for any te(—co, co) the operator adjoint to
%, (1) € ZL(Coimp(— 00, o0)) equals again €,(f), but now viewed upon as
an element of %(Myp,{—o0, o0)). Therefore, if a one-parameter group
should give an exponential representation for %, in Z(Cy 1mp (— 0, 0)),
then the corresponding group of adjoint operators would give an exponen-
tial representation for %, in & (Mimp(—w; oo)), contrary to the result
of the preceeding section.

The adjoint space of Cy,[—co, co] with the *-weak topology may
be represented as the direct sum My, (— oo, o0)+ C, where C is the
field of complex numbers and Myy,,(— oo, o) is equipped with the to-
pology of weak convergence of measures, in the sense that any element
M 42 € My (— o0, o0)+C defines a continuous linear form on Gy, [ — oo,
o] according to the formula

(m+2)(x) = [ a(s)m(ds)+2Uma(s), @ ¢ Oyl — o0, 0]
—0 §->00 .
In this representation, we have for operators %, (1) adjoint to %,(1),
o
[%: (1) (m+2)]{x) = f (%, (1)) (s)m (ds) + Alim %,(t) @) (s)
o §->00
= [ a(s)(€:(0)m)(ds) + A lim 2 (s),
—00 500
so that
(*) G (W) m+2) = Go(t)m+2

for every m-Ae My, (—o0, c0)+C and te(—o0, 00), where %,(t) is
treated as an element of (M, (— oo, co)). Moreover, according to the
statement (ii) of Section 4, the infinitesimal generator A4, of %, in
£ (Mjmp(*oo, oo)) is the operator of the second derivative in the sense
of distributions, defined on the set @ (4,) = {m: mand m" My (— 00, 00)]

I m e D(4,) and m'" = Aym = 0 then the density of m with respect
t0 the Lebessue measure is a linear function. But since m is bounded
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measure, this is possible only if m = 0. Therefore 4, iz an invertible
operator.

Now suppose that a one-parameter group gives an exponential
representation for %,(f) in Z(Ciy,[— oo, oo]). Then the corresponding
group of adjoint operators would give an exponential representation for
@3 (1) in & (Mypp(— o0, o0)+C). But then, since the operators (1) have
the form () and since 4, is invertible, by Lemma 4 of Section 3, %,(t)
would have an exponential representation in % (My,,(—oo, oo), which
is impossible, as we already know from Section 4.

The above method of proofs was suggested to the author by pro-
fessor 0. Ryll-Nardzewski, whose suggestion was also that M (—o0, oo}
with the *-weak topology may be treated similarly to LI(;—oo ’oo).
A direct approach to Cy(—oo, co) (without a use of adjoint dperzbizors)
which was a former idea of the author is more complicated. Howeirexi
:iﬁs fdiregt[ proof works without any further additional complications

so for O[ — oo, o], €, (— o0, o) and L®(—oco .V G 1
for the lagt tW(’) sli!;nces.( ) ( p oo) e shall present it

Proof of the fact that C,(—oo, co0) and L®(—oc, o) do not
have property (E). We admit the convention that X always denotes
Oy{—o0, ) or L®(—o0, co) and that any statement concerning X
should be considered as a statement true for X = C,(—co oo)cafld
for X = I®(—oo0, co) simultaneously. Leb us recall that O,M(7——oo o)
is considered with the norm topology, while I*(— oo, co) is regardezl ag
the 'andjoint space of I'(—oo, co) with the #-weak topology. The
Fourier transforms of elements of X arve temper distributions, i.e. they
are elements of the space &' of L. Schwartz. ‘ ’

Let H denote tile set of all finite linear combinations of Hermite

g2
Fe “ym =0,1,... We shall need the fact that

(I) H is a dense subset of the space &.

Here & is the space of L. Schwartz of infinitely diffe iable rapi
decreasing functions. Y rentiablo mpidly
if Let 8 <& and <8, ) = 0 for every ® ¢ H. Then (I) will e proved

we show that § = 0. Let p,(u) = w"¢~"". Then 1w, ¢ H and for every

. °‘j‘ (—’L'S)l"’
real s the series Z
= nl

functions ¢,(s) =

Py, COnverges in the sense of the topology of &,
so that

()

P oY (— ds)"
(8, e “):Z,T<S,7/Jn>=0’
=0

3, } ~ —22
::lhele 8 aets onto e ¥ ¢~ ag a function of u. Let now @ e D(—o0,00),
PPy < [e,b] Ha =5, <8,<...< Smpn =0y =1,2,...,is a nor-

icm°®
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mal sequence of partitions of the interval [a, b], then the Riemann sums
My

o) = D p(85,0) 6B (S0 =S 10)y 7 =1,2, -
k=1

(b)

form a sequence of functions of u, such that, for every fixed I =0,1, ...,
d'o, (w) "
dut

almost uniformly in % on (—oo, o). Therefore t,(u}

is bounded and converges

the sequence ,n=1,2,...,

&(Fp) (u)
du?
= on(u)y m =1,2,..., 18 & sequence of functions of u, converging
to e‘"z(ﬁ'q:) (w) in the sense of the topology of &. Moreover,
by (a) and (b), <§, 7> =0 and (8, e “Fp) = lim (8, 7,> = 0. Since

n—>00
¢S e and F(P(— oo, o)) is dense in &, it follows thab 8 =0
as an element of %' and therefore also as an element of @' (—o0, o0).
Tt follows that & — 0 as an element of @' (—oo, oo). But S5 and
F(—o0, co) is dense in &, and therefore § = 0 also as an element of .

The statement (I) is proved.
Similarly as in Section 4, it may be proved that if 4, is the infinite-

simal generator of % (X, )-valued cosine function
%o(t) = 3T @) + T (— ]| Ximp

then
D(Ay) = {88 ©e Xy, 8 € Ximp}s

Az =o' zeD(4o),
where 2" denotes the second distributional derivative of .
After this preparation suppose that {#(f): —oo <1< 0} © L (Ximp)
is a one-parameter continuous group such that
19N+ 39 (1) = %,(1)
for every te(—oo, o0). An investigation of the structure of this group

will lead us to.a contradition.
For any real ¢ let the distribution g, 2'(0, o) be defined by the

equality

for

(Foloe 8t = (FIDP)|0,00-

i 2
This is a correct definition because (Fp,)(u) = T_—

-1
P positive and
2
infinitely differentiable in (0, o). Both terms in. this equality are elements
of 2'(0, o).

LEMMA A, For every @ ¢ Pipyp and every t e (—oo, oo) we have

(ym)l(b,oo)gt = (FZ 1) D)|0,00
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Proof. By an argument to that similar used at the beginning of the
proof of Lemma A in Section 4, it follows that Lemma A, is true for
every z ¢ H;, . Let now « € Limp NHimp- Then, by (I), there is a sequence
{z.},n=1,2,..., of elements of H,,,, converging to # in the genge of
topology of the space & and then, as is easy to see, (,%'m)[(o w0 = lim

. . N
(F2) 0,000 = LM (FG (1) ,) 0,000 = (FL (D) )00 In the sense of con\;e;i>
N300
gence in 2'(0, oo).

Luvma A,. For every te(—oo, oo) the distribution g, e 2'(0, o) s
a function continuous in (0, co). .

Proof. Tt is sufficient to show that for every e 20, oo) the distri-
bution g, ,, which by definition equals.gg, on (0, o) and equals zero
on (—oo, oo)}suppqo, is the Fourier transform, of a Dounded measure
on (—oo, oo). For afixed ¢ e 2(0, co)let h « &, be such that (Fh) (1) =
for every u < suppgp. Let 9 e D(—co0, o) be equal ¢ on (0, co) and zero
on (—oo, 0]. For any # ¢ let #,. and @_ denote regpectively the pair
and the impair part of @. Then

KE G0r | = Kfpr For —~F 5 5| = [{g 0y FhFw, —F0_>|
= o0 F (b0, =2 )| = K(F (hrw, —w_) g;, 0]
= K9t) (bs, — ), Fp)| -

<€) (hray — B )y NN 0,0

<”'9:7/)”1,1(—00,@Hg(t)“_‘t’(ximp)(uh £t o000 -F1)  SUD @ (s)],

— Q< ETO0
which proves that & ;t’lq’ is a bounded measure on (—o0, o0). We must
only make clear that, in the case of X = I®(— o0, co), || lxpy, Should

<>

be understood as ess sup and || Hg(ximp)—— as the corresponding norm for

operators. Since #(f) is continuous in the #-weak topology, it ig also

continuous in the norm topology, so ‘that 1% (Do, < oo
=+ imp.

Qn account of Lemma A,, it is convenient to extend ¢; to a pair
function on (— oo, co), whose value at 0 ig 1. Henceforth b.y gy wo shall
mean such an extended function. Let Z,,, denote the set of all inpair
functions continuous in (—o0, o0) with compact sapports not

containing \
ontaining zero. Let Yoy = {F2: 2 € Zyyy}. Then clearly ¥, < O

(—oo, oo) 0,imp

LovMA Ay G (1) Yimy = ¥ and F9 (1)a = 9:Fm for every 1 ¢ (— oo, oo)

and x e Ying-

N t;?rf) of. Iff ¢ ¥y, then also 7~ (g,%) « Y s and therefore in Lemma
3 the Inclusion follows from the equality. Let e Yy Then there are
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positive numbers ¢ and b,b > a, and o sequence {z,}, » =1,2, ..., of
elements of Zy,,(— oo, co) such that 2, >%F ‘& = —Fz uniformly on
(—o0, 00) a8 n — oo and suppz, < [—b, —a] U [a, b]. Put 2, =Fz,.
Then %, € ¥y, and x, -2 uniformly on (—oo, o) as # — oo, which
implies that ¥ (t)z, - #%(f)» in the sense of the topology in X and,
consequently, F%(t)z, —~ F%(t)x in the sense of convergence in &'. On
the other hand, the sequence ¢ #x, = —g;%,, n =1, 2,..., of functions

‘belonging to Z,, eonverges uniformly on (—oco, o0) t0 g,#2 € Zy,,,. Since,

by Lemma A,, for every n =1,2,... we have £¥(i)», = ¢gFu, on
(—o0, 0) U (0, oo), it follows that F¥(f)x = g,F= on (—o0, 0) U (0, o).
Consequently the difference between the distribution F& (f)x « o, and
the function ¢,%#% e Z;,, is an impair distribution with the one-point

m
support at zero. Therefore ¥ ()& — g, Fw = 3 0 8%+, 50 that the function
k=0

G(tyo—F 1 (9,Fx) € Xy, bounded on (—oo, o0), equals to an impair
polynomial. This is possible only if this polynomial vanishes identically,
ie. only if 4(f)x =F (g, F=) .

Qur further reasonings follow very closely the reasonigs of Section 4.
Lemma B may be transported without any change to the present section.
The only difference in the proof is that instead of Lemma A now we use
Lemma A, and that the proof of the fact that o
(c) for every fixed u e (—o0, o0) g;(u) is a function of ¢ measurable on

(—o0, o)
must be a little modified. Now we prove (c) as follows. Given a fixed
4 # 0, we take a function # e %y, such that (Fux)(u) =1 and we take
a 6&-like sequence {y,}, n.=1,2,..., of non-negative functions in <.
Then

1 @ .
fa®) = g *FF ()2) (0) = Vor - e~ LF 1y, 1(8)[4 ()] (s) ds,

n=1,2,..., are continunous functions of ¢ and for every fixed ¢ we
have

Lim f,(t) = (F¥(1)a) (@) = g,(u)(Fo) (u) = g,().

Lemma C together with its proof may be transported to the present
section without any change. By means of an argument similar to that
used in Section 4, this lemma implies the following statement:

(S;) For every te(—oo, o) there is c;¢ (0, oo) such that

sup | (70—~ (—)ab(s)| < o_sup_la(s)

—o <8< oo
for every ® € Dy, (— oo, o).
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Further, for arbitrarily fixed positive ¢ and b, b > o, by a similar
reasoning as in Section 4, (S;) implies the following statement

(8)) - sup L au <

const- sup [#(w)| for every e P(a, b).
sefa, b] ’

wela, b)

VP[S(_

Now the whole indirect proof is completed by showing that (S;)

. —a .
is not true. Indeed, if ee(O, ) and 2, ¢ %(a, b) is such that

< |#(8)] < 1 for s e {a, b), and that w,(s) =1 for se[a-¢, b=¢], then

b—e

b
2 {u) du b—a
> - = ] —1).
b—u du f b—u og( &
ate

References

"~ [11 N.Dunford and J. T. Sehwartz, Linear Operators, Part II, Spectral Theory
. and Selfadjoint Operators in Hilbert Space, New York 1963.

[2] R. E.Edwards, Functional Analysis, Theory and Applications, New York 1965.

[3] H. Helson, Note on hawmomc Sfunctions, Proc. Amer. Math. Soec. 4 (1953),
pp. 686-691.

[4] K. Hoffman, Banack Spaces of Analytic Functions, New York 1962

[8] J. Kisytski, On operator valued solutions of d’Alemberts funclional equation,
I, Colloq. Math. to appear.

[6] M. Sova, Cosine operator functions, Dissertationes Math. (Rozpmwy Maxt.)
49 (1966), pp. 1-47.

[7] K. Yosida, Fundtional A'na,lysw, Berlin-Gottingen-Heidelberg 1985.

Received November' 10, 1970 (266)

icm°®

STUDIA MATHEMATICA T. XLII. (1972)

L4 -
On uniform symmetrization of analytic matrix functions

by
J. KISYNSKI (Warszawa)

Abstract, Let A be real-analytic function of £ on open set M < R% which
values A (&) are m X m matrices with purely diagonal and real canonical Jordan
form. If the characteristic roots of A (£) are restricted to change their multiplicities
only in a suitable, very simple manner, then for every & ¢« M we construct a hermitean
positive m X m matrix H (&), such that H(£)4(£) is hermitean and that |[H (&)]
and |[H~1(&)] are locally bounded functions of &.

1. The result. Let 4 be a function defined on a set M, which values
are m X m complex matrices. We shall sayy that 4 is uniformly symmetrizable
on M if the following condition is satisfied:

(S) there is a constant ¢ > 1, such that for every & e M there is a her-
mitean m X m matrix H (&), such that ¢ '<< H(¢) < ¢ and that
H(&)A(&) is hermitean.

According to Kreiss [2], [3], the uniform symmetrizability of 4 on
M is equivalent to either of the following conditions:

(D) there is a constant d > 1, such that for every £ ¢ M there is an on sin-
gular m X m matrix T(&), such that |T(&)]<d, |T7(&)]<d and
that T~'(&)A(£)T (&) is purely diagonal and real;

(B) sup{]lexp(itd (£))]]: t e (—o0, 00), & e M} < oco;
(R) sup{||(E—isE—itA(£))|: s, te(—o0, 00), £c M} < 0o, where B
denotes the unit m X m matrix.

The theorem, which we state below may be treated as a contribution
to the following problem. Let A be a matrix-valued function on a set
M and suppose that A (&) is symmetrizable for every fixed & ¢ M. Under
which additional conditions 4 is uniformly symmetrizable on. M? Our
additional conditions have the form of restrictions on the behaviour of
characteristic roots of A(&) near the points of branching. We consider
only the simplest case, when two roots come together.

THEOREM. Let M < R™ be open and let A be an analytic function on M,
which values are m X m complex matrices. Suppose that for every & e 3 the
malrie A (&) has purely diagonal and real canownical Jordan form. Moreover,


GUEST




