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On topologically nilpotent algebras

by
J.K. MIZIOLEK, T. MULDNER and A. REK (Warszawa)

Abstract. A Bj-algebra 4 is called topologically nilpotent if, for each continuous
pseudnorm | | in 4, there exists a neighbourhood of zero ¥V such that

L —
].imsupl"]acla;2 eee X} = 0.
n 2V
Our main result states that a commutative B algebra 4 is topologically nilpotent
if and only if there exists a power series having radius of convergence 0, operating
in A. The second theorem states that a commutative Bj-algebra is topologically nil-
potent if and only if, it is isomorphic with the projective limit of a sequence of fopo-
logically nilpotent Banach algebras.

§ 1. Introduction. This paper is devoted to the characterization of
topologically nilpotent By -algebras. The class of topologically nilpotent
Banach algebras was introduced by P. G. Dixon (in a letter to Professor
'W. Zelazko).

It is easy to see that all topologically nilpotent B,-algebras must
be necessarily multiplicatively-convex.

The first main theorem states that a commutative B,-algebra 4 is
topologically nilpotent if and only if there exists a power series having
radius of convergence 0, operating in A4 (this result is also new for Banach
algebras). .

The second theorem states that a commutative By-algebra is topo-
logically mlpotent if and only if, it is isomorphic with the projective limit
of a sequence of topologically nilpotent Banach algebras.

§ 2. Basic facts and examples.

2.1. DEFINITION. A Bgalgebra A is called topologically nilpotent if,
for each continuous pseudonorm | |in 4, there exists a neighbourhood
of zero V such that

.
limsupl/]wlwz e, =0,
n mEe¥

2.2. THEOREM. If A is a topologically nilpotent B,-algebra then A is
M-CONVED. :
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Proof. For any continunous pseudonorm | [; let ¥V, be a neighbourhood
of zero such that

SUP V[Yu¥s .- Yuli = &1, — 0.

YV

(2.2.1)

Clearly we may assume that

Vi={y: lylya<1}.
Proof will be based upon the Lemma 13.10 [5]. Thus it will be gufficient

to show that there exists a maftrix O, of positive reals 4, n = L2, ...,
such that
(2.2.2) 2085 -+« Bpls € O |34y - 12041
n .
where @, ..., #,¢A and p; = sup V(Jm < oo. Let #,. ..., m,¢ 4. Suppose

that |wgl;,; = 0 for an integer %, 1< % < n. From (2.2.1) it is easy to

see that |2, ... z,|; = 0, thus (2.2.2) holds. If |z, 0, kb = 1, e T,
we can. pub .

Dy
Yp =——"——y 80 eV, fork=1,...,n
2wl 41 ‘ T
we have
LBy ®a ovv Byly
3?%2@1?/2 vee ynli = Tl—];‘;v‘"—'ﬁi"w’”“?
2% [®fgr oo 1Bl
S0 ’
[0ty )y = (2e5,)" Imlli+1 faeat lmn!i-l-li

80 (2.2.2) holds.

. 2.3. EXAMPLE. 4 = ( (0, 1) consists of continuous functions on the
interval [0, 1] with convolution multiplication

exy(r) = [w(t)-y(x—t)dt,
0
and suprémum norm.

It is clearly a commutative, radical Banach algebra and from. the
fact, that for m,, @,, vy Dped, o]l < 1, we have

e X @y X oo Xl < [[lwdle X ... X [l o]

<lex ... xe| <

1
(n—1)1"
where ¢ = ¢(t) = 1, it follows that A is topologically nilpotent. It easy

to see that 4, = {we 4: ©(0) = 0} is a subalgebra of 4, and 4, is also
topologically nilpotent. B
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/
Put
nrf2sinnny  for 0 <o << 1/n,

un(m) = .
0 ) for In< o<,

One may verify u, () is an approximate identity in 4,. This sequence is
unbounded, which also follows from the following:

2.4, PROPOSITION. If A is a Bg-algebra with a bounded approzimate
identity, then A is not topologically nilpotent.. ‘

Proof. For a given continuous pseudonorm | and a neighbourhood V
of zero, we choose an #, ¢V such that |2,| = a > 0. If {¢,},., is & bounded
approximate identity, then for a certain constant ¢ > 0 we have:

(2.41) {&:}2ea = C-V.
There exists a A, such that:

w16, — 21| < a/4.
We pub @, = ¢;,, and pick a 13 > 1, such that

18 €3, — B1205] < af8,
and so on. We have

a
(815 - o By By — By By o o0 By S—ZT*‘T’
80
B — @y .. ] < af2,
and
(2.4.2) (@ g . 0e ) = af2.

In virtue of 2.4.1 and 2.4.2 we have

n

sup V919,

ViV

=7

1 = 1
---ynl_>?'l/1m1w2...mn|>? 5

hence A is not topologically nilpotent. m
Obviously a topologically nilpotent algebra must be necessarily
radical. The converse statement, however is not true, as is shown by
the following: )
2.5. ExawprE. 4 = L(0, 1) consists of summable functions on the
interval [0, 1] with convolution multiplication and norm
1
el = [ o)) ds.
[
It is a commutative, radical Banach algebra (see [2] A.2.11), but it is
easy to see that 4 has a bounded approximate identity (cf. [4]), so 4 is
not a topologically nilpotent algebra. '
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Therefore a necessary (but not sufficient) condition for a By-algebra
to be topologically nilpotent is that the algebra in question be radical
and have no a bounded approximate identity. '

§ 3. Characterization of topologically nilpotent algebras. We agsume 4
to be a commutative, complex By-algebra. Our essential theorem will
characterize topologically nilpotent Bg-algebras, and its proof will be
based upon the following lemma which is due to W. Zelazko, ([5], Propo-
sition 13.12). For sake of completness we reproduce here the proof.

. 3.1. LEMMA. Let 4 be a commutative By-algebra and U o convex subset
of A. Put V = conv(UU(— U)} and

n . — - kN —
Qe =Vsuploy ... z,ll, @Y. = Vsup|o;
then e “
(3.1.1) Lo<Oinr<r = o< M}y v,

where M is a constant > 0.

Proof. It is clear that Q{]”",U§ Qﬁ"n’,,g Q). v- It remains to prove
that @y, » = @y and Qfy v < MO}y ». To prove the first equality let
us observe that

SUp @y ... @) =
z

sup g ... 2],
67 e UU(—U)

80 it remains to show that if W is any set, then

SUp (1.2, =  sup oy ... ;).
eV jcconv

. . s
Let @,...., @, convW; so.

M
Zat.m =1.

My
Ty = 2 Qs %5, m Ei, m€ W7 0< g m 1, and

s
. m=1

mesl
So we have
By oee Xy = 2 ..gz g o O, By e B, my s
(3:1.2) m ity .
A,y - O, =1,
m
the terms being between 0 and 1. So
2o @l < 3y v i [y e o |
m
-
<Y Gy oo o, SUDIDy - 3, = sUD |0y ... )
m ¥ L
So ‘

SUD  [[@ ... @] < sup oy ... @,
agecony W LRz
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but having W < convW we obtain the equality. To prove o< MQ,}‘H; T
we ghall consider the generalization of formula zy = {[(2+y)2—a2—y*],

- namely
(-1 <
By oo By == 2(—1)"W};(w1... 2,),
k=1
where
W = 2 (@4, + oov + @)

1€ <ig< .. <ip<n
Let us observe, that

"
1
oz - mll < Y W@y . @),
. k=1
and since U is convex
sup [|[Wi(@, . o)< 3 supl(on+ - )< (;Z)n"sup ",
zieU ip<’5p+1 tieU el
8o
(2n)"

n!

sup ;... 2 < sup flo"]| < M™sup 2™,
zeU xell zeTU
and Qfy v < MG v
3.2. TumorEM. Let A be a commulaiive, complex B,-algebra, then the
following conditions are equivalent:
(i) A s topologically nilpotent;
(ii) For each continuous pseudonorm | | in A there ewisis a neighbour-
hood of zero V such that:
n
limsupV 2" = 0.
n xeV

. (ili) There ewists a power series with complex coefficients Za, A", having
radius of convergence 0, operating in A i.e. Za,x™ is convergent for each
wed.

Proof. (i)— (iii). Let (| |;) be a countable family of homogeneous
pseudonorms giving a topology in A. In the presence of Theorem 2.2 we
may assume that .

(3.2.1) oyl < |ol;lyl; -
Let V; be a neighbourhood of zero such that

n
lim sup V|z, 2, ... 3,|; = 0.

(3.2.2)
n zEV;
Clearly, we may assume that
(3.2.3) Vi< {®: |o|; < 1[i}.
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Congsider the sequence defined by the relation:
a, = (maxsup|z™,)" .
i<n 2Py

Choose a positive integer N in such a way that for n > N we have:

k(——
sup Vg, <62 for i< 1/er.

ze ¥y

We get fr0m321 3.2.3

(3.2.4)

(3.2.5) sup Vig"; S1/i<< e®  for 43 1/,
zeVy; .

In virtue of 3.2.4 and 3.2.5 we have:

— [ —— .
(]"/%)—1 =7/ max sup V]a"|; <& for n> N,

i<n welV,
so 3 a,2* has a radius of convergence 0.
It remains to be shown that  a,A™ iy operating in A. For given 4 we
choose a positive #; 5 0 in such a way that

e V.
‘We have the following estimation:

n Vi SH;J/W
e L LT

. | —
max sup V5",
i<n yeVy

. kP —
max sup Vg,
i<n yeV;

1 ]/
<= su '/ n
] yev. I; I]

In the presence of 3.2.2, 3 a, " is operating in 4, which proves (iii).
(iii)~ (ii). Suppose that > e, A" is a power series having radius of con-

vergence 0, operating in 4 (clearly we may assume that a, = 0 for each n).
Setting

(3.2.6)

for n > 1.

AL ={we A: for & = n};

we have that every 4! is closed and for fixed i

ez, < 15

© .
U4, =
n=1
so there is an # (i) and a convex open set U, such that

U, = IntAﬁ,m.

icm
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Let ¥; = conv (U;U(—U,)). We get from 3.1.1, and 3.2.6 that

sup llj'[a,cm"]i <M

zeVy

for each % = n();

80

e M
sup Vg™, <4 -0,
zeV; 1
and we have proved (ii).
(ii) — (i) follows immediately from Lemma 3.1. m
The following problem is open:

3.3. PrOBLEM. Is the first conclusion of Theorem 3.2. ((il) —
for non-commutative B-algebras.

(i)) true

§ 4. Some properties of topologically nilpotent algebras. The property
of being topologically nilpotent algebra is invariant under the following
operations on B,-algebras:

(a) Let A be a topologically nilpotent B,-algebra and I a closed ideal
ideal in 4, then A/I is topologically nilpotent.

(b) Every subalgebra of a topologically nilpotent B,-algebra is topo-
logically nilpotent.

(¢) The Cartesian product of a countable family of topologically
nilpotent Bj-algebras is topologically nilpotent.

The above properties follow immediately from the definition.

(d) The projective limit of a countable family of tojpologmally nil-
potent Bg-algebras is topologically nilpotent. ‘

This follows from (b) and (c).

(e) The complete Tensor product with the projective topology of
a topologically nilpotent B,-algebra and an m-convex. By-algebra is topo-
logically nilpotent.

Proof. Let 4 be a topologically nilpotent B,-algebra and let B be
an m-convex, Bj-algebra.

Consider a continuous pseudonorm 9 in A4 and a continuous sub-
multiplicative pseudonorm ¢ in B. The topology in 4 @B may be given
by means of the family of pseudonorms form p @g¢ (cf. [3]).

Chooose a continuous pseudonorm p’ in A such that

n
(4.1) lim sup I/p(yl...yn) = 0.
o PU)<i

In order to complete the proof it will be sufficient to show that:

L
lim sup Vpge(™) =0.
PBa()<1
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If 2 AR B and p'®q(z) < 1; then

&= Zﬁim«;(@%, where z;¢ A, Y;e B,
=1
and
“2) <1, p'l@) <1, g <1

From (4.1) and (4.2) we have the following estimation:

p®q(") =p®q( 221'1""%%1 oy, By aee y,n)‘

Bgensty,

(cf, [3] Theorem IIT 6.4),

< D gl BB (@ ) a) - g

ety
< Dl ) SUD P(ys - y) < SUD DYy ... p).
iy Ply<l . 2(ug)<1 )

It follows that
n _ n — —
sup Vp®q(s") < sup Vp(y; ... g,) — 0.
2 ®g(r)<1 Plug<t

and the digered result follows.

§ 5. Connections between topologically nilpotent Banach and B-al-
gebras. We have shown that the projective limit of a countable family
of topologically nilpotent Banach algebras is topologically nilpotent.
Now we will show that the converse theorem also holds.

5.1 LuvmA. Let U and V be convew neighbourhoods of zero in a commu-
tative topological algebra A such that

(5.1.1) U U, Vcil, Vice,U,;
where e,> 0 s a sequence covergent to zero.
Let
o ' W = conv(V V).
Then
(5.1.2) W" = 2%, W,
- {b.1.3) WeU
. and
(5.1.4) Wc W.

Froof. Consider the following inclusions:
conv (V™) = conv(V™1V) conv (e, , UV) = ¢,_ conv(UV),

conv (V" U*) < ¢,_,conv(V U*) < &n_y00nv(VU).

iom
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From the above inclusions ‘and (5.1.1) we have:

(3.15) (V+VU) < conv(V™)+ (’1”) conv (V*T)+ ... +(::)conv(V"U”)

< &, conv(UV)+ (’;’) Sp_rCOnV (UV) ... + (:) &,_,conv(UV)

I 2"en_lconv(U7) < 2%, ,W.
In the same way as in (3.1.2) we get
W = [eonv(V+-VU)]" < conv[(V+VT)"],

80
W" e 2%, W.
Moreover

W < conv(}U+30%) < conv(3 U+ 30) < T,
W? c eonv(V+VU)P < conv(V*) +2eonv(V2T) +conv( V2 0?)
< conv(VU) = W,

which proves the lemma. m

5.2. TEEOREM. Let A be a commutative topologically nilpotent By-algebra.
Then A is the projective limit of a countable family of topologically nilpotent
Banach algebras. :

Proof. Let (] |;) be a countable family of submultiplicative pseudo-
norms giving the topology in 4. -

For a fixed ¢ choose an idempotent, convex neighbourhood of zero V'
such that -

(5.2.1) SupW:y;/a—a-O.
Put i
(5.2.2) U ={z: |oj;<1}.
Clearly we may assume that
(5.2.3) Ve iU,

We get from (5.2.1) and (5.2.2)
(5.2.4) V"< e,U.

Let W = conv(U-+ UV) and denote the Minkowski functional of W
by || [;. Clearly || |; is a submultiplicative pseudonorm in A. From (5.1.3)
it follows that the new system (|| ||;) is equivalent to the old one.

In virtue of (5.1.2)

n n
. sup I/Hm’””i <2 l/en_l —0;
llzll<1

4 — Studia Mathematica XLIIL1
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w—

so each A; — Afker| |; is a topologically nilpotent Banach algebra.
From ([5], Theorem 10.10) it follows that 4 is the projective limit
of 4,, =

5.3. COROLLARY. An m-convex By-algebra A is topologically nilpotent
if and only if there exisis a system of pseudonorms giving the topology in A
such that every A; is a topologically nilpotent Bamach algebra.

5.4. Remark. For a given system of pseudonorms in 4, 4, need

not be topologically nilpotent. Indeed, take the Cartesian product 114,
where 4; = C(0, 1) from BExample 2.3. fml
Put

el = loall+ - o+ [ 1w, (0)] @ for @ = (21, 4, ...)¢ A.
0

One may verify, that for each i, ﬁ_/ker[ ls is not a topologically nil-
potent algebra, but A is a topologically nilpotent algebra.
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Diagonal nuclear operators

by
L.CRONE, D.J. FLEMING and P. JESSTUP (Potsdam, N.Y.)

Abstract. Let B and F be Banach spaces with total biorthogonal sequences
(% s fn) a0d (Y, g,) respectively. An operator T: E - F is called diagonal if g;(Tw;) = 0.
for i % j. The diagonal of a linear operator T is the scalar sequence (g;(Tw;)). A se-
quence space representation & (E,F) for the diagonals of the nuclear operators is
given and a necessary and sufficient condition is obtained for &(E,F) to be the
diagonal nuelear operators. In particular this is the case when (%, fn) is an uncondi-
tional shrinking basis for B and (y,, g,) is an unconditional hasis for F. As another
application of this result, it is shown that if the coordinate vectors form an uneondi-
tional basis for the BE-space F then the vectors from B give precisely the disgonal
nuelear operators from I, into E. .

1. Introduction. Let EF and F be Banach spaces with total biortho-
gonal sequences (w,, f,) and (y,, g,) respectively. If T is a linear operator
from ¥ to F then by the diagonal of T we mean the sequence (T)
= (g:(T%;))2:- An operator T from F to F is called diagonal if 9i(Ta;) =0
for ¢ # j. The purpose of this paper is to determine the diagonal nuclear
operators between certain Banach spaces. In Section 3 we present a simple
proof that the diagonal nuelear operators on a space with an unconditional
basis are I, and we obtain a sequence space representation for the diagonals
of the nuclear operators in the case where (a,, f,) and (y,, g,) are complete
biorthogonal sequences. This sequence space & (E, F) is a generalization
of the series space studied by Ruckle in [ri]. In Section 4 we show that if B
or F has the approximation property then a. npecessary and sufficient
condition for ¥ (B, F) to be the diagonal nuclear operators is that the
diagonal of every continuous linear operator from B’ to F’ be well defined
as & linear operator from B’ to F’. In particular if ® has an unconditional
shrinking basis and F has an unconditional basis then the diagunal nuclear
operators are determined.

After completing this work, the authors became aware of the results
of Ruckle in [5]. There is overlap between Ruckle’s work and the results
that appear in our preliminary section.

2. Notation and terminology. If (w,,f,) is a total biorthogonal se-
quence for the Banach space F then F can be identified with the linear
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