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Interpolation of sublinear operators on generalized
Orlicz and Hardy-Orlicz spaces

by
WILLIAMT. KRAYNEK (Pittsburgh)

Abstract. The Riesz-Thorin interpolation theorem is proved for sublinear
operators on certain generalized Orlicz spaces, L¥. The corresponding interpolation
‘theorem for the Hardy—Orlicz spaces, HY, is also obtained. The interpolation theory
above is extended to the ease when there are certain factors, resembling the Randon—
Nikodym derivative of measures, included. This treatment includes the known
work in change of measures in the L¥-theory and generalizes the work to certain
Orlicz spaces. Finally, the interpolation of {T}, a family of operators which depend
on a smooth parameter, is obfained.

INTRODUCTION

Let L*i, L% (i =1,2) be Lebesgue spaces on a measure space.
Let T L% —~ L% be a hneam opelator such that HTf[]q < M, ||fnpi,feL1’
Hoprt = (097 +Hipyt and ¢t = (1 —t)g7t Higg Y, then by the classical
Riesz—Thorin interpolation theorem 7': L*t — L% such that
12l < My B3 £l

a

The importance of this result in amnalysis (both classical and abstract)
ig well-known. )

In many problems of Fourier analysis, an operator T is defined
on the spaces above that is not linear. It is sublinear instead, i.e., it
satisfies

(i) T(fy+f.) is defined whenever Tf; are defined,

({) 1T(f; +1)l < 1THI 1T,

(iii) [T'(af)| = |a]|Tf|, for every scalar a.

Calderén and Zygmund [6] were the first to treat the mterpolatlon
of sublinear operators.

Numerous other generalizations have been obtained. Stein and
Weiss [30] have extended the result when the underlying measures are
varied with the spaces, and Stein [29] proved an interpolation theorem
for operators T depending on a complex parameter z. Riordan [28], has
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extended Marcinkiewicz’s result to- Orlicz spaces, and the Riesz—Thorin
theorem was extended to these spaces by Rao in (24).

Recently work on Hardy spaces was also of interest and the inter-
polation problem was considered there (cf. [5] and [32]). Since there
is a close relation between these spaces and the Lebesgue (Orlicz) spaces,
the problem is considered to include both types of spaces.

In this paper, the interpolation problem for sublinear operators
is considered for certain generalized Orlicz spaces and these results are
then used to obtain similar results on Hardy-Orlicz spaces. When  spe-
cialized to the Lebesgue case, the L” spaces for 0 < p < oo are included,
and they apply to the H” spaces, 0 < p < co, as well. Moreover, the
study is always made in the case of sublinear operators. Most of the above
mentioned results are subsumed in this study.

In Section 2, the interpolation theorem for sublinear operations
on generalized Orhcz spaces, L”, is proved and then, using this, the cor-
responding interpolation theorem for the Hardy—Orlick spaces, H?, is
obtained.

In Section 3, the interpolation theory of the preceeding section
is extended to the case when there are certain factors, resembling the
Radon-Nikodym derivatives of measures, included. This treatment
includes the known work on the change of measures in the LP-theory
and generalizes the work to certain Orlicz gpaces.

Finally Section 4 containg the interpolation of [7,], a family of
operators which depend on 2 smooth complex parameter. This generalizes
the analytic parameter case of Stein [29]. Also the relation between, in-
terpolation with factors and change of measures is discussed here.

Generally the notation uged is from [8] and [34] Also Theorem.

- (Lemma and Corollary) 1.2.3 will mean Theorem (Lemma or Corollary)
. 3 of subsection 2 in Section 1. Similarly equation (2.1.25) will mean equa-
tion 25 of subsection 1 in Section 2.

1. PRELIMINARIES

In this section generalized Orlicz and Hardy spaces are defined
and some mneeded properties of these spaces will be given. Also some
results on subharmonic functions are included for use later.

1.1. Generalized Orlicz spaces. The following results are from [18].
Generalized Young’s functions, called @-functions are needed and are
given by the following:

DerinrmrioN 1.1.1. A function, qa( ) is called & @-fundtion if ¢ is con-
tiniious, defined for « >0 non-decreasing, vanishing only at « =0,
and such that ¢(u) > oo ag % — co. .
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Let ¢ be a g-function and (2, Z, u) a measure space. The clags of
sealar valued funetions f measurable on (2, X, u) such that [¢(|f])dg < oo
2

is denoted by L™(Q, X, u) = L'® if the measure space is understood.
The class L°(2, 2, u) is the class of all (equivalence classes of) f such
that AfeL'®(Q, X, u) for some 1> 0. The clags L'? iz a lattice and the
clags L is linear. If ¢ is also convex, then L? is called an Orlicz space on
(2,2, p).

PRrOPOSITION L.L1. A necessary and sufficient condition for L' = L°
is that ¢ satisfy :
(1.1.1) o2u) < kp(u) for uz=0.

- For a. proof of this proposition, see [31].
The condifion (1.1.1) is called the A,-condition. The notation ped,
will mean ¢ satisties (1.1.1).

Remark. If g e 4, then it is clear that for every k > 0, o (ku) <
for >0, where C, depends only on k.

DEFINITION 1.1.2. A real valued non-negative function ||| on a linear
space X is called a F-norm\if it satisfies the following conditions
loe+yll < ol +lyll  for all z, yeX,
ol =0 if and only if # = 0.
An F-norm can be introduced on L” in such a way that convergence
of a sequence, f,, to 0 with respect to this norm implies [e(|f,))ds — 0,
2

Orpp{w)

(1.1.2)

too. This norm (throughout the paper norm will actually mean F-norm)

ig defined by:
= mf{a >0: fgv (@) du <s}

13 Il
and called the norm generated by . With this norm L*(Q2, X, u) becomes
a Fréchet space, and we call [L?(2, Z, u),||-|l,] & generalized Orlicz space.

PropOSITION 1.1.2. If ped,, then simple functions on. (2,2, u),
denoted by £(2, 2, u), are dense in L*(Q, X, u).

PrOPOSITION 1.1.3. If pedy and fn,eL, such that [oo(|f,))du 0,
thet |full, = 0.

If p(u) = y(u") where 0 <7<

define; .
”f”rqz =l]1f{e:> 0: f (]{;,l.)d/l\ }

(1.1.4)
for feL®(Q,Z, p). Then |||, is an r-homogeneous F-norm, that is an
F-norm with the additional property

(1.1.5) laf e = 1l Fllve

1, and p is a convex g¢-function,

for every scalar a.
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Remark. If r =1, then |||, is the Minkowski norm on L. ([311).
ProroSITION 1.1.4. The F-norm ||-|, is equivalent to |*|,,.

1.2. Hardy-Orlicz spaces. The following results from [16] are needed
for later work.

DerINITION 1.2.1. A g-function ¢ which can be represented in the
form g(u) = @®(logu) for u >0 where & is convex on the whole axis

( )

and which satisfies lim —— = co, will be called & log-convex g-function.

U000
Every function ¢ such that p(u) = p(@), 0<s<1 and y convex is
a log-convex ¢-function since p(u) = ®(logu) where @ (u) = ¢™. In the
following, all ¢-functions will be log-convex.
Let N denote the class of functions, F, analytic in the digk {z
such that

ol <1}

o

sup flogﬂlﬂ(re“’ |d8 < co.

osr<ly

(12.1)

Functions of this class have non- Langentlal limits at almost all points
Cof fe: [o] =1} ([34]).
TEEOREM 1.2.1. The general function I of class N can be wpresmted as:

271 if
() =B(z)exp{—2£ﬂ-f :fz du)}
0

(1.2.2)

where B(2) is a Blaschke product, and A(-) is & real-valued function of
bounded variation ([34]).

Let N* be the subclass of N made up of functions F, such that the
function A correspondmg to F in (1.2.2) has its posititve variation absolutely
continuous.

THEOREM 1.2.2. 4 function FeN, is in N* if and only if,

toam an
(1.2.3) lim [ log*|F(ré")|@0 = [ log* |F(¢")]d0.
™1 g 0

 THEOREM 1.2.3. If p(u) is non-deoreasmg and convex n (— oo, 0o)
and F is analytic in {e: |2| <1}, then f o (log | (re®)|)d6 is a non-de-
creasing fumction of r, for 0 < r<< 1.

THEOREM 1.2.4. If ¢ is as in Theorem 1.2.3 and TeN', then
27 an

[ ollog* |F(ré”)])d0 < [ o (log* |F(6”)))as.

0
The preceeding three theorems are from ([34]).
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Levma 1.2.1. Let f be continuous on-[0,2x] and define;

2
. N 1
(1.2.4) P(ré") = Pf(re*) = - f P(0—0)f(H)d
i1
0
where P,(60—1) is the Poisson kernel. Then FeN.
Proof. Recall that P, () is defined as,

&4 re®
Re (6u___,.efo) =
Since f is continuous on [0, 2x], it is bounded there. So let |f(t)| < m
for all £¢[0, 2=]. In addition F(r6”) — f(8) uniformly in 8, ¥ is analytic
on {z: 2| < 1}, and F is continuous on {z le] <1} (See [13]). It follows
from the Maximum Principle that [F(re®)] < m for all 0<<r< 1 and
all 6. Hence,

1—r?
1—2rcos(f)+r2”

-Pr(o) =

log* [F(re”)| < logtm  for all re[0,1) and all 8.

It follows that,

27 Eid "
flog‘r |F(re”)]cll9<f logtm = 2zlogtm  for all ».
0 0

But then FeN by definition. By Theorem 1.2.2, F will be in N if (1.2.3)

holds. But by the Lebesgue Dominated Convergence Theorem and above,
lim [7"log* |F(re™)|d0 = [ lim log* |F(re)| a6 — [ log* | P (67)|as
r—>1 r—1

since log™ () is continuous. Hence FeN*.
Let

#o(r; F)

b

= [ p(1P(re"))do

[

and  u,(F) = sup p,(r; F).
o<r<1

Note that since ¢ is log-convex, u.(r;F) is non—deereasmg in » by
Theorem 1.2.3. Hence
Ho(F) = lim g, (r; F).
r—>1

Now define;

(1.2.5) ={F: F is analytic on {z: Jo| < 1} and p,(F) < oo}
and;
(1.2.6) ={P: F is analytic on {z: || <1} and p,(AF)< oo

for some A>0}. -
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DEFINITION 1.2.2. H'® and H” are called the Hardy-Orlicz dlass
of functions.

PROPOSITION 1.2.1. A necessary and sufficient condition for H'? = H®
is that ped,.

In the following L? = L*(0, 2x).

TEEOREM 1.2.5. Let FeN' and F(6") ¢L'?. Then FeH'.

CoROLLARY 1.2.1. Let ped, and FeN'. Then FeH” if F(d™

An F-norm can be defined on H® by

(1.2.7) 1Pl = sup 176" )l

yeL®.

where the norm. on the right is the F-norm generdted by ¢ on L?. The
classes H? with the F-norm |- HH are Fréchet spaces, and are called the
Hardy-Orlicz spaces. These spaces were defined for a convex ¢ by Weiss
in [31].
Levwma 1.2.2. If FeH then P(e
LevMA 1.2.3. If FeH,, then p,(F) = [ o(|F(c”)])d0
‘TamorEM 1.2.6. If FeH,, then |z, = [F(e")],-

LevmaA 1.2.4. If gped, and FeH,, then there ewists {F,} < H, such
that T, is comtinuous in {z: |2| < 1} and liln]}F-—lf’,,HHw =0,
n—»co

YeLy (0, 2m).

LevuA 1.2.5. If ped, and FeH,, then
(1.2.8) i |7 () = F (R ), = 0-

TusorEM 1.2.7. Polynomials are dense in H, if ped,.

In the case @(u) = yp(u®) where 0 <8< 1 and p is a @-function, an
s-homogeneous norm can be defined in H, by means of the s-homogeneous
norm in L? as;

WPl = s0p |7 (16"l
0P <l

The F-norm. ||z is equivalent to the norm ||-||,I¢ and Theorems 1.2.6
and 1.2.7 hold using ||*|;z, and ||-[ls, instead of Il and |l

1.3. Results concerning subharmonic functions. In this section the
three line theorem for subharmonic functions, and certain related results
will be given. -
' TamoREM 1.3.1. (THE THREE LINE LEMMA FOR SUBHARMONIO
FUNOTIONS). Let f(2) be non-negative, bounded omd defined in S = {z: 0
< Rer <1} such that logf(z) is subharmonic in {#: 0 < Rez <1} and
continuous in 8. If f(O +iay) < My, ond f(L+1y) < My, then f(i+iy)
Ml"‘M
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Levma 1.3.1. If f(2) s non-negative a/ﬂ,d logf(2) -is subharmonic in
a domain D, then (f(2))* is subkarmonic in D for all a> 0.

Proof. Let z<D and let {£: [e—&[ < o} = D. Then by definition:

1 7 N
logf(5) < 5 f logf (2t 06™)df.
[1]

Therefore;

am

L :
(@) = emlost) < 6"'2?‘!1‘*’(5*””"”

2
= J 1oslsrasity7an
= ¢

P4

1 C g
<5 f (flet 0o,

by Jensen’s inequality. Hence { f(2))* is subharmenie.
DEFmvITION 1.3.1. A function I(-) defined and continmous in the
strip 0 < Re(2) <1 will be called of admissible growth if

(1.3.1) sup sup logll(z-+iy)] < de™,

i<r o<<a<1
The following result is statéd by Hirschman [11] for analytic fune-

tions, but an examination of the proof shows it proves actually the fol-
lowing result.

- Leyia 1.3.2. (Hirschman [11]): Let I(2) be non-negative and logT (2)

be subharmonio and continuous in 0 < Rez < 1. If I(2) is of admissible
growth, and

o< T

logI(iy) < and

then for all t<[0, 1],

oo

log(IM)< [ w(l—t, y)a(y)dy+ f o(t; 9)as(y)dy

[ —o

L tan (ﬁ) |
e 2 o)

2. INTERPOLATION OF SUBLINEAR OPERATORS

o (y) logI{1+41y) < ay(9),

where

w(ty) =

In this section, the M. Riesz convexity theorem [27] is generalized
to sublinear operators on L” clasges of Banach space valued functions
and to H? classes of functions on the dise.
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2.1 interpolation in generalized Orlicz spaces. It is convenient to

introduce the following:
DerrNirioN 2.1.1. Let (2, X, u) be a measure space, and X a Banach
space. Let ¢ be a g-function and

F ={f: f: 8 > X and f is strongly measurable}.

Define ”f|]¢(X) = “”f“x”w for fe#, and I = {f: feF and fllpary < o0}
Then L is called the Orlicy space of X-valued functions. .

All the properties of L? discussed in Seetion 1 hold for P

DEFINITION 2.1.2. Let (2, 21, u) and (24, 25, ») be measure spaces
and X, Y be Banach spaces. Let & = {f: f: £, — Y and f is strongly
measurable} and ¢ = {f: f: @, + X, f strongly measurable}. Suppose T
is & mapping of a subelass of F into ¥. Then T is called a sublincar oper-
ator if it satisfies the following properties:

(i) If f = f,+f» and Tf;(i =1, 2) are defined, then Tf is defined.

() 17 (f+F)lx < 1 Tfullx + 1Ll x -

(ifl) For any scalar a, |T(af)lx = lo]|Tfllx-

Remark. If p(u) = p(u°) for 0 < s< 1 and w 8 éonvex s function,
then [|f]ls = |l Ifl llps feL7. For:

o rf o)

=in£{e: fw(“”_') d,u<1} = 17l

Similarly [If sz = |15 1%/
The main result of this section is given in the following:
TreoreM 2.1.1. Let gy, @ (i =1,2) be p-functions such that p;(w)
= y; (), Qu(u) = 87 (u%) where 0<r;,'s;,<1 and u;,8; are conves.

Hflls.p =1

Let F and ¢ be as in Definition 2.1.2, and let L%*) be Orlice spaces on

(2., 2y, ) and LX) be Orlice spaces on (£2,, Xy, ). Suppose T is a sub-
linear mapping LWF) into LX) satisfying;

TS lhgyz) < Mallfllyyey  Sor ald feIo4D,

TS oy < Moallfllpyzy  for alk fe L)

for some r < min{s,, s,, vy, v}, If L(Y) 48 the class of simple functions
on &, then

(2.1.2)

(2.1.1)

TS Ny < M5 ML fllrgyry
= (@O and g

for all fe (X))

where @t = (T M) with 0 <t< 1.
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Proof. Let y;(u) =y, (W) and 8;(u) = 87 (w%"). Since » < ry,y 855 9;
and §; are convex, and g;(u) = y;(w"), @Q;(u) = 8;(«"). So the norms
in (2.1.1) make sense. Let v;'(uw) = (ypi 1(u))l“(w;" (w)* and S;'(w)
= (87 ()" (87 (w))f. Then if follows that . ¢ (u) = 4,(v"),  convex
and Q,(w) = S;(u"), §; convex.

Let R, R, be the complementary functlons to 8y, 8; and R, (u)
= (B (w) = (B ()

Let o;(u) =7 (1), a,(u) = o *(u)3(x), and define a, (%) = a;~?(u) X
% af(w), where # = x+iy is a complex number. Then for each 0,
sinee @;(+) is positive, «,(u) is an -analytic function of z in the strip
0<2<1. Similarly let §, = R;7*(») and then B,(u) = fi *(w)pi(u) is
also analytic in 0 < < 1. It follows that

()] = Jag ()"~ *las(u)l® = ay(u)' " an(u)®

< max{al™(u)af(n)} < max{l, a, (u)} - max{L, ay(u)}

i.e. a,(u) is bounded in 0 <=
in 0 <o<<1 for each wu.

Let fe#(Y) « L?® . Then Tf is well defined, so consider,

NTF s, = sup{ [ITFIclgldr: lolhe, <1, g¢2,)
29

< 1 for each u. Similarly B,(u) is bounded

(2.1.3)

where ., is the set of simple functions on (£2,, Z,, ). The norm defined
by (2.1.3) is equivalent to the Orlicz norm, |- ”St = sup{[ofgdu: llgll: 87
<1, ge#(Q, Z, u)} where §; is the complementary function to 8 (see

[24]).
Suppose that |fll, =1, and fix ge 2, such that |lglz, <1 and
consider

(2.1.4) I = [IZflgl dv.
2y

But ge.#, implies

my
g= 2 bie, = ) [ 6",

=1 =
Now define,

mg X
= ZﬁztRilbzl)erxa,-

Since feZ(Y), f= 5‘ xp,a e¥Y. Write a, = a;u; where a; = [ojliy
and |July = 1. Then f 2 a; (u,xF) and define

(2.1.5) G, = ﬁz(R,ng)e“"

ml

F, = Zas(%(“j)) ("”’j%Fi)'

J=1

(2.1.6)


GUEST


102 ' W. T. Kraynek

Since the Fy's are digjoint,
my

Iifly = S‘a] oyl 2, = 2 W1z,
so that

my .

ol = Do (p(as)) 2z, =

i=1

(2.1.7) Iaa(%(llﬁ!y)} .

Since F,e Z(Y) and G,e%, the following extension of (2.1.4) can be
defined, .

(2.1.8)

= [IT (TG, dv.

Qg
It is clear by construction that I(f) = I. The plan of the proof is to show
that I(2) satisfies the hypothesis of the three line theorem for subharmonic

functions (Theorem 1.3.1) and obtain (2.1.2) as .a consequence of that .

theorem. I(z) can be simplified using (2.1.5) and (2.1.6) to yield;

iy

RN LG

=g

dv,

where the defining property (iii) for sublinear opemtdrs is used here.
To simplify things, let

my

V=D B (Ru(1ba))) o) 4y 2,

J=1
(2.1.9) )Jﬂl" (Be(101])) el ge(as)
J=1
lmz) = f 17 (75 dv.
m
Then 4! = Z‘lj(z u,xpj and I(z) = Zl’l(z It is clear that A}(z) is

analytlc, bounded and continuous m O
proceeds in steps.

Step 1. I(2) is continuous in 0 < #< 1. For, consider

(2.1.10)  |Iy(2+ de)— j\llfl’ Viras) i — 1T (v | dv

< 1. From now on the proof

~ ()| <

f{ I (¥h a0l — 11T (% H.a) dv

1, is subadditive),

(simce u", 0 < r<

< [T s V)
[e]]

(since T is sublinear),
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< 2T (W as— 7N sy 12 ey
(by Hoélder’s inequality),

<27 (Vhsse— ’.V;)Hrol(X) lxe, Iz, '

(by the Remark above the statement of the Theorem)
<2Milyis— V;anl(m e lhz, »

by hypothesis, since yie Z(¥) = L¥). But
my
“y;+45 - y;“ﬂpl(l’) < 2_:, M;! (24 dz) — }é ()" ”“jlzrj”wl(y) -

i=

Therefore
my

hm "7’2-{-45 yz““pl(y) < 2 hm ]ll(z-l— AZ

j=1

Z;l' (zWHUjXF,-”wl(Y) =0

since 2(z) is continuous and the sum is finite. Tt follows from (2.1.10) that -
lim |Iy(2+ dz) — I}(2)] = 0

Az—>0
and therefore I7(2) is continuous in 0 <o < 1.
Step 2. I(z) is bounded in 0 < # < 1. For, as in (2.1.10),

Tye) = [Ty < 20 Ty.lhoym 2o i,
&

< 2M |Pillrgymr ey iy

my

<2, j}] @ ot 2,y 1, -
=1
It follows that I’,(z) i§ bounded in 0 <2 <
0< 2 <1 and the sum is finite.

Step 3. logl}(s) is subharmonic in 0 < w < 1. For, let k(z) be any
harmonic funection in 0 <z << 1, and let H(2) be the analytic function
whose real part is h(z). If ¢*®@ I (2) is subharmonie for all such h(z), then
log I (2) will be subharmonie. Since a function is subharmonic in a region
if it is subharmonic in a neighborhood of each point, fix ze{0 < » < 1} )
take ¢ > 0, and let 2y, 2,, ..., 2, be & set of points equally spaced on the
circle of radius ¢ about 2. Then it is sufficient to show

(2.1.11)

1 since l](z) is bounded in

27

. 1 } .
s FZ(Z) < -2";:—' f 6h(z+ge“") Iyz+ QG"’B) a0
0

Llm . Lag Yy o
Lot 7 = " "k and 29 = "), Then »¥ = 3 A1) oyze),
y g=1
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and But
. P »
' (2.1.12) Ife) = @On) = [Ty dy. PO | T(i “z) < ‘T( LN e
) ” Ve ”’Z P ;'ysn < z P g?}sﬂ x

Now it will be sufficient to show that log||T%|x is subharmonic for i 1 &

each o, for if the latter holds, then by Lemma 1.3.1, |T()[% would < Z 1;‘1(2)—*—21}“ ()| Htg ) -

be subharmonic for each . 7=1 ? =

In this case, then Therefore, for each w
‘ ‘ L2
©.113) o< 5 f 7030, i 12y (2 357
P~ x

for each w, and then m 1 &
< e - _ N
\Z Iim | 57— gﬁj (%) |25l = 0, Dby (2.1.15)

i = [ < [ = f 120
&

ar pi
1 x 1 S
- of d[ T (g i) = f T} {2+ g6 d0

It then follows that I7 (2) is subbarmonic and so 10g']"l( ?) woulcl be sub-
harmonie.

To show log || T (y;")|| is subharmonic, i1 is sufficient to show 6@ || Ty
is subharmonic where k(z) is any harmonic functuon Let K (2) be the
analytic function whose real part is k(2),y;" = 5@y, and 4"(2)

= €2 (2). Then

my

"*l .l *[
Z ‘(z Jij

It follows from (2.1.16) that

772" < T = Zufy“’nx—_ f 17, Lol a8

for each w. This is the same as

o e f Ty )58

which implies logl]Ty |lx is subharmonic for each «. Hence, by the pre-
vious argument logI'(2) is subharmonic m 0<o<<l.

It thus follows that, since I(2)

continuous in 0 <o << 1.

21’,(2), I(z) is Dbounded

and

and Step 4. I(iy) < 2M, and I(1+4y)<2M,. For, consider,
2.1.14 £F@) * Kiz) _ why

@414) 127l = Ty = 127" x. O 16y) = [ITRGuld <2 1Ty s Gl
Since K(2), H(2) and A(z) ave analytic, it follows that 4;"(e) is analytic

= 2| T Fylroux 16 ilha, <
But |Gy = Bi(R;lg]) which implies

[Ru(iGyhdy = [ Ri(lghdv <1
2y [

and therefore 2M1H illray () |Gyl

am 2
. 1 1
Ll l How’ . L1
(2.115) 1) sﬁbf Azt 0d®) @0 = lim — M i)
)

1. Hence by definition,
6, < 1

since |lgllz, <
(2.1.18)
Also

x ol =

where 2, = g¢*’n and 46, = %— Consider

1 »
ezl X

=l

»
2.1. ¥4 T __1_ L
BL18) 1T ”Xgl”f”” e “T(p 2 ’) eI = aa(ellFl)

=1
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by (2.1.7), and therefore
[eulFuly)ap = [@(Ifl)du <1
2y 2

since [ flp,r) = 1. Hence

(2.1.19) I sy llogy ) << 1
But now (2.1.17), (2.1.18) and (2.1.19) give I(iy)< 2M,. Similaxly
I(1+iy) < 2M,.

It now follows from the three-line theorem,
. I=1I@)<2Mi™'M}
and then by (2.1.3),

(2.1.20)
But

TP s, < 2203402

VT e o, < 1A, < 2 U e s,
(see [31]) and (2.1.20) becomes,
(2.1.21) 1T lgua = |11 ||us, < 42034003

for all fe#(Y) such that Ifllrgyry =1. Now let fe £(X) be arbitrary
and let
I 1 ‘
f = .

I gy
Then [f lpp =1 and 1T gy < 4M3~*MY. But then
1L gy < 4 M5~ M| gy -

Thus the theorem is completely proved. In the following the operator T

can be extended to the whole space under certain conditions.

COROLLARY 2.1.1. Let the hypothesis of Theorem 2.1.1 hold. If, in
addition, T is linear and g edy, i = 1,2 then T can be emtonded to all of
L™ with the same bound as in the above theorem.

COROLLARY 2.1.2. Let the hypothesis of Theorem 2.1.1 hold. If, in
addition, o, < @, (i.e. there ewists constants oy, ¢, and Uy Such that o, (c,u)
< 092 (W) for > w2 0) ¢y, gn,y Quy Quedy, and p(0,) < oo, then T can

be emtended to all of IPU™ with the some bound as in the theorem.

Proof. Bince ¢, < ¢, it follows that ¢, < ¢; < p, (see [247). But
then there exists constants ey, ¢; such that

P1(0 %) < copy(u)  for w3 u,
which implies

(dv) < ap(u)  for u> w,

or, equivalently

ni(ow) < opy(u)  for wullr
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and so y; < v,. Bub since u(2,) < oo there exists a constant ¢ (depending
on u(8;), u, and the ¢’s and Q%) such that

(2.1.22) [flhy, < gllflhy, for all feL? (see [14]);
or equivalently
(2.1.23)

IF by 2y < @l llgyry  for all feL?d®,

Let feL®). Since ¢, ed,, there exists f,e #(¥) such that

”f_fn”wt(l’) -0,
Since @, << @, and p(Q) < oo, I#H) < I and so f, f,e L. Con-
sider

(2.1.24) “HTf”X'_ ”Tfn”X”rQl < ””T(f—fn)uxnml = IT( ~Flhoym
< Ml”f_'fn“rwl(Y) < Mlq”f_,fn”rwg(l")

by (2.1.23). Therefore

|| |\ Zfllx — | Zfullx b, < My gim|If —fullygzy, = 0.
N->»00 N> R
Since Q;ed,, it follows that

lim [ (|Tfllx— | Zfalx)d» = 0.

Congequently, there exists a subsequence {f,,} such that Q1(1|Tf||x—.u
— |1 Tfllx) = 0, a.e., and this implies |If,lx = [Lfllx a.e since @, is
continuous. Since ”f'—'fn”.r%(y) — 0 it follows that |]fnkuf,,t(y)—>||f|[m(y].
So consider . :

‘ fQ( s )
3 AU yry)™

o = [ 1m g,

Ng—r00
£y

( |2l ) o
(4MthMé ”fnk”rq:t(Y))UT B

. sl )d
< n];:-li‘:" _(3{ Qt ( (4'Mi—t-Mg ank“mt(Y))l/r g
<1

by Fatou’s lemma, the fact that QteA s, and Theorem 2.1.1. So by defi-
nition
1L gy < 4 MM f iz -

An extension of the theorem in an infinite measure space can be
given, if the hypothesig is strengthened. This will be p;'esented in the fol-
lowing proposition. L
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Propos1TION 2.1.1. Let the hypothesis of Theorem  2.1.1 hold, with
01 < @y and @1, @, @1, Qe e, If, in addition, there ewisis constants K, K,
and 1, such that

(2.1.25) Pl u) < Kapu(u)  for u<uy,

then T can be extended to all of L™ with the same bound.

Proof. It follows from ¢, <@, that ¢, <@, < @, s0 that, there
exist constants K, K,, u, such that

(2.1.26) oy (Ean) < Ky (w)  for u 2 u,.

Let feL?¥) and write f = f,+fm; Where

(2.1.27) Fulw) =flw) it |[f(w)ly < mu,
and 0 otherwise. Hence

(2.1.28) Ifly > mue  or =0,

and

Hf;,i\lm(y) -0 ag m — co, gince ¢ ed,.

(:129) 7 = {0t ool > 52,

Then 4(B,) << co and if g, = fruiz,,, m 18 bounded and has finite support.
Therefore there exists f,¢Z(Y) such that ‘

‘ %
Ifm— Imlly <;i~ for all w
and f,, = 0 where g, = 0. But then
' ’ Uy
(2.1.30) ”fm"fm”?<7m‘" for all

since [lf,’nlly‘(‘q;:‘ outside J,,. Now consider

(2.1.1) |1z = [Tfllc| < I (F = Fodllze < 12 (o= Foll - | Tl

The idea iy to show that there exists a subsequence such that | 1Tl —

~|Zfpllx| - 0. Then as in Corollary 2.1.2, T can be extended to all

of L*Y) with the same bound. If follows from (2.1.25) and (2.1.30) that
Ja—FneL?¥), Bo by hypothesis,

(2.1.32) ’ IT (Fon—Frulrazy < Ml = Frllrgg(e

Interpolation of sublinear operators 109
Let 4y = {o: ||f(w)]ly>1/k} and pick k such that for &> 0 arbitrai‘y,

Jodiflnan< e
4

(this can be done since [ g;(]|flly)du < ).
Then “

[ ellfm—Fallr)an = [ @i(lfn—Flle) dn
2 Ag

+ [0 fm—Flle) dp-

45
But for m large enough, f,, =0 and f,, = f on AS. So for large m,

S ollfn—Falr)dn = [ olfu—Fulr)ap+ [ oIfly) dp
a; Ay Ac .
k
Uy

<<Pt(7n“')#(Ak)+8-
But u(4;) < oo and so

. , . %
tin [ ol ~fale) < Jim () wid e = o
m-ro0 A Me> 00 m
because @, is continuous and ¢,(0) = 0. Since & > 0 was arbitrary,
Jollfn—Fallz)dp —o0.
2
But by (2.1.25) and (2.1.30)

(2133)  lim [ oo(Kylf—Fallr) dp < Ky lim [ gy(lf—Fillz)dp = 0.
Mmoo § : Mmoo o

It follows, since @,edy, that ||fp—fulbeyr) >0, and so by (2.1.32) .
Iim |7 (f,, — f,’n)Her(X) == 0, But then there exigts a subsequence such that
M-—>00

(2.1.34) U |7 (fg —frgllx =0 ace.
'mk—uoo N
By (2.1.26) and (2.1.28)
Lm [ g (K, |fully) dp < Ky lim [ gu(lfallr)du = 0
M>00 Gy mrog,
since | fullwgyry) >0 and g,ed,. Hence Lim [ fmllrgyzy =0 and therefore,
Mmoo

lim ”Tf;r:”rQl(X) < M, lim Ifallroyzy = 0.
m—00 Mmoo )

2 — Studia Mathematica XLIIL.2
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But then there exists another subsequence such that
"(2.1.35) hm IITf;ZlIIx =0 ae

since Q,e4,. But the equaytlons (2.1.34), (2 1.35) and (2.1.81) imply there
exists a subsequence such that

lim | I x = 1 Zfmyllxl =0 a.e.

This completes the proof of the proposition.

2.2. Interpolation in Hardy-Orlicz spaces. In this section, the con-
vexity theorem for linear and sublinear operators on Hardy—Orlicz spaces
will be given.

ProposrtioN 2.2.1. Let @4 Q;,y 9,5 Q, and ¢ be as in Theorem 2.1.1.
In addition let Q;, g;eds. If T is a linear operator such that T: H, — HQ
(¢ =1,2) and

(2.2.1) []TF”,HQ’. < Mi||FH,Hq,’£ for all FeH,,
then T: HQt —>H,,,t with
(2.2.2) TPl g, < AME My Flhzzo, . for all T,

Proof. Leti Pr(6—t) be the Poisson kernel and define for f, continuous
on. [0, 2x], .
2
: 1

(2.2.3) Bf(re) = 5 f Pr6—t)f()dt, 0<r<L.

< J
: - 0 .
Then the operator P ig linear and by Lemma 1.2.1, PfeN*. Since f is
continuous, it follows from Theorem 1.2.3 that Pfe<H,, for any log-convex
g-function ¢, and by Theorem 1.2.4,

PAllry == NI llg-
I p(u) = pu"), 0<r<<1, y convex, then.
(2.2.4) - 1Bf ey = 1f -

For FeH,, let f(-) = F(¢"). Then by Theorem 1.2.4, feL?(0,2n)
and || B, = |If],. Define

(2.2.5) RE() = F(é").
Then R: H, - L,, R is linear, and
(2.2.6). 1BFy = |,

Let f be contmuous and define T* by
(2.2.7) T*(f) = RTP(f)

icm
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then 7*is well defined, linear, and T* (0, 2r) - L%(0, 2x) (i = 1, 2) with
(2.2.8) 1" fllrq; = |RTEf) lho; = IITP Dz,
< M| Pf] “rH%. = Mo,

by (2.2.4) (2.2.5) and the hypothesis. Since continuous functions are
dense in L7 T* can be extended to all of L% (0, 27), preserving the bounds
(2.2.8). But now.the hypotheses of 'l‘heorem 2.1.1 are satisfied, and so
T*: L% — I% with

(2.2.9) IZF N, < 417" M3 f o, -

Let F(2) be a polynomial. Then by [13], p. 33 there exists a continuous
function f such that

(": = 1)2)1

P(ré) = Bf = — f Pr(6—1)f(2)d.
0

But then,

(2:2.10) | TFllmy, = 1 TEfllmy = 17" fllg, < 4 M3 303,

= 4 MM 1B llm,, = 4 M7 M|\,

BT Pfllg, =

Since polynomials are dense in H, (q;,eAz) and T is linear T can be extended
to all of H, with the same bound

PROPOSITION 2.2.2. Let the hypothesis of Proposition. 2.2.1 hold.
If, instead, T is sublinear and o, < @,, then the conclusion of Proposition
2.2.1 holds

Proof. In Theorem 2.1.1, it is only necessary for T to be defined
on the continuous functions for the conclusion to hold. In this case, the
proof of Proposition 2.2.1 is valid up to the point where 7 is defined on.
all polynomials. But since ¢, < @, and the measure is finite, T can be -
extended to all of H, with the same bound by a method similar to the
proof of Corollaly 2. 1 2.

3. INTERPOLATION WITH FACTORS-

In this section the interpolation theorem with factors is proven
for sublinear operators on generalized Orlicz spaces. The theorem is sim-
Har to Theorem 2.1.1, but with the hypothesis that 9, Q5 are 4,
functions and the Iunetlons' arenot B-space valued (because of the factors).
With these conditions the previous theorem is a special case of this the-
orem but the proofs are interesting enough for both to be included. All
the known theorems on interpolation with change of measures can be
shown to be special cases of these theorems. A deduction of this will be i
given later.
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)
3.1. Interpolation with factors in generalized Orlicz spaces. The
following theorem is proved in [15].
TeEoREM 3.1.1. Let @y, g, be conver g-functions and

o7 (o) = (g7 (@) e ().

Let (2,2, u) be a measure space and u, v be measurable funotions. Let
a =u""t Also let g; =y, ("), y; convem, 0<r<1. Then for each f
such that ufeL® and vf eL®2, one has afeL®. In fact

61l < 4 l1tf 75 10 e,

This leads to the main result of this section:

THEOREM 3.1.2. Let ¢;, Q;(1 =1,2) be A, @-functions such thai
ps(w) =9~ (W) and Q;(w) = 8 (u¥) with 0< r;, 8, <1 and v, , 8; conves.
Let uyy U, be non-negative measurable functions on & measure space (2, %, u)
such that w,ygpel”(Qy, 2y, p) for BeX, with u(B) < co. Also let Ty oy
be non-negative measuradle functions on a measure space (2y, X,,v). Let T
be a sublinear mapping of L% (R, Z,, u) into L0y, 2y, v) such that
Sor some 0 < v < minfry, 1y, 8y, 84}

1 (v, < Myl fteall,
for oll f such that u,f €Ly , and
(3.1.1) %o T (fllvg, < Mallfitall,

for all f such that wofeL,,. If (p7") = (@)~ (o7 "), Qi
k= k7E, ond w, = u1 <) ul, then

e (N, < 413" M3 | fut g,
for all fe ., the class of simple funmctions on (Qy, Z,1u).
Proof. Let y;, §;, p, and 8 be defined as in Theorem 2.1.1. Assump-
tions will be made on u, and u, that will be removed later. So assume
Uyy Uy > &1 > 0. Let fe?; be such that Ifllp, =1 and geZ,, (the simple

functions on (2, X, »)) be such that g/l < 1 where R, is as in Theorem,
2.1.1. Consider

= (@),

(3.1.2) I =gf (el | ()" | gl v
Let . m
f= g: lagl€®i 2,y g = gj [ba] €
and define ‘ n
(3.13) F, = a,(glfl)e” = 2 o (9 10;)) % 15
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aﬁd

(3.1.4) @, = (B gh) ¢ Zﬂg(Rdbzl)e‘e’xal

where o, and f, are defined in- Theorem 2.1.1. Let %, = k““k’ and o

z

= (a7~ (u Y. Note that

(3.1.5) o, = -1 l—atluz l]z: (i)I*E (i)x= }—, (4 = o).
&y &y &y

Now define

(3.1.6) f | (0, 7)1 Gl o

The plan, as in Theorem 2.1.1, is to show that I (¢) satisfies the hypothesis
of the three-line theorem for subharmonic functions, since I () =1I.

The desired result will follow easily from this theorem. I(z) can be simplified.
Let

(3.1.7) Zﬁ”’(R:(lbzl

§=1
then A,e%; for each 2. Let y! = v,7.. Then
(3.1.8)

‘Pt(l“ ) ) mﬁﬂ”lvj

U ysel®  and  uyyleL?.

"This is true since

U
s < talyal = walvyllyd <yl
1

1
But — [y,[e2; and 50 by hypothesis —* |y, L% (uyzgel™ for all BeZ
& & .
such that u(H) < co clearly implies u,f<L" for all simple functions f).
Similarly u,y,eL?2. I(2) can now be written,
my

2 j el |T () @y = Zn(z

=16y

(3.1.9) I() =

From now on, the proof proceeds in steps.

Step 1. I(2) is subharmonic in 0 < @ < 1. For this it is necessary
to show log|T'(y})| is subharmonie. For this it is sufficient to show 6"®|T'(y,)|
is subharmonic for any harmonic » in 0 < # < 1. The proof iy similar
to that of Theorem 2.1.1, to which it reduces if u, =1 = v,. There are,
however, some complications since these functions are not constants.
Since a function is subharmonic in a region if it is subharmonic in a neigh-
borhood of each point, fix ¢, take ¢ >0, and let ..., 4, be a set of
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points equally gpaces on the elrcle of radius g about 2. Then it is sufflclent
to show

2

(3110) Bh(z)l—vl(z) < 21 f 6’L(E+Qa":0) I’,(z 4 Qeiﬂ)do‘
T .
" 0

Let H(z) be the avalytic function whose real part is h(z), and
(3.1.11) yil = 7@yl and A7 = 7@ L

then ;! = »,4; and
(3.1.12)

since h(z) is bounded in {&: |#— & < ¢}. (The proof is the same as for
(8.1.8). It is clear that y.’ is analytic for each we®, and therefore

1.1 * T
Uy €L, Uyyy <L

2
* 1 *
(3.1.13) W= f heod? = lim 27,%
0 n=1
where #, = g6l and 49, =%. By the sublinearity of T,

(3.1.14)  |T(yH)

= 1T —|7 (1) fly;;)

<|zlr—p 3o+ z(aw 352
n=1 ne=1

<|z(p-ilp ﬁy;:,) +1/p 2 Ty

The plan is to show [T (Y] is subharmonic for each . For‘thi,s it is
suificient to show that there exists a subsequence such that

(e g’y;;)

oy
3.1.15 Im [T {y —1 I =0 a.e.
(. ) pk—fool ('}’z /pk“;:ys)
for, (3.1.14) becomes
Pre )
(8116) 1T0M < hm- 21 = 5 f T (3 )] 0.
D+ lc

The first step is to show

(31a7) lim ||u1( ~1fp 2 Voe) o

since

(3.1.18) “kl (v —1p 2 Vzn)

< M, “ul( —l/pZy )

7o)
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by hypothesis and (3.1.12). But since ¢, e4,, (3.1.17) will follow. from

(3.1.19) hm j ¢1(u1( —1/122')15 JJau =o.
Consider,
(31.20) Iyl Zlﬂz(Rt(b ] aafepeClay]) lmte’“‘)xp u Z,‘xF,

since |B,l, lal, (v,] and € are bounded for all ze{f: [£—2] <
all wef,. Therefore

o} and

(3.1.21) ‘ %

<WH+1lp 2 s

n=1
my my

ZZF,‘*‘UZ’Z M 2%1?
my
= 2M'Zfo

my

But 2’ 2 ¥r;eZ1 and so by hypothesis w, (2’ Z’ %r;)e L™ and therefore

(3.1.22) - (

S —1p Zm) gi (20 pr)

since @,e4,. So by the Lebesque Domma.ted Convergence Theorem,

lim [ gy (usfy3'—1/p 2?' vi)au
P gy

= fllm qal(ul

(3.1.23)

)d,u =0

~1/192V

(3.1.13) since ¢, is continuous. Hence (3.1.17 ) holds, and therefore since @ e,

»
(3.1.24) ;J.m | Ql(le(y;l—EL/p > y;;)) =0
=0 Gy =1

which implies the existence of a subsequence such that
. o
| T (vt —1/pe ) vid)
=1

So (3.1.15) holds and therefore [T'(y;")| is subharmonic for each . Bu
(8:128) T = |T("@L) = |67 |T ()] = O |T ()]

=0 a.e.
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and so log |T'(y2)| is subharmonic. Since %, is analytic, log |%,| is subharmonic
also. So if A(2) = |k [T,

(3.1.26) log A(2) = rlog |k,|+rlog|T (y})|

and therefore log(z) is subharmonic. But then if h(2) is any harmonic
function, ¢ A(2) is subharmonic, and so

2
1. ;
(3.1.27) A < 5 f e A (21 06 d9
0
for each w. Hence,

; 2
(31.28) €I(z) = f M A(2)dy < f (51;:— f e’ 4 (ot ee“’)d@) p
. Gy Gp 0 .

2n
= 1 h(e+6™?) 6
= 2“;,{(5[0 Az + o€ )dv) do

ar
1 i
= E;“f I 2+ 06") A0

It follows that logl}(2) is subharmonic.

Step 2. I(2) is continuous. Consider
(3.1.29)  (Iy(z+ d2)—I(2)]

< f | 1oy sol” 1T Vi )" — 1ol | T (E) | o

f v e 1T )~ By VT TG TRy
< f [ ol (1T ey a)— | T (R ")l + f | (Togsaal” — 1al")] | T (2|l

f g aol” | T (Vo as— ¥5) " f uk,ml—lk,n 1T ()" dy

by the subhnea,rlty of T and subaddlmwty of w'. Note that for all 2 = @+ iy
such that 0 < o<1,

_ w ks \®
(3.1.30) [k, = |B1™°k}] = o2 ma,x {kl (-};—”-) } = max {by, by} < Toy +%,.
1
Therefore, since 0 < r< 1 and 0 < Re(z+ 4e) < 1,

(BL31) [ ks 1T sa— pY)
G

< [BITOhsas = I+ [ BTy 4yl .
G (&5

1
< e TVt — 75 ”rOIHXGZHRI o T (v 1 — Vz)”r@zllxal”Rz
< -Mlllul()’z-e-dz 'Vz)”rwl ”ZG;“RI +M2 ”“2 (%H—Az yz)“rwz “ZG'Z”RZ

-
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by hypothesis. It can be shown that Jus(yL +a5—V)lrg; >0 88 A2 >0
by an argument similar to that used in Step 1 to show

uafi-2ip 34,

using the Dominated Convergence Theorem. Hence, the first integral
on the right of (3.1.29) -0 as 4z — 0.
As for the second term of (3.1.29), consider

(3.1.32) f(|ks+m;[—ik| T @ < (g sl — 1Bal ) 1T (21" s 122,

= (1B ael — 1) 1T 2)] I, 13, -

The first term on the right can be shown to converge to zero as 4z — 0,
again using the Dominated Convergence Theorem. Hence the second
integral on the right of (3.1.29) -0 as 4z — 0, i.e.

Lm [I3(z 4 42)— I3 (2)] = 0,
Az—0

-0

7@y

and so Iy(2) is continuous in 0 <o < 1.
Step 3. I(2) is bounded. Consider

(31.33) [k ITOYIdyv< [ (K +H)ITT (R d
& G
=[BT+ [T dv
Gy (2] -

< oa T 5l Xl + 1T (w2 b, g,

< My llwayily, 126,17, + Mallteailles, el

by Holder’s inequality and (3.1.30). But by (3.1.21) this becomes,
[ 1l IT (I dp

Gl ml 'ml

LI g, el + Mo Y Il ey < 00
I=1 j=1

Hence I3(2) is bounded. Now, since I(z) . It follows that

= j Ii(z)
=1

I(2) is continuous and bounded in 0< <1, and logI(2) is subhar-

monic in 0 << 1.
Step 4. I(iy)<2M, and I(1+iy) <2M,.

(3.1.34) I(iy) = [ [Tog)]"|T (03, F)[" |Gyl v
24
< 28 AT BT (04 P s, 1y
= 2|k, T (w7 Wy i) o, G ir,y
2M “ y”rqzl“GwHIRl

Consider


GUEST


118 W.T. Kraynek

iom
Bub [|[Fylhy, <1 and [|@ylhe, < 1, and so I(iy) < 2M,. Snmlamly I(1-iy)
< 2M,. Now in view of the three-line theorem,

(3.1.35) I =I@)<2M™ M.

So ag in Theorem 2.1.1, '
(3.1.36) I (457, < A4 | fly,
for all fe %, and therefore

(3.1.37) 1% T (f)llnq, << 423" M3 [ty flly,

for all fe 2.
Now the assumptions on u,, u, will he removed. Lot

(31.38)  wp =w; if w;>1/m  and ul =1/n otherwiso (i = 1,2).

Then uf, uy = 1/n and u; < u?. But then u; f < u;f, and so by hypothesis,
- (8.1.89) s (TP b, < M llmf”m M 147 f

But sinee u,, 4, > 1/n, the above proot applies, and therefore for all g,

(3.1.40) 1T ()b < 1,

for each fe2, where uf = (uf)""(uf)!. It is now mecessary to ghow

(3.1.41) hmlfu g, = 1% £l -

Congider

(B142) i —wf] = (uf —w)|f] < (0 —w)|f] < (u} +w)|f] < 21% /1

since %} decreases with n. Butu! f = Wy fuf + 2acf e L7 where 4 = {&: uyw)
21}, and uf = wuyypf+ ypefe LB = {w: uy(w) = 1}), by hypothesis
since fe.#;. So by Theorem 3. 1.1, wfeL%, and therefore

53.1;43) Fullupf —uf]) < p,(2u} |f]) e L

and so by thg Dominated Convergence Theorem, ’ i

(3144)  lim f ulluff —wfl)du = [ Yoy (o f —w, f1) s

Q™
and so be the 4, condition,

”u f %lf”rtpt - 0.
Hence (3.1.40) holds and so for all fe 2y,
(8.1.45) Wt (f g, < Ly, = 2 j

This completes the proof.

. Remark. Oorollaries similar to those after Theomm 2.1.1 algo hold
ere.
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4. FURTHER RESULTS

A theorem on the interpolation of a smooth family of operators
which generalizes Stein’s result on an analytic family [29] is given in
subsection 4.1. Subsection 4.2 deals with change of measures.

4.1. Smooth families of eperators. Let L(2,, X, u) denote the class
of simple functions on a measure space (2, 25, u) and A (Q,, X5, »)
the class of measurable functions on a measure space (£2,, Xy, »).

DEFINITION 4.1.1. Suppose y.(w) is a function of z and w such that

Y. ()eL(8y, Xy, u) for each z and y-(w) is analytic for each w. Then y,(w)
ig called an analytic simple function on (2,, Xy, u). )

DEFINITION 4.1.2. A family of operators 7', (depending on the com-
plex parameter z), is called a smooth family if the following conditions
hold:

1) T,: L(Qy, X, p) - H (2, X, ») for each z.

(i) If y,(w) is an analytic simple funetion on (24, 2}, ), then |T,(v.)]
is subharmonic for each w. )

A smooth family, T,, is of admissible growth if for all 0 <7 <1,

1) = [Tl |2l dv

. Qy

is of admissible growth (see Definition 1.3.1, for each analytic simple
function 4, on (£2,, X,, ») and each analytic simple function y, on (24, Xy, ).

TeEEOREM 4.1.1. Let T, be a smooth family of sublinear operators of
admissible growth, defined in 0 < Rez << 1. Suppose that ¢, @,, (¢ =1,2),
are g-functions such that o (u) =y, (W) and Q;(u) = 8; (w%) where. 8]
and p; are convex and 0<7;, 8, <1, and let o7t = (7)o ') and

T = (@YW Q7. Finally suppose

13 (e, < A2, »
1T 4in (Flllry < A2(H) I7llrg,

for each feL(Q,, Xy, u), where 0 < r<min(ry, 7y, 1, 8:), and log|d;(y)|
< Aelr|, a< w, 1 =1,2. Thefn,,

N2 llva, < 2441 Fll,
for all feL(R,, 2, u) and where
logd, = [ w(l—t,9)log(24,®)dy+ [ o(t,9)log(24:)dy

and w(t,y) is defined in Section 1.
. Proof. Let w,(u) = v (u),
and 87t = —1)14(82—1? Then ¢;(u) = p;(u"),

) )
=8;(@"), @ (u)

8(w) = S (u), vt =
Qi (w)
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=y;(u') and Qyu) = w(v") with y;, v, Q, and @, all convex. Let R,
and E, be the complementary functions to &, and 8, and Rt
=(RrYYR;'Y. Let a, and 8, be as in. Theorem 2.1.1. Let FeL(Qy, 2, )
With [fls, = 1 and geL(2s, 5, 4) With [z, <1, and consider

(4.1.1) I = [1T(f)I|g) dv.
Q

my My

Suppose f =12'1 7y, and g = 2 bixa, and define
== fo= 1

an

(41.2) / F, = a,(p(p]))€® =2 az(‘?’t(f“jl))eioj%ﬂ',
and =
(4.1.3) G = Bu(Bullgh) 6™ = 3 B (Bi([ba])) 6% g,
and finally, =

ml ‘
(4.1.4) 78 = ) B (Ry(Ibel) o ) 6100

i=1

Note that »% is an analytic simple function for each %k = 1,2, ceey My
Consider the following extension of I,

(41.5) 1) = [IT(E)16)as = ) [IT0hra.
a, k=1 G

I(2) has the following properties:

_ () I(2) =0, logI(#) is subharmonic in 0 < Rez <1, and I(p) is
continnous on 0 << Rez < 1. ) ' ‘

{ii) I(2) is of admissible growth in 0 < Rez< 1.

Tl}ese broperties shown using the methods in the proof of Theorem
2.1,2 since T, is a smooth family. )

(iif) T(iy) < 24,(y) and I(1+dy) < 24,(y). For consider

<
I(iy) -=Qf Tay (Fin) G| A < 21T (Fiy) g | Gyl

< 24, 1Pl G, < 245 ()

" by construction of Fy, and @y, Similarly I(1-+ 1Y) < 24,(y).
({v) I =1().

) Sf) by'the lemma of Hirchman (Lemma 1.3.3) I(t)< 4, where 4,
is defined in the statement of the theorem. Therefore, as before,

(4.1.6) 1T Flivg, < 24411fll,
for each feL(Q,, Xy, u). This proves the theorem.
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Remark. Defining 7,(f) = ¥*T (u~*f), T, can be shown to be a smooth
family of operators using the methods of the proof of Theorem 3.1.2.
In this case Theorem 3.1.2 is a corollary of Theorem 4.1.1.

4.2. Change of measures. Let the ¢-function of Theorem 3.1.2 be

: 11—t

(1) = [uP* and Q;(u) = |u|% where 1 < p;, ¢;, << 0. Let? = 7

1 —1 i 4 1
+— and —1— = 1 + —. Then the theorem takes the following form.

P 9 q1 Qs . : .

If .

(4.2.1) (Tl , < Ml flly, o feIP, §=1,2
then
(4.2.2) (T g, , < MI* M3l flp, o el

where || fll,.. = (nf If [”d,u)”—" . (The constant 4 can be removed in the IL*

case.)
Suppose i, pas v; and v, are measures with the following property.
There exist positive measurable functions a,, ay, f; and g, such that

(4.2.3) u(4) = [a;dp, all Ay,
A,
and | .
(4.2.4) v(d) = [fidv, all AeZ,. '
. A
Define
(42.5) po(d) = [a *aid, " all AeZ,
A
and
(4.2.6) v(4) = [Fifidy, all deZ,.
A

. . % [ :
IE u; = o, ky = BT, s(3) =~§i and r(f) = E‘*'i, then (see [30] for
1 1 .
details) equations (4.2.1) and (4.2.2) take the following form,

@.2.7) WS lgyry < Millfllpy s FeLFo%
and
(4.2.8) ”Tf“qt,v,(t) < MiﬂtMé ”f”ﬂt:"s(t)

which is the result proved in [30].
_Now suppose the @-functions in Theorem 2.1.2 are all convex and
all satisfy the following condition

(4.2.9) puv) < p(w)p(w) for u,v=>0.
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Also let u and » satisfy (4.2.3) and (4.2.4). Then Theorem 3.1.2 can be
shown, to include the result of Rao [24].

At this time, it is not clear that Theorem 3.1.2 can be used to extend
the change of measures theorem further (i.e. to more general p-functions).
The problem seems to depend on some multiplicative property of the
o-functions, as in (4.2.9).

Using Theorem 2.1.1 it is possible to prove a result on positive
operators similar to ([1], Theorem 1), and then it seems an extension of
the. Dunford-Schwartz—Hopf ergodic theorem can be obtained.

Acknowledgment. This paper constitutes part of the authors doctoral dis.
sertation written at Carnegie—Mellon University under the guidance of Professor
M. M. Rao. The author gratefully acknowledges Dr. Rao’s intevest and many helpful
suggestions.
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