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Free semigroups and umitary group representations

by
J. W. JENKINS* (Albany, N.Y.)

Abstract. This paper is concerned with locally compact groups that contain
closed, or uniformly discrete, free semigroups on two geperators. These groups are
discussed in terms of transformation groups, their unitary presentations, and the
question of symmetry of their group algebras.

The occurrence of free semigroups on two generators as subsemi-
groups of discrete groups was first considered by Frey [5]. He proved
that all subsemigroups of a discrete, amenable group are amenable if and
only if the group does not contain a free semigroup on two generators.

Appel and Djorup [1] gave the first example of a non-free group
generated by a free semigroup on two generators. Hochster [8] later
constructed an amenable group with such a semigroup.

Free subsemigroups have been shown to be an issue when econsi-
dering the question of symmetry of the group algebra of a locally compact
group. In [9], this author proved that I'(@) is not symmetric if G is a dis-
crete group containing a free semigroup on two generators. This result
was extended in [10] to locally compact groups containing & semigroup
on two generators that, in addition to being free, satisfying a stringent
topological condition (see § 5).

In this paper we are concerned principally with fopological groups
that contain either a closed, or a uniformly discrete, free semigroup on
two generators.

In § 1, the notion of non-asymptotic disjoint ideal semigroup (NADIS)
iy defined, and used to characterize groups containing uniformly discrete
free semigroups. :

In §2, groups containing a NADIS are characterized in terms of
transformation groups. Using this characterization, several examples are
presented.

In § 3, it is shown that a connected locally compact group containing
an open NADIS is homomorphic to a matrix group containing a NADIS.

* This research was partially supported by National Science Foundation Grants
GP-12027 and GU-3171. '
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Groups containing closed free semigroups are discussed in § 4.

In § 5, an example is presented of a locally compact group that con-
tains a closed free semigroup on two generators and whose group algebra
is symmetrie.

In § 6, the unitary representations of groups containing free semi-
groups is discussed. In particular, the locally compact groups that contain
a NADIS are characterized in term of their unitary representations.

§ 1. Throughout this section H and ¢ will denote topological groups.
By a subsemigroup of @ we mean a nonempty subset of @ that is closed
under the multiplication of @. If § is a semigroup, a nonempty subset I
of ‘§ is a right ideal if for each ¢ in I and sin 8, aseI.

If o and b are elements of &, [, b] will denote the subsemigroup
generated by a and b. If 4 = &, (4) will denote the (not necessarily clo-
sed) subgroup generated by 4; (9> denotes ({g}>. ¢ will always denote
the group identity. ’

DerinirioN 1.1. A subsemigroup § of @ is wniformly discrete if there
is a.neighborhood U of ¢ in @ such that sUNs'U =@ if s 5= s’ for all
s,s" in §. ‘

DEFINITION 1.2. A subsemigroup 8 of & is said to be a non-asymptotic,
disjoint ideal semigroup (NADIS) if 8 contains disjoint right ideals I
and J such that ¢ is not in the closure of I7'J. (NADIS may also be read
in the plural if the context so warrants.)

A subsemigroup § of ¢ has disjoint right ideals I and J if, and only
if, I and J' are disjoint left ideals of §~'. Hence, the existence of
2 NADIS in G is not retricted by the wuse of “right” in definition 1.2.

TeEOREM 1.3. ¢ contains @ NADIS if, and only if, theve emist a and b
in G such that [a, b] is o wniformly discrete free semigroup.

. Proof. Assume that § is & NADIS in & with disjoint right ideals I
and J. Let ae I and beJ.

Suppose that @, as ... 2, =y,9,... ¥, Where @y, Yye{a, b} for 1< 4
<n and 1<j<m Unless n =m and o; =, for 1 <i< n, there is
a minimum k such that @, s y,. I k& >n or if & > m we have ce IUlJ.
This is clearly impossible. Thus, BpeBppr1 s v B = YpYpr +«+ Y, A0A D, 5 4y,
But then .y, ... 5,61, say, while y,y, 414+ Yme J. This contradiction
implies that # = m and @, =y, for 1L <é < n. Therefore, [a, b] is free.

Let U be a neigliborhood of ¢ in & such that UnI"'J = @. Let V'
be a symmetric neighborhood of ¢ such that V2 < U, If $,te [a, b] such
that s # ¢ then s™'te I"'J or t~'se I~'J. Assume the former. Now, if
sVNiV#£@, s7'teVV ' < U. But U was chosen so that UnI™'d =@.
Hence s¥VntV =@ if s,te[a,b] and s =1 Therefore, -[a, b] is a uni-
formly discrete free semigroup.
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Conversely, if a,be@ such that § = [a,b] is a uniformly digcrete
free semigroup then I = a8 and J = bS are disjoint right ideals of .
Furthemore, if U is a neighborhood of ¢ in @ such that sUNtT = @ for
8,te 8, s %1, then I"'JNU = @. Hence S is a NADIS in G.

THEOREM 1.4. If H has a NADIS and H < G then G has a NADIS.

Proof. Merely observe that if § is a NADIS in H with disjoint
right ideals I and J and if U is a neighborhood of ¢ in @ then I~ TN T
=1 N(UNH) =0, for some U. Hence, § is a NADIS in G

TerOREM 1.5. @ contains a NADIS if there is a continuous homo-
morphism of @ onto a group H containing a NADIS.

Proof. Let 8§ be a NADIS in H and let = be a continuous homo-
morphism of @ onto H. If I and J are disjoint right ideals of § then = '(I)
and #*(J) are disjoint right ideals of ™' (8). Furthermore, it I"'J N T = @,
where U is a neighborhood of ¢ in H, then 2~ (I V)a Y(J)nz"(U) = @
and z~*(U) is a neighborhood of ¢ in G.

THEOREM 1.6. If ¢ contains an open NADIS and if H is a subgroup
of the center of @, G{H contains a NADIS. :

Proof. Let I and J be disjoint right ideals of the open NADIS &,
let aeint(I) and beint(J). We will show that [aH, bH] is a uniformly
discrete free subsemigroup of G/H. .

Let U be a neighborhood of ¢ in G sueh that alU < I and bU < J.
Let V be a neighborhood of ¢ in @ such that ¥* < U. For ge G and 4 < @G,
let § =gHeG[H and 4 = {aH| ac A} =« G/H. Now, if w,x<[a, b] and
w # @, there exist y, ze[a, b] such that w™'z = y~'2 and y is in one of the
ideals I or J while 2 is in the other. It %V N ZV # @ then there exist Dy, Uy
in V.and kg, by in H such that wo by = 2v,h,. Hence o wv 057 = hyhit.

Therefore, there is a we U such that y *au = s7'wo, 07" e« H = Z(@),
the center of @. Consequently, y(y 2u) = 2u = (y~'2u)y. Thus yeu = zuy.
But, since #u¢ 8, yzu is in either the ideal I or J and zuy is in the other
ideal. Therefore, for arbitrary w and #.in [a, b], w # 2, BV NFV =@,
and [aH,bH] is a uniformly discrete free semigroup in G/H.

§ 2. The following theorems give a method of determining groups
which contain NADIS.

TuEOREM 2.1. If G contains an open semigroup with disjoint right
ideals then G contains a NADIS.

Proof. Let § be the open subsemigroup and I and J disjoint right
ideals of 8. If ae I and beJ then af and bS are open disjoint right ideals
of 8. Let ¢e aS, de bS and U a neighborhood of ¢ in G such that ¢U < af
and dU < bS. Let s,te[c,d] and s 541 Then s = wx s’ and § = wa,t’
where we @, {w;, #,} = {¢,d} and s',t¢[¢, d]. Now,

sUNIU = w(z,8'UNna,t'U).
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But s Tut' U c 8. Thus, #,8"U ig in one of the disjoint ideals, either
a8 or b8, and @,t' U is in the other. Thus sUNIU = @. Therefore [¢, d]
is a uniformly discrete free subsemigroup of & "und 50, by Theorem 1.3,
G contains a NADIS.

COROLLARY 2.2. G contains a NADIS if there is a subsemigroup 8 of G .

with disjoint right ideals such that int(S)= 9 in {8).

Proof. It T and J are disjoint right ideals of S, ael and bedJ then
int (@8) Vint (bR) is an open subsemigroup of (8> with disjoint right ideals.
By Theorem 2.1, ¢8> contains a NADIS, and by Theorem 1.4, G contains
a NADIS.

A topological space X ig called a G-space if there is a homomorphmm )
of @ into the group of homeomorphisms of X, G(X), such that for each »
in X, g— o(g) % is continuous.

THEOREM 2.3. G contains a NADIS if, and only if, there s a G-space X
containing disjoint open subsets X, and X, such that S; =
VX, > X} #0 for i =1,2:

Proof. Assume @ contains a NADIS. Let [a, b] be a uniformly discrete
free subsemigroup of G. Let X = @, X, = afa,d]U and X; = b[a,b]U
where U.is an open neighborhood of ¢ chosen so that sUNtU =@ if
s,te[a, b], s 1. If o(g) is left multiplication by ¢ the conditions of the
theorem are clearly satisfied. ‘

_Conversely, let X, X; and §;, ¢ = 1,2, be as in the theorem. Then S,
and 8, are disjoint ideals of the semigroup § = {ge@| ¢(g): X;UX,
— X, UX,}. We will show that ¢ is not in the closure of §7*8,.

Suppose there exist nets {a,} = 8, and {b,} = 8, such that a;'b,—>e.
Then, for each zeX, o(a,) " 0(b,) % —o. If #¢ X, then, since X, is a neigh-
borhood of @, there is an m such that ¢(a,)  e(b,)-2eX, for all n > m.
But then, g(b,) @< o(a,) X, for all # > m. This is impossible since o (b,) @

. . eX, while ¢(a,)-X; « X,. Therefore ¢ is not in the closure of 878,
-and so § iz a NADIS.

We can now give some easy examples of gToups containing NADIS.

ExavpLE 2.4. Let @ = SL(n, R), n > 2. Let X = R",

Xy ={(@)e n—1}

Xy = {(;)e B"| 0<w1:+1‘< Zyy 1<

B 0< o<y, 1P
and
i< n—1}.

One easily sees that X, and X, are open digjoint subsets of X and that,

congidering G a subgroup of G(X), 8; ={ge@| ¢(X,uX,) = X;} # 0.

Hence, by Theorem 2.3 SL(n, R) contains a NADIS. Since GL(n, R),

S8L(n, C) and GL(n, C) each contains SL(n, R), they each contain NADIS.
ExawerE 2.5. Let G denote the real affine group, i.e.,

={g: R—R| g(x) = ax+b, a +# 0}

{96l el9): Xyu.
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with composition as multiplication and with the obvious topology. If
(0,1) and X, = (1, 2),

8, ={ge@| g: (XWX, )> X} #0 fori=1,2.

Since the continuity requirement is obviously satisfied @ contains a NADIS.

‘We consider one final example,

ExAMpLE 2.6. Let B be a ball in R". Let P, Pye int(B) and let Uy, U,
be disjoint open subsets of B such that U,, U, = int(B). One can eagily
construct homeomorphism fy, f» of B that are the identity on the boundary
of B and such that f;(U,0U,) <= U, for i =1, 2. (If h is a homeemorphism
of B that is fixed on the boundary of B and contracts all other points
radially toward P, then for some m; k™ (U,wU,) = U,.)

Let M be an n-manifold and let (U, ¢) be a coordinate patch of M.
Let B be a ball in ¢(U) and let U, f;,¢ = 1,2 be as before. Then, if
V,=¢ ' (U;) and h; = ¢ Yf;p for i =1,2, h; is a2 homeomorphism on
@ !(B) that is the identity on the boundary of ¢™*(B) and such that
hy(V UV, V, for 4 =1, 2. ky and h, can be extended to M by making
them’ the identity outside ¢~*(B). Therefore, the group of homeomorphisms
on M, with, say, the compact-open topology, contains NADIS

§ 3. The converse of Theorem 1.5 is trivial. Namely, if @ has a NADIS,
then using the identity map and @ for H, there is a continuous homo-
morphism of G onto a group containing 4 NADIS. Of more interest perhaps
is the fact that for a connected locally compact group containing an open
NADIS, H can be taken to be a matrix group. We formulate this more
precisely in

THROREM 3.1. Let G be a locally compact connected group with an open
NADIS, 8. There is a continuous homomorphism, =, of G into GL(n R),
for some n > 2, such that =(G) contains a NADIS.

Proof. Let T and J be disjoint right ideals of 8§ and U a neighborhood
of ¢ in @ such that I"'JNTU = @. Let ¥V be a neighborhood of ¢ in & such
that V< U.

By the standard approximation theorem by Lie groups (see [11],
p. 175) there is a compact normal subgroup H of &, such that H < V
and G/H is a Lie group. As before, if A < @, let 4 = {aH| aec A} c G[H.
It I"'JNV 0, there exist ac I, beJ and veV such that ¢ 'bH = vH.
Hence a~'be vH < vV < V2 < U. This contradiets our choice of U. §is
a NADIS in G/H. Furthermore, since S is open, S is open. !

Now, if @ = @/H and if Z(G') denotes the center of @, G’/Z(G)
is isomorphic to & matrix group (see [11], p. 159). By Theorem 1.6, G |Z(6)
contains a NADIS.

§4. If [a, b] is a uniformly diserete subsemigroup of G then [a b]'

is closed in G- Omne is led to ask if every closed free subsemigroup, [a, b],
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of @ is uniformly discrete. The answer is no, as the following example
will show.

ExAaMpLE 4.1. Let & denote the 3 X3 matrix [e;] where ¢; = 6> 1
for i =1,2,3; and &; = 0 if ¢ # j. Let SO(3) be the real special ortho-
gonal group and set G = 80(3) {e) = GL(3, R). There exist elements o
and B in SO(3) such that {a, g is free (cf. e.g. [6], p. 9). Let ¢ = ae and
b = fe. If se[a, b] then there is a oe[a, #] and a positive integer n such
that s = o¢". Suppose that s,te[a,b] and that s =%. Let ¢, v« [a, f]
and m, n be positive integers such that s = o™ and ¢ = 7¢™ Since det(s)
= 6" and det(t) = 6", m = n. Therefore o = v. Thus, if ¢ = o"14% ..,
...a"r B where p;, ¢; = 0 for 1 <4 <<ry and (py-+qy)+ ... +(®,+4q) =n,
then R

§ = aP1gP1Ugh |, gPrelr Bl g = gP1p% ., oPrb% = {, .

Consequently, [a, b] is a free semigroup.
Since for any M, [&, b] contains only finitely ma,ny § with det(s)
< M, [a, b] is closed.
Finally; we show that [a, b] is not uniformly discrete. We can choose
sequences of positive integers {n,} and {m,} such that o"» — ¢ and ™ — e.
. (Bince 8O(3) is compact, {"| % > 0} has a limit point A. Let {g,} be an
increaging sequence such that a% — 1. Then 7, = ¢,— ¢,y > 0 and o™
—e¢.) Let u, = o"pf™ and v, = f™pd". Then u,— € and », — ¢. Finally,
seb u, = a"»b™» and v, = b"ra"». Then u,# v, for all p but u; s, = p;'y,
— ¢. Therefore, [a, b] is not uniformly discrete.
The following theorem will be crucial in § 6.

TEEOREM 4.2. If [a,b] is a closed, free subsemigroup of G and K is
any compact subset of G then K N[a,b] is finite. :

Proof. Assume that for some compact subset K of @&, T = Kn[a, b]
is infinite. Then, by compactness of K, there is an s in [a, b] and a net
{8} = [a, b] such that s,—>s. Suppose that s = wt where ¢ {a, b} and
tela,d]. If {y} ={a, b} ~{v} then s¢y[a,b]. Since y[a,b] is closed
in @, there is a neighborhood U of ¢ in & such that sUN[a, b] < #[a, b].
Hence, there is an a, such that if a > ay, s,c @[a, b]. Therefore, for all
@ > ay, there is a i, in [a, b] such that s, = #t,. Hence, since wt, — at,
i~ 1. Repeating this argument “the length of s” times, we get a net

{ut,} in. [a, b] such that u,— ¢. This is impossible since [a, b] is closed in &,
and e¢[a, b].

_ An immediate corollary to this is
CoROLLARY 4.3. If K is a compact semigroup of G and if [, b]és a closed,
Jree subsemigroup of G then KNla, b] =@
- Remark. "An attempt to characterize the groups @ that contain
closed free semigroups, in terms of G-spaces meets with the following
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difficnlty: One can easily show that if a G-space X contains closed disjoint
gubsets X, and X, such that

8 ={g<@ o(9): X,UX, > X} %0 fori=1,2,

then 8; and 8, are closed disjoint right ideals of 8;US,. Although no exam-
ple is known, it appears that the existence of such a semigroup, §;US,,
in @ is not sufficient to gnarantee the existence of a closed free semigroup,
[a,b], in G.

§5. As was mentioned in the introduction, I*(6) is not symmetric
if @ contains a free semigroup [a, b]. What can be said of £Y(@) if @ is
a nondiscrete locally compact group containing a free semigroup [a, b]%
In order to conclude that #'(@) is not symmetric, [a, b] must at least
satisfy some topological condition. (£* (SO (3)) is symmetrie but 80(3)
containg a free group {a, §).) In [10], we have shown that the following
condition implies nonsymmetry of #'(Q): @ contains a mneighborhood U
of ¢ and elements @ and b such that

(@O (U™ ... (aU)s(bU)™ A (@UP BT ... aU)?r (BT =6

it on,p;>0 for 2<<i<s, 2<j<r; my, ;>0 for 1<<i<e—~1, 1<
<r—1; and 7y, Py, My, ¢, > 0: unless r =s and n; = p;, m; = q; for
1<i<r. Many groups not satisfying this condition have nonsym-
metric group algebras, such as the noncompact semisimple lie groups.
Hence, one hopes for a weaker sufficient condition on [a&,b]. The
following theorem gives a lower bound.

THEOREM b. There is a locally compact group @ containing a closed
free semigroup [a, b] such that £'(@) is symmetric.

‘Proof. Let G = 80(3)x <e> where & is as in Example 4.1. Since
{&) = Z(80(3)), @ is topologically isomorphic to S0(3)(s), and hence,
contains a closed free semigroup of two generators (see Example 4.1).

By a theorem of Grothendieck, [7], £'(@), after a suitable normali-
zation, is isometrically *-isomorphic to the projective temsor product
£'(80(3)) &1 (¢e)). Let R(80(3)) be the Banach *-algebra obtained by
adjoining the identity to &*(SO (3)) There is an obvious embedding of
Z'(80(3)) &L ((e)) onto a closed *-subalgebra of R{SO(3)) QI (<e)).
Therefore, £* (@) is symmetric it R (S0 (3)) &I (<e)) is symmetric,

Since S0(3) is compact, £*(80(3)) is symmetric (cf. v. Dijk [3])
and so also R(SO (3)). It is well known that I'((¢)) is symmetric. Thus,
by a generalization of the Wiener—Gelfand theorem (cf. Bonic [2], Coro-
llary 3.2) RB(S0(3))&1(<e)) is symmetrie.

: This author’s principal interest in groups containing NADIS can best
be summarized by the following

3 — Studia Mathematica XLIII.1
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Conyucrure. The group algebra of @ locally compact, connedted group G
s not symmetric if, and only if, G contains a wniformly discrete free semi-
group on two generators.

§ 6. In this section we discuss the unitary representations of groups
containing closed, or uniformly discrete, free semigroups on two gene-
rators. The principal result ig

THEOREM 6.1. A locally compact group G contains a NADIR if, and
only if, there is a unitary representation, g ~ 7 (g), of G on a Hilbert space H
such that 8; = {ge@| =(g) (H,®H,) c H}# @, for i =1,2, for some
pair of non-trivial orthogonal subspaces H, and H, of H,

Proof. The sufficiency of the condition readily follows from Theo-
rem 2.3.

Conversely, suppose that ¢ contains a NADIS §. Let Sy and 8, be
right ideals of § and U a neighborhood of ¢in @ such that 87*8,N T2 = @.
Define » in £*(6) by #(g) = wy(g) for A-almost all g, where @y denotes
the characteristic function of U and A denotes left Haar measure. Let
g —>n(g) be the regular left representation of G on £*(@), let H; be the
closed subspace of #*(@) spanned by {m(g)x| ge8,}, for ¢ =1,2. We
have only to show that H, | H,..

For any ¢ in G,

w(9)w(t) = alg™'t) = wy(g™) = @,p()

n
for J-almost all tin @ Let y = 3 a,n(s;)o be in H, and 2 = ﬁ By (t;) o
X L=1 Fe=
be in H,. (Note that s;¢ §; for 1< i< and #¢ 8, for 1 <j < ’I:’L.) Then
,2) = [y(g)2(9)@A(9)

= f[g; a; (75(81)-’1?)(9)] [ 2131 (ﬂ(tj)m) (g)J ai(g)

noom .
= Y aby( [ 20m(9)a,0(9) dA(g)).
L=1 j=1
But for each I<ig<nand 1<ji<m, g Unt U = @. Therefore

J 2w (@) o0 (9)dalg) = o

for faa,ch 1<i<nand 1< j < m. Consequently, ( ¥,%) = 0. Approximating
arbitrary elements of H,and H, by such finite sums one sees that H. 1L H,.
From the proof of Theorem 6.1 we immediately get i
COROLLARY 6.2. A locally compact group @ comtains @ NADIS if,
and only if, there ewist nontrivial orthogonal subspaces H, and H, of £*(@)
s:uoh that 8; = {g< G| n(g) (H.@®H,) < H;} =B fori — 1, 2 where g - n(g)
i8 the left regular representation of G.
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We will show that if G containg a closed free semigroup on two gene-
rators a similar, though weaker, statement can be made about the regular
left representation.

Let [a, b] be a closed free subsemigroup of &, and let {s;, s;,...} be
an enumeration of [a,b]. Using Theorem 4.2, a sequence of compact
neighborhoods of ¢ in &, {U,}, can be chosen so that s,U,Ns, U, =G
if n = m. Furthermore, we can assume that |U,| < 47" where |U,| denotes
the left Haar measure of U,, and that U,,, = U, for all n. If , is the
element of #*(@) which agrees with oy A-almost everywhere, and if

@ = > «, then ze £(@) and |zl < 1. Let g— x(g) be the left reg’ula.i"
n=1

representation of G. )
LEMMA 6.3. Let 8;¢ [a, b] and let K be a compact subset of @ such that
8, U2 < K. Then () ® is not in the closed linear span of {x (m(s,)@)| ## k}.
Proof. Assume that #(s,)® is in the closed linear span of {g (w(s,)#)|
n == k}. For some finite set {s, ..., 8y} T (m(s,)@) = 0 if n #n; for
all 1< i< p. Hence, for some (a,; ..., a)e Cp,
»

T (8)® = Z g (7 (8n,)®) = 9.

i

If M =max{n] 1<i<p}, then

p, Uy N8, Uy = 0

for 1 << i< p. Therefore, if U < Uy, then for A-almost all tes,U,

ol =| j%wx(t) (7(s499) ()| = | _Zpaim(s;;t)l

i=1
oo o M
= izpai( Zwém(s;:t))l = !jai EwUm(s;;t)J < M‘ja”‘l'
i=1 m=1 ! i=1 m=l i=1

Therefore, for all U = Uy,
kd
esssup{[y(1)]| te s, Up} < M|2ai

i=1

But for any #, and A-almost all ¢ in s,U,,
(w(sp)a) () = D @r,, (s5) = n+t D ag, (55 = n.
m=1 m=n+1
o
Choosing n > M ! > ai} we get a contradiction.
i-1

Let H, and H, denote the closed linear spans of {n(as)s| se [a, b]} and
{m(bs)| se[a,b]} respectively.
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LEMMA 6.4. H,NH, = {0}.
Proof. Suppose that we H,NH,, w # 0. For any compact subset K
of @, zzw is in the cloged linear span of {zx (n(as)w)’ se[a, b]}. But this

latter set is finite. Hence
.

TgW = Z 4T (”(“Sni)w)'

=1

Let K be a compact subset of & such that |ogwll; > 0 and such that it

Tpw = Ya i (7 (asy,) @)
z==1

then as,, U1 < K for some 1 <4<

sets K, U as, Uy, we contradict the fact that 07 we H,.) Renum-
n=1
bering if necessary, we may assume that as, U, = K. Thus

*. (If no such K exist, then using the

r

Zgw = alrz(asn!)+ZaimK(n(as%)m).
=9
Since we H,, we also have

wKw = Zﬁ,wK(n b8, )@ @).

Hence 7 (as,, )« is in the sinear span of {wg (% (s)#)| s [a, b], s 5 asnl} This
contradiction of Lemma 6.3 implies that H,NnH, =

Let H denote the closed hnear span of {Hy, Hy}. If 2¢ H, z = hmzn

where each z.n is of the form Zw n(s;)w. Hence, m(a)z = hmaz(a
Za m(as;)we Hy. Thus, n(a) (H) = H,. Slmﬂa,rly, n(b)(H)

i=l
< H,. We have therefore proved
THEOREM 6.5. Let G be a locally compaci group containing e closed
" free semigroup [a,b]. There exist non-trivial closed subspaces H, and H,
of £(@) such that HinH, = {0} and

8 = {ge @ nlg) (Hi+Hy) « H) #0  fori =1, 2,

where g — n(g) is the left reqular representation of G.

Remark. It is not known if the converse of Theorem 6.5 iy true.
Given a representation as in the theorem, one can easily conclude that G
containg a closed semigroup with disjoint right ideals I and J. As men-
tioned earlier, this does not appear to be sufficient to imply that @ contains
a closed free semigroup on two generators.

Let &(= &(G)) denote the set of all continuous positive definite
functions defined on @ that are one at e. p « & if and only if there is a unitary

and = (a 2y =

©
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representation g — m(g) of @ on H and an 2 in H, || = 1, such that @(g)

= (n(g), ) for all g in @ This = is said to be associated with @ pin @
is pure if there is an irreducible representation associated with @. (For
these definitions, see Dixmier [4].)

TeEOREM 6.8. A locally compact group G has a NADIS if and only
if there ewist @ and b in G and a ¢ in D such that p(s~'b'at) = 0 for all
s, te[a, b].

Proof. Assume @ has a NADIS. Let [a, ] be a uniformly discrete
free subsemigroup of @. Let U be a compact neighborhood of ¢ in @ such
that sUNtU =@ if s,te[a,b], s %t Let # be the #*normalized cha-
racteristic function of U. If g— x(g) is the left regular representation
of & and if ¢(g) = {n(g)», #) then pe @ and for each s, in [a, b],

= (=(s7 '), ) = (=)@, n(s))

= 2|0 [ @yt g)ay (s~ g) dA(g)
= A|UAtUNsT].

p(s7'1)

Hence, if s, te [a, b], s ¢, p(s7'f) = 0. In particular, (s~ b at) = 0 for
all s,¢ in [a, b].

Conversely, if for some ¢ in @ and a,b in G, p(s~'b~'at) = 0 for all
8,% in [a, b] then the ideals I = afa,b] and J = bla,b] are clearly
disjoint. Since @ is continuous and g(e) = 1, ¢ is not in the closure of
I7'J. Thus, [a, b] is a NADIS.

Given a representation = that satisfies the conditions of Theorem 6.1,
one is led to ask if there is an irreducible representation =’ that satisfies

‘these conditions. Equivalently, in light of Theorem 6.6, given a ¢ in ®(G)

and a, b in G such that ¢(s™'b 'at) = 0 for all s, ¢ in [a, b], is there a pure

. ¢’ in @(G) such that ¢’ (s7'b'at) = 0 for all s,¢ in [a, b]. Although the

angwer is not known, the following example shows that this can be the
case, even for very “nice” groups, such as the real affine group, which
is type I (see Nelson and Steinspring [137]).

ExAMPIE 6.7. Let G be the real affine group (see Example 2.5). If
g< @, there exist a, 8 in R, a > 0, such that g(z) = aw-f§ for each z in R..
LetH denote the space of Fourier transforms of #*([0, o)), i.e., H is
the space of “functions” square integrable on R which are the limit values
of functions that are analytic in the upper half-plane. For each g in @,
define z(g) on H by = (g)f(#) = f{a™" (2 B)) where g(») = aw+p for all »
in R. Naimark [12] has shown that g — n(g) is an irreducible representation
of G. Let fe H such that ||f]| =1 and f(#) = 0 for a.a. ¢ [0, 1]. Then if
p(g) = (n(g)f, f) for all g in @, ¢ is a pure continuous positive -definite
funetion on G.
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Let a, be G such that a() = 8oo—l—4 and b(#w) =}w+; for all z in R.
Then, if se[a,b], as([0,1]) < i, a] and bs([0,1]) = [3, E]i Let s,t
e [a, b] and suppose that s™'b'at(w) = aw+-p for all # in R. I at(z)
=ao+a, and bs(z) = po+p, then o, p < %; ay € [%7 %], Bae [%,%]7
@ = aypy, and f = (@ — ) [fs- Since a, f>0, a~ (@+B)¢ [fla, (1+f)/a]
for each # in [0, 1]. Finally,

[Bla, X+p)/a] = [(aa—
Hence f(a‘l(m—i-ﬂ))]—”(z)—

(n(s"lb“ ab)f,f) =

Ba)lays (@a—Ba) oy + Bifoy] = (1, o0).

=0 for a.a. # in R, and

o(s~1b " at) ff‘4w+ﬂVw
Therefore for arbitrary s,¢ in [a, b], ¢(s7 b7 at) = 0.

Although there exist type I groups that contain a NADIS, this is
never the case for discrete groups.

THEOREM 6.8. Suppose G is a discrete group and that @ contains ele-
ments a and b such that [a, b] is free, then @ is not type 1.

Proof. The proof follows readily from the fact that a countable
diserete group is not type I unless it contains a normal Abelian group
of finite index (see Dixmier [4]). ‘

Assume @ is type I, then since C*({a, b}); the C* algebra of <a, b},
is a C* subalgebra of O*(G ), a, by is type I (see Dixmier [4]). Hence
{a@,b> contains a normal Abe]mn subgroup H of finite index. Hence,
for some positive integers =, m, ¢"H = H and b™H = H. But then
a® b™e H, which is Abelian, and thus a"b™ = bma", contradicting the
a,ssmnptlon that [@, b] is free.

A Tocally compact group G is OCR if for each irreducible unitary
representation g— z(g) of G, =(w) is a compact operator for each x in
Z'(@). One can easily see that the group of Example 4.1, ¢ = 80 (3) X (&,
is OCR. (If g —w(g) is an irreducible unitary representation of G then,
since the factors of @ are type I, there exist irreducible unitary represen-
tations s —m,(s) of SO(3) and t->m,(2) of (&) such that = = @, @mn,.
Since both =, and =, are finite dimensional, = finite dimensional, and
hence & is COR.) Therefore, a COR group may contain a closed free sub-
semigroup on two generatms
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