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The Parseval’s identity
' llz=lla = ll2llz,
holds for amy pair of corresponding x”, x(*), so that this mapping is iso-

metric. no i
3.2.3. Denote s,(*) = Zmiftpi(r)dr, n=1,2,...If 2~ l*(X) s regular

in F(X) and x(

Hl\/‘s

¢
= Y, [o;(z)dv then

{*) 18—l =0 a8 % —oo.

If 2 VH(X), ; = f o;(7)dx and the relation (*) is satisfied, then the
sequence x° = {xi} of the Fourier coefficients of x(-) is regular and the
series S‘g% Ydo f @i(v)dx is perfectly convergent in V*(X).

1

The sta.tement follows immediately from 3.2, 3.2.1 and the definition
of the regularity in I*(X) of a sequence {#;}.

COROLLARY. Assume that the orthonormal system {g;} is complete in L*
If any sequence in P(X) is regular, in particular if U*(X) is séparable, then
he espansion 3.1 (*) any functions in V*(X) is convergent to () in V*(X)
and the convergence is perfect.

If for any z<V*(X) the ezpansion 3.1 (*) converges to =(-), then any
sequence in B(X) is regular; in particular if X is separable then I'(X) is
separable.
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On the best values of the constants in the theorems of
M. Riesz, Zygmund and Kolmogorov*

by
S. K. PICHORIDES (Chicago)

Abstract. Let f be a real 2rn-periodic function and f its conjugate. Then; (i) The
least value of the constant A, in M. Riesz’s theorem (||fllp < Aplifily, p > 1, feILP)
is tan(x/2p) if 1 < p < 2 (and hence cot(x/2p) if p > 2). (u) ‘The only possible values

of the constant 4 in Zygmund’s theorem (ﬂf[l1 < A(1/2% )(f]fl logt ifi}+ B, feLlogT L)

are those > 2/r. (iii) For non-negatwe functions the least value of the constant B
in Kolmogorov's theorem (]]f]}p < Bplfi,p< 1, feLl) is (cos(pm/2))~ V2. (iv) The
constant 4, in (i) is also best possible for real non-periodic functions in R* (instead
of the conjugate function it is now considered the Hilbert transform). The proof of
these results makes use of a refinement of the inequality on which A. Calderdn’s
proof of the theorem of M. Riesz is based (see A. Zygmund; Trigonometric Series,
Ch. VII, section 2, Cambridge Un. Press, 1968).

1. Introduction. The purpose of this paper is to examine the constants
appearing in the theorems of M. Riesz, Zygmund and Kolmogorov ([4],
Chapter VII, Section 2). In Section 2 we examine the case of real functions
which are non-negative and 2=-periodic and we obtain sharp estimates -
of these constants. It turns out that the above mentioned theorems can
be considered as instances of the same inequality (see Theorem 2.4 and
the remarks following it). In Section 3 we consider real 2r-periodic funec-
tions of variable sign. Although the results are not as complete as in
Section 2, we are able to prove that the least value of the constant 4, in
M. Riesz’s theorem (Hf[]p KA, flp, 2> 1, feLP) istan(n/2p) f 1<p < 2
(and hence cot(n/2p) if p >2). The proof of this result (theorem 3.7)
is based on a refinement of the device, due to A. Calderon,
used in [4] for the proof of M. Riesz’s theorem (only the Theorems 2.4
and 2.12(c) from Section 2 are needed for the proof). T. Gokhberg and
N. Krupnik have obtained the same result for special values of p(p = 2%,
#n =1,2,...). They have also proved that 4, > cot(n/2p) for all p=>2
and conjectured that this estimate.is best.possihle. (see [l-}}. In-Seetien-
4" we discuss some related results concerning non-periodic funections,

* This paper has been submitted to the Department of Mathematics of the
University of Chicago as the author’s dissertation in candidacy for Ph. D.
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The author would like to express his gratitude to professors A. Zyg-
mund, under whose guidance he had the distinguished privilege to work,
and M. Jodeit and C. Fefferman for their help in the proof of the (im-
portant for our purpose) Lemma 3.5. Finally he wishes to thank the
University of Chicago, and in particular the Department of Mathematics,
for the various manners of assistance he received during his stay there.

2. Non-negative functions. In this section we shall examine the con-
stants appearing in the theorems of M. Riesz, Zygmund and Kolmogorov
in the case of real functions which are non-negative and 2r-periodic.

If f is an integrable 2n-periodic function, we let f~denote its conjugate:
- 1~ t
flz) = P.V.— ff(m——t)cot-—dt.
27 KA 2

Our first lemma is a refinement of the inequality on which the proof
of M. Riesz’s theorem in [4] is based.

Lemuma 2.1, Let 2| < wf2,0 <y < m/2.
(a) If 0<p<2, p 1, and if we put
tan?~ly sin®~ty

tan(p—1)y ’ B(p,7) = Sn(p 1)y’ C{p) =

4 (p,9) =
then

" eos(pr2)’

(2.2) O(p)(cos”z—cospr) < [sina|” < A(p, y)cos?z—B(p, y)cospe

and

2 1
(2.3) -;(coswlogeosm—i—msinm) < [sing| < — (coswlog cosz -+ xsinw) +
Y

1 1
+ (~ log ————) cosS®.
v cosy

If p <1, then (2.2) holds also for y = =2 (A(p, w[2) = 0).

(b) If p = 2, then (2.2) reduces to equality. If p < 2, then the right-
hand side of (2.2) reduces to equality if and only if |@| = y. The right-hand
side of (2.3) reduces to equality if and only if |z = y.

Proof. Since the expressions appearing in (2.2) and (2.3) are continuous
a,nd- even functions of z, we may assume 0 < z < w/2. It is very easy to
verify that both sides of (2.2) reduce to equality if p = 2, and hence
we may also assume p < 2.

T_he proof of .(2.2) will be based on a careful examination of the
funetion F(z) = (sin”z — acospw) [cos®x, o real, The proof of (2.3) and
the last s?atement of (b) is based on & similar examination of the function
G(z) = (sing— acosz)/(coswlogcosz -+ xsing), a real, and it will be omitted.

* © '
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‘We may also observe that (2.3) is the limiting case of (2.2) as p — 1. This
will become apparent from the remarks following Theorem 2.4.
‘We observe now that

’ sm —1
o=y el

It follows that

@
cosP g g(z), where g(z) =1+a

sin(2 —p)z

gio) = alp—1) =2

is of constant sign, and hence g is strictly monotonic if a =% 0.
I a = —0C(p), then a(p—1)< 0 and ¢ is strictly decreasing. It

follows that g¢(z) > g(f;_—) = 0. We conclude that F'(z) > 0, and hence

F(x)> F(0+) = —a. The left-hand side of (2.2) follows.

If ¢ = —B(p, y), then g (being strictly monotonic) vanishes only
for @ = y, and consequently y is the only zero of F”(z). Sinee (sin(p —1)a)/
Jsin? 'z = o(z) as © —> 0, g(»), and hence F'(x), is positive for small
values of . It follows that F(y) = A(p,y) is the maximum of ¥, and
it can be attained only for x = y. The right-hand side of (2.2) and (b)
follow. W

We prove now the promised inequality, (2.5), which contains the
theorems of M. Riesz, Zygmund and Kolmogorov, It is obvious that
(2.5) implies the theorems of M. Riesz and Kolmogorov (we have only
to observe that (p—1)4A(p,y)>0 and (p—1)B(p,y)> 0, and then
omit the non-positive of the two terms appearing in the right-hand side
of the second inequality in (2.5)). We shall prove later that (2.6), and
hence Zygmund’s theorem, is the limiting case of (2.5) as p — 1.

TBEEOREM 2.4. Let f= 0,0 <p<2,p #1,0 <y <=2 (if p <1, then
we can also take y = w[2). Then

(2.5) O(p) (Il — IFID) < H]:Hf,’ S AP, NIfIE—B @, MIFT
for all feIL?n I, and

2(1 [ 1(1 [ 1
(2.6) '7’;(57—: [flng)< Il < 7(5; {flng) —.—7log ooay
for all feLlog™ L such that ||fl|, = 1.

Proof. (Following [4], Chapter VIIL, Section 2). Let u(2) = % (re®)
and #(z) = v(r6®), 0<r<1, be the Poisson and conjugate Poisson
integral of f respectively. We may assume f = 0 so that u(z) > 0. It
follows that the functions (u - iv)? and (% %v)log (% -+ 1) are holomorphic
on the open unmit dise, and hence their real parts are harmonic there.
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Putting «-+iv = Ré¥, |6] < ©/2, and observing that %(0) = ||fl, we

obtain
T

(%) = [[R(ré*)Peospb(rd®)ds = [w(0)] = |fIf

-and (after some easy manipulations), if |fl, = 1,

(%) = [ R(re™[cos 6(re™)logcos 6 (re™) + 6 (re) sin 6 (re™®) ] dw

;Ilgﬂﬂ

= = f u(ré®)logu (re™) da.

-

We apply now (2.2) with 6(re™) instead of #, we multiply the resulting
inequality by [R(r¢®)]?, and we integrate with respect to x. Letting
r —1 and using Fatou’s lemma we obtain (2.5) via (*) and the correspond-
ing integrability conditions on f. By the same method we can obtain
(2.6). In this case we make use of (2.3) and (**) instead of (2.2) and (%),
and we multiply by R(re™) instead of [R(r¢®)]. m

The following two special cases of (2.5), corresponding to y = w[2p
(if p>1) and y = =/2 (if p < 1), will be useful later.

(2.7) Hfﬂﬁ< tan(x/2p) Hf”p, 1<p<2, =20, fel?, f0.
(2.8) W (AT =1 < IFIB < 1y,

cos(pm/2)
0<p<1, =0, fel

We list now some elementary properties of the constants appearing
in (2.5) and (2.6). We omit the easy proofs.

(2.9)  (a) If p> 1, then: A(p, v) (considered as a function of y) decreases
from + oo to tan® (z/2p) in (0, /2p) and increases from tan (m|2p)
o +coin (x/2p, ©[2), and B(p, y) (considered as a Sfunction of y)
decreases from + oo to C(p) in (0, =[2).

(b) If p < 1, then: A(p, y) (considered as a function of y) increases

from —eo d0 0 in (0, =/2), and B(p,y) (considered as a function

of y) increases from — oo to C(p) in (0, ©/2).

(e) (1/y)log(1/cosy) increases from 0 o +oo 4m (0, w[2) and it
1 2

is O (Jlog(— — ~—)
vd T

i

as ™
.
Uy

* ©
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3w

B 4

(um<p-1)A<p, y) =l (p—1)B(p, 3) ==, lim(p—1)C(p)
Pl 1 Y ps1

g 1 1
(2-10) [hm[A(ﬁ,y)—B(p,y)] = —log—,
-1 y o cosy
A(p, 7)=B(p,y)= 0(2—p) as p > 2.
@11) A(@,7)—B(p,7) =0(") as y 0.
It follows from (2.9)(a) and (2.11) that (if p > 1) the only interesting
values of y are those in (0, n/2p].
Formulae (2.10) enable us to say that (2.6) is the limiting case of
(2.5) as p — 1. Indeed, let feLlog” L and |fl}, = 1. If p < 1, (2.5) implies

Do . D4
00 -0 < Wig< 4w, o0 L1 14y, - 50, .

Letting p —1 we obtain (2.6) via (2.10) and the formula

Iflip —1

] »;—ﬁfflogf as p —1,

which follows easily from Lebesgue’s dominated convergence theorem.
Our next goal is to show that the constants appearing in (2.5) and

(2.6) are best possible. Theorem 2.12 contains the desired results.
TEHEOREM 2.12. Let 0<p <2, p #1, 0<y<=x[2, f=0, f=0.

(a) Let feI? 0 L% Then |fl2 = A (p, »)IfE—B®, NIfIP if and only
iof |fl = (tany)f almost everywhere.

0) Lot feTlog™ L. Then, i \fls =1, 1fis = (% [ flogs) +

—{-l log =
v cosy
(e) Let y < mw[2p. Then there exists & function geL? N L' such that
g=0, g £ 0, and |§| = (tany)g almost everywhere.
(@) Let p > 1, y < =/2p. Then A(p,y) is the smallest value of A such
that /I3 < A|fIg—B(p, y)IfI¥ for every f>0 in L*, and B(p,y) is

the largest walue of B such that ||fiE < A(p, Y)IfIE—BIfIY for every f=0

if and only if | f| = (tany)f almost everywhere.

1 1 1
in LP, Analogous results hold for the constants — and —Ioga)s— and for
the case p < 1. L4 4 L4

(e) O(p) is the largest value of C such that CjifiE— IfIF] < IfIE for
every f 0 4n L? N LY, and 2 is the largest value of C such that O(s= [ flogf)
< Iflly for every f< 0 in Llog™ L with ||f], = 1.
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Proof. (a) We use the same notation as in the proof of Theorem 2.4,
Since lim R (ré™) (as r — 1) is positive for almost all @, lim 6 (re™) (as r — 1)
exists almost everywhere (see [4], Chapter VII, 7.25). If we denote the
above limits by R(z) and 6(s) respectively, we can easily verify that

flz) = R(x)cosb(z) and f(w) = R(»)sinf(z) and |6(z)) <g— for almoss
all ». Moreover, we have

o [ BEPeosps@a = i,

If |f] = (tany)f almost everywhere, then [§] = y for almost all
@ and the right-hand side of (2.2) becomes equality if we write 6 () instead
of z. The same argument as in the proof of Theorem 2.4 shows that under
these conditions the second inequality in (2.5) reduces to equality.

It (}”[ 7 (tany)f on a set B of positive measure, then (by Lemma
2.1 (b)) there exists a set Ec B of positive measure and a positive
number ¢ such that for every el we have: R(z)> ¢ and

Isin 6(2)[” < A(p, 7)eos” 6 (z)— B(p, y) cos?p 6(z) — -.
Arguing as in the proof of Theorem 2.4 we obtain
IfE<4(p,7) I —B(p, y) IfIF— (%) 1Bl" <A (p,p) IfIE— B (p,p) I,

which completes the proof of (a).
(b) The proof is the same ag in (a).
() (Following a suggestion of Professor A. Calderdn). The function

z | 11—z
and (since 2y[m < 1fp) it belongs to H”. It 9(®)+14g () is its boundary
value, then g is the conjugate of g and g = 0. Moreover, we have:
19(@)] = (tany)g(») for all z # 0.

(d) This follows immediately from (a)y (¢) and (2.9).

() I p<1, () is a simple consequence of (2.8). Indeed, let fell,
F=0, Ifly =1, and let us define Jasm =1,2,..., to be equal to nf(nz)

142\ | 1+2\ = | . s
15 2 <02—, is holomorphic on the open unit disc

. T . .
if |2 < Py and 0 in the remainder of (—m, =]. Since ||f,[l, = 1 and
fally = ¥, (2.8) -implies

1

(2.13 S = ey
) im|f, |2 cos(pr/(2)

as n —>c0,

which proves (e) for p<1.

® ©
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b4

s 17 1
Tf, in addition, feLlog+L, then—z::-_{ falogf, =logn+5;c——_£ flogf,

1 2 N
and (2.6), with 7 =— —|—@, implies

2 1 - 2 1 1
JR— < |— _ L]
o)+~ <10gn 1 nl\(Tc + ]Og%) (0(1)+1)+10gn0(loglogn) asn —>o0,

and hence

> 2
(2.14) [1fon Nz N;logn a8 n —»oco,

The second part of (e) follows.
The above method does not work if p > 1. In this case we argue
as follows (the argument works for p <1 as well):

Let 0<h < % @2—p), a(n—h) = % The function
G(2) = [ (z—e ™ e—e™MT?, <1,

where the argument of the expression in square brackets is less than
n in absolute value, belongs to H”. The boundary value g(@)+ig(z)
of @ is (cosah)q(z)+i(sinah)q(z) if |#| > h, and —iq(z) if |z| < h, where

)52

The norms lgll, and |§l,, can be computed easily by substituting

v =(smm—;—h)/(sinm—

9(@) =

h) and then applying the method of residua.

It follows
sin 2)cos®ah . sin® ah + sinpah
lgly = ——(—M~ and [ = ———.
sinpaw sinpar

Observing now that [jg|l;, = 1 we obtain

1915 sin® ah + sinpah

ozl — gl (pr[2) cos? ah —sin (pahfl—p %)

Applying now the de 1’Hospital rules we see that the last expression tends
to O(p) as ah — 0, and hence as b — 0 (since 4 Temains bounded as b — 0).

The proof of (e) is complete. M
We give now an application of formulae (2.5) and (2.13).

5 — Studia Mathematica XLIV. 2
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Let f,; denote the characteristic function of the interval (—h, 1),
0 < h<n We know (see [4], Chapter II, page 72, example 19) that

o222

Splitting the_interval (—m, =) into the four subintervals (—w, —B)

(i 5) /a3

- oginh [ £ e ; e¥
o _ » a f v g
I =Pt [B{y ¢ +2coshe¥ +1 y+0 v ¢ —2coshe’ +1 y]

2s5ink
— 5 L+ L)

~ 1
fulm) = "_L‘loz%'

(=P, 0), (0, k) and (h, =) and substituting y = log
we can easily verify that

We assume first that p > 1. The expressions under the sign of in-

tegration in the above equality are positive and they are majorized by.

the integrable (over the positive real axis) function y?e? /(¢ —1)%. It follows

' eﬂl

L)~ [ ¥ gy W nd L(h) - v il 88 b0,
0 0

Using now the formulae ([3], Chapter XIII, pages 266 and 267)

o

(@) = [ 5
0

p-1 b yp—-l
1—; ;
il awd Q-2 N)Ie) = [ Sy p> 1,

0

where £ and I are the Zeta function of Riemann and the Gamma function
respectively, and integrating by parts we obtain
Lk »p(1=2"" () (p) and  I,(h) - pL(p)I'(p) as b —>0.
Collecting results and applying (2.5) to the function fr we deduce
D vy
(2.15) = < t(p) < 0 (m]2)

-2 sl D I {L=2)T(p)

; L<p<2.

It p =2 (and assymptotically if p — 1) (2.15) reduces to equality.

If p <1, then we expand the funections appearing under the sign
of integration in the definition of I,(k) and I,(h) into series of powers
of ¢® and we integrate termwise. A straightforward computation yields
the formula (compare with formula 2.1, [4], Chapter V):

(2.16) En—;l—sm@n—l)h ~ (2RYP (1 — p)sin (pr/2)

n=1

a8 h—> 40, 0<p<1.

* ©
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We shall return to characteristic functions in Section 4.

Before we leave the case of non-negative functions we make a final
remark concerning formulae (2.5) and (2.6). We shall restrict ourselves
to the case 1 < p << 2. It is very easy to show that the right-hand side
of the second inequality in (2.5) attains its minimum when y is the
(unique) solution of the equation

IFR/IFIE = cosPyjeospy, 0<y<=j2p,
and the minimum is tany||f||y (the case p = 2 is simpler and luminates
this fact). Similarly the minimum of the right-hand side of the second
inequality in (2.6) (assuming |if}l, = 1) is tany, where y is the (unique)
solution of the equation

1 k]
% _fflogf = ytany+logeosy.

3. Functions of variable sign. In this section we consider real 2mn-periodic
tunctions. As usually, we denote by f, and f_ the positive and the negative
part of such a function f(f, = max(f,0), f. = max(—f, 0)).

For the constant B, in Kolmogorov’s theorem we have very little
to say. Let p <1 and feL'. Applying the second inequality in (2.8) to
the functions f, and f_ and adding the resulting inequalities we obtain
(see also [4], Chapter VII, Section 2)

~ ~ ~ 1 2
B < IfL 15+ < m (”f+”11°+' If~19) < W -

Theorem 2.12, (a) and (c), implies that for every B < 1/eos(p=/2) there
exists an feI' such that ][]:(|§> BJfIf. We have proved
THEOREM 3.1. The least value B, of the 4mmbers B such that ]Lf[[,,
< Biflly for every feL' satisfies the inequality
1 1-p

2
3.2 < B 0
,( ) cos(pr/2) 7 cos(pn/2)’ <r<i

2/r

and hence it is assympiotically equal to i———p as p—>1. If we restrict

1—p

ourselves to non-negative funciions, then B, = [cos(pn/2)] 2.

We examine now the constants appearing in Zygmund’s theorem.
If f>0 and feLlog™ L, then (2.6) implies

P (L[ 1 1.1
© ”1<7(§ _{ ﬂng) — = Ifloglifh +—log—-— I
1 1 r " 1 1 _1_ .
<—;(E_£flog f)v—|-710g cosy 171+ P 0< y<mf2.
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Applying (*) to the functions f, and f_ and adding the resulting ine-
qualities we obtain
= 11 [ 1 1 2
. < = |— + —log —— il
©3) W< (5 [iftogtifl) +log o Ut

-1

0<y< w2 feLlog™ L.

We observe now that for any «> 0 and any function feLlog*L
there exists a number ¢ (depending on ¢ only) such that

fin< e(f|f|10g+ Ifl) +0-

Combining this remark with Theorem 2.12, (b) and (c), and (2.9)(c) we
deduce

THEOREM 3.4. A necessary and sufficient condition that there ewists
a number B such that

. 1 7
Flo< 4 (5 [ wmoerin) +2

Jor every feLlog®L is that A is greater than —2—
™

A somewhat stronger result can be obtained by the same method.
Namely: Suppose that 4, B, C are such that

- 1 7
<4z [imogtis) + B0

T -
2
Jor every feLlog* L. Then A > - and for any fized C and any positive

. . 1
a<l, 32 18 greater than aAlog(l/cos I) provided that A is sufficiently
close to - ‘We omit the easy proof.

) We pass now to the constant 4, in M. Riesz's theorem. Our goal
is to show that if 1< p< 2, then the least value of 4, is tan (x/2p).

Let fel”, 1 < p<2, and let E, %, v be defined as in the proof of
Theorem 2.4. We define first a function & on the open complex plane
80 that; G(0) = 0 and if # = s+4y £ 0 then G(2) = |2|Pcosp0(2), where
B(z)’za._reta,n(y/iwl), [6(2)| < m/2. We define now a function F on the
open unif d.%sc by putting F(z) = G {u(2)+iv ().

The main idea for the proof of our assertion about 4, is to use the
Same method as in the case of non-negative functions. In order to over-

icm°®
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come the difficulties arising from the fact that (u-+év)® can no longer
be defined as a holomorphic function, we have introduced the function F.
The proof will be based on the following

LevmmA 3.5. F is subharmonic. ;

Proof. Since u-4v is holomorphie, it suffices to prove that @ is
subharmonic on the open complex plane (see [2], Chapter X, Section 8,
Exercise 2). @ is obviously continuous, and hence it is enough to show
(see [2], Chapter X, (8.10)4) that for every complex number z there
are arbitrarily small positive numbers r such that

(+4 0 <5 [ Ot

Since @ coincides with a harmonic function on the right open half
plane and on the left open half plane (Rez®, |argz] < g, and Re(—2)%,
larg(—2)] < %, respectively), (**) is satisfied for all z such that Rez s« 0.

If z = 0, then for every positive number r we have (note that 1 < p <2)

17 1 P r
2 - P — e & —
= fa(m )it = 2(2“ _Jz rﬂcosptdt) o SRETR) > 0 = 6(0)

™

which proves (*+).

It remains to examine the ease z = 4y, where y is a real number
different from zero. Let H(2) = Rez?, #z 5 0, |argz| < =. We observe
that H coincides with & on the closed right half plane (the origin excluded).

If 2 = a6®, a > 0, — < |2] < =, then

G(2) — H(2) = a’cosp(x—n)—a’cospr = 2a” sinp (a: - %)sm(pnﬂ)
3
if > <w<m and

G(2)—H(2) = a®cosp(w+n)—aPcospr = —2a”sinp (m + ;;) sin(p=/2)

if —n<a< ——2“—. Tn both cases G(2)—H (z) is non-negative. Combining

this result and the fact.that H is harmonic in the complement of the
non-positive real axis we obtain

17 . 1 r
Gliy) = H(iy) = o fH(iy+re“)dt<-2—w fG(zy—}—’re Ydi
-1 ]

if 0 < r < |y|, which proves (**).
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The proof of Lemma 3.5 is complete. B

We return now to the constant 4, in M. Riesz’s theorem. We put
® = f(u+iv), where 0 has the same measning as in the definition of 7.
@ is defined on the open unit dise except for those points where Res = 0,
Defining @ arbitrarily at those points we can easily verify that
lu(2)] = R (2)cos @(z), [v(2)] = R(2)|sin®(z)] and (it B(2) + 0)|B(2)] <3

Moreover, we have F(z) = [R(z)]? cosp®P(z). Since F is subharmonic and

F(0) =

17 »
—_— t
= f T )dtj :
the same argument as in the proof of Theorem 2.4 implies

(3.6) IfIE < A(p, Y5 —B(p, y)} 5-1; ff(t)dt,p, 0<y< g,

1<p<2, feI?.

Theorem 2.12 (¢) sk:ows that for any y < =/2p there exists an feL,
suf:h that f £ 0 and [¥] = (tany)f almost everywhere. It follows that
fifl, = tany[iff,. Using this fact and applying (3.6) (with y = n/2p)
we deduce that the least value of A, istan(n/2p) if 1 < p << 2. Tf =2,

then (by dusality) the least value of 4, 18 tan ((£1~—1—)) = cot(n/2p).
We have proved 200

THEOREM 3.7. The least value A, of the numbers A such that 7l
< ANflpy 2 > 1, for every (real and 27-periodic) fe I¥, is tan(n [2p) if p< 2
and cot(x/2p) if p > 2.

We ‘remark finally that Lemma 3.5 remaing valid under the weaker
assumptions f-Jhat %+ i a holomorphic function on the open unit dise
(not necessarily in H” 1<p<2) and that 0 <p<2.

4. Non-periodic functions. We begin this seetion by extending Theorem
3.7 to real (not necessarily periodic) functions on R For such a function
f we shall denote by Hf its Hilbert transform (if it exists):

1 oo
Hf(z) = P.V.— f U dt, we R,
T J x—1

; It is well known that if felP(R") for some p > 1, then Hf existé
or almost all 2. Moreover, there is a constant A4,, which depends on
2 only, such that IIHSl, < 4, Ifl,. We also know that 4, can be taken

the same as in the periodic case (see [4], Chapter XVI, Theorem 3.8,

icm°®
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The result we are looking for is contained in the proof of this theorem,
although it is not stated explicitly). It is very easy to show that if
1<p<?2 and (p—1)=/2p < y < w/2p, then the function

1 a1\¥F
F(z) = por) (z z——l) , Imz> 0,

271 5 taken
z2—1
less than =/2 in absolute value). If f--ig is the boundary value of x,
then g = Hf and f == 0. Moreover, we have [g(x)] = (tany)|f(z)] for all
« different from 1 and —1. (This example has been taken from 1.
Combining this result and Theorem 3.7 we obtain the following

THEOREM 4.1. The least value A, of the numbers A such that [lHf,
< Alflpy, 2> 1, for every (real) f in L*(RY), is tan(x/2p) if p <2 and
cot(x/2p) if p>2.

‘We shall consider now the special case of characteristic functions of
measurable sets B such that |F|< co (the results which follow were
communicated to the author by Professor A. Zygmund).

According to a result of E. Stein and G. Weiss, the distribution
function of the Hilbert transform of the characteristic function fj of
such a set B is 2|E|[sinky, y > 0 (see [5], Chapter II, 2.4). It follows
that the ratio |Hfgl,/Ilfzl, is independent of E. A computation similar
to that leading to formula (2.15) yields
(4.2) IHfglip Ifel = 4p= " (1 =277 (p}(p), 1<p<2.

‘We observe that in the periodic case the ratio ||fE lo/Ifzll, is not in-
dependent of ¥ (e.g. if [B| = 2r, then the above ratio is zero), but it tends
to the right-hand side of (4.2), as |B| — 0. This is due to the fact that in
the periodic case the distribution function of fz is not proportional to
|B|, although it depends on |E]| only.

Following now a suggestion of Professor A. Zygmund, we shall
congider functions of several variables.

Let K (), xeR" (n is a positive integer), be an odd positively homo-
geneous real function (kernel) of degree —n, and let X denote the surface
of the unit sphere in R™ We know that if the integral of K over X is finite,
and if we define §,(z) by the formula

§@ = [ gla—y)E(y)dy, @R g, p>1, >0,
e
then g, converges as ¢ — 0 (in the L? norm) to a function . Moreover,
we have the following inequality

1 < (=/2) 4y ( [1K1) g1l
z

belongs to H® in the upper' half plane (the argument of 7
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where 4, is the constant appearing in Theorem 4.1 (see [5], Chapter I,

Theorem 11). It is clear that if K, considered as a mass distribution on Z,
is concentrated in the neighborhood of fwo antipodal points of X, then
§ behaves like the Hilbert transform of the one-dimensional case. Thus,
it should be conceivable that the constant
0 = (w/2)4, ( [IKI)
z

appearing in the previous inequality is in some sense best possible. The
purpose of our last theorem is to make this statement precise.

THEOREM 4.3. With the above established notation, if p > 1 and a < 1,
then there ewists an odd positively homogeneous kernel (of degree —mn) such
that for some function g in LP(R") we have: g % 0 and [|gl, > aC|qgl),.

Proof. Let e; be the unit vector along the x, axis. Let also h(zy),
2,eR', and g(v), veR"™Y, be two continuously differentiable functions
with compact support. We assume that h and ¢ do not vanish identically
and that [[Hh|, > bA,, |, for some b such that 1> b > a (this is possible
because of Theorem 4.1). We define now a function g on RB™ by putting

(&) = g(®y, T3y ..., &) = k(z,) q(v), wleRla v = (&, veey wn)eRn_l-

Let K,,, m =1, 2, ..., be positively homogeneous kernels (of degree —n
which are odd and such that K, vanishes on X except for the points
of X, =3 n{m: |r—e|<1/m} and —Z, = {z: —zeZ,}, where K, is
1/(area X,) and —1/(area ) respectively. It follows that

[1x| =2,
=
and hence the corresponding constant € is w4, for all m. Let finally
In(@) = [g(z—y)Knly)dy,
R®

and write a,, = area Z,. We observe that if o — (%1, %), @R, veR*,
then

I (@) —=H(2,) g (v)

U"“ h(@,—1) —h(2,+1)

7 dt) q(v)

]

= [ye-nEamay-
R®

= fK(?/')(fLm;ty—)dt) dy,_f g(m*tel);g(w-i—tel) i
P 0 H

(L9t —gla—te)  glo+iy)—g(o+tey) ,
_fa{f[ . — . l]dt}dy.

Emma
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The integrand inside the square brackets is zero if

2 le|+sup {lyl:g(y) = 0}

and it is majorized by 2(sup Vg)ly' —e,|. Since
2(supVg)ly'—e,] = O(1jm) as m —>o0,

Gm(2) converges to wHR(z;)q(v) as m —oo. Using now Fatouw’s lemma
'we obtain

Liminf [§, |}, > g (HR)|, = = |HRl, Igll, > brd,, [kl liglh, = 5C'ligll, > aCliglly-

The proof of Theorem 4.3 is complete. W
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