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STUDIA MATHEMATICA, T. XLIV. (1972)

On the function of Marcinkiewiez

by
T. WALSH (Prineeton N. J.)

Abstract. Define the Marcinkiewicz integral transformation acting on locally
integrable funetions in R™ by

©

s()@ = ([ [ @+ vty fw—yaypria)”,

o

where Q is homogeneous of degree 0. Rearrangement-invariant conditions on Q are
found under which p is bounded in LP.

0. Introduction. The Marcinkiewicz function of a locally integrable
function of one variable f is defined by

o0

w()@) = ([ 1 Flo+)+ Ple—1)—2F (@) @)™,
0
where F is an indefinite integral of f. Stein has considered the following
generalization to n variables

) phH@=([] [ ewfe—yafia)”,

0 st
where O denotes a locally integrable function which is homogeneous of
degree 0 and has mean value 0 on the unit sphere §* ' = {@: |z| =1}
with respect to Buclidean surface measure o.

Using the boundedness in L? of the 1-dimensional Marcinkiewicz
integral transformation Stein showed that if 2 is odd u defined by (1)
is also bounded in LP(R™) for 1 < p < oo ([2], Theorem 2). The results
for Calderén—Zygmund singular integrals in [4] give rise to the question
whether similar results hold for the Marcinkiewiez integral (1) and general
kernels.

For a homogeneous function 2 let |Q], denote the I” norm with
respect to the measure ¢ on 8"~ Also for a positive increasing function &
let

120IP(I)] = | @12 do(8).

sn—1
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© will denote a positive constant not necessarily the same at each occur-

rence.
The main results of the present paper dealing with somewhat more

general types of integrals can then b(? stated as follows.

PROPOSITION 1. Suppose 2 is homogeneous of degree 0 as well as locally
integrable in R* and vy is a measurable function on the positive half-line
satisfying

@ [ y)ldu = llylh < oo,
’ 1]
® ' J ([ wlw)idu) asje < B,
1 i
) J(J totutt)—plwlauf dift < B
0 0
Define p by
®  w@=([] [ 2@y e Dfe—ydyf @),
0 R®
If also
(6) f pu)du =0
0
then
<)) N ()lle < OUL L1 (el 4 B) 1 e
If instead of (6)
®) [ 2®do(s) =
sn—1
then
9 e (Pl < O (120 4+ () (el + B) I e,
where
N(@y = sup f | | emasw|at.

=15 "1zt

On the other hand if (8) holds, fap('u, du # O and N(Q) = oo then p
8 not bounded in IA

This will be proved by considering Fourier transforms. The proof of
the next proposition is by use of the 1-dimensional result and Riesz trans-
forms similarly as in the case of singular integrals [4] and interpolation.

PROPOSITION 2. Suppose 2 is homogencous of degree 0, integrable and
of mean value 0 on 8™ Suppose also that v is integrable in the interval
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(0, oo) and satisfies the following conditions stronger tham (3), (4)

(10) f (f l'P(tu)]ztdt)l/z <3,
(11) f(fl]w““)i’idt)mduglg’
o0
oo 1
) f (fhu(t(ﬂ’_l))—'I’(W)Ptclt)mdu<B_

Let Q,, Q, be the even and odd parts respectively of Q. Then for u defined
by (5) and r = min(p, p) (1/p+1/p" =1)

(13) He (Nl < C-(2) (02" (vl + B if oy

where
0, (2) < O(L+4 [ Q]| [Z (log™ L) (log ™ log* L0 =21+ |24 -

There appears to be no reason to expect this result to be in any sense
best possible. In the case p = 2, however, the last part of Proposition 1
can be strengthened by a similar (but simpler) argument as in 'Weiss and
Zygmund [12].

ProPOSITION 3. For any increasing positive function ¢ such that ¢(2t)

1
< Cp(t) and [ @(i)2dift = co there is anm integrable function Q which is
0

homogeneous of degree 0 has mean value 0 on 8™ ' and satisfies

(14) sup [ 12(n)|do(n) < ()
=11z <2

and a continuous function of compact support f such thai the Marcinkiewics
integral (1) is infinite for a.e. x in the support of f.

1. Proof of Proposition 1. Let H denote the Hilbert space of measur-
able complex valued functions on the positive half line (0, o) which are
square integrable with respeet to mmltiplication invariant measure di/i
and for fe H let T°f denote the norm

2 — (fm flted /t)l’z.

If f is a funetion on R" and >0 f,, ¢ are defined by
file) =17"f(t7®), @) = f(tw).
For fe L' the formula for the Fourier transform f is taken to be
flo) = [ e (y)dy.
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For the definition of Lorentz (quasi-) norms, in particular, the weak I?
quasi-norm | [, see [2]. For we B™ let o' = ]~ .
The following generalization of results in [1] will be needed for n = 1.

TEMMA 1. Suppose ¢ is a measurable function on R"™ such that
(15) [lp@)ide = lipl; < o,
(16) [o@)an =0,

an | f(f

lj>t

(18) J ([ lp@—1w)—
For fe I'+ L™ set »(f)(#)(t) = gxf(x). Then
9 | 172 ()l < OUlglls -+ B) 15l

and v/(}) = 3f, where » is the H-valued function such that »(w)(t) = ¢ (ix).

Proof. Note that if fe I'-+I™ then |p*f]|<O|fII[L*+L°]. It
follows that for a.e. # ¢*f(%) is well defined for a.e. t. Note that for fe I*

(pf)” = #'f. Suppose |#| = 1. Then

m)ldw)zdt/t <B

p@lde) @< B for Iy'| = 1.

#z) = p(tz) fe‘““’ = (¢7% Y — 1) p(y) dy +
i<t
3
+ [ eway+ [ e=py)dy = Y I;(im)
wi<t—? WSt j=1
say.
L)<t [ lytle(y)ldy.
wi<e—1
By (16)
‘ Lin)=— [ oy
>t
hence
ILy(t2)| + L(tz) <2 [ lp(y)ldy.
lyi=t—1

By a change of the variable of integration

(20) ( f 1T, (t2) 12dt/t)”° ( f (-

Now by Minkowski’s inequality for 1ntegmls the lagt integral is at most
equal to

@) [lllewl( f 1) ay <

f Iyl 1o ()i dy)" de )"

<@V [le@)idy < liglh-

icm
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Also by (17)
1

(22) [+ Lueai<y [ [ o

1yt

)] dy)gdt/t < 4B

(20), (21), (22) altogether yield

(23) ([ 19 m)atp)” < 0l +B).
Furthermore
plte) = — [ exp[—ita-(y+m7'2)]p(y)dy

= (1[2) [ eV [p(y)— gy —mt~2)]1dy.
Hence by (18)

@8 [ Ipteran< b f 1 1¢(y>—¢<y—tw>ady)’dt/t

< (logm) lgl} + (1/4) f ([ o) —ply —to)| ay)* asfe

Clleh, + By
(23) and (24) add up to

o0

(25) [ lpti)Pdeft < Cllgl+ B

0

for x| = 1. However, by the invariance of the measure dt/t (and ¢(0) = 0}
(25) is valid for all 2. Hence by Plancherel’s theorem

I @)IE = [ lpxflEat = [ [ 16t f(o) 2 dwat)t
0 1]

Clligl+ By ifli-

This completes the proof of (19).

The fact that the H-valued function »(f) has the Fourier frans-
form 5f with »(z)(t) = ¢ (i) follows by the usual continuity argument.

The following lemma will not be needed until the proof of Proposition 2.

Levva 2. If in place of (17), (18) the stronger conditions

(26) [ f g ( t:c)i‘tz”‘ldt)mdng,
Ir'>1

(27) K f ;ge(m)|2t2"—ldt)”2dm <B,
lri<t 0

@) [ ([lelte—y)-etnpeia)far< B for =1

lzi=>2 o
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are satisfied then

(29) 172 (f)llieo < € (gl +B) IF s

(30) 172 ()l < Opp’ (ol +B) Iy, L <p < oo
Proof. By Minkowski’s inequality for integrals

(f( [ lp(@)da)’ atfe)” = f (f [<p(m)]t"dw)2dt/t)"2

Izi=t lzl=1

| (f Im(tw)lﬁt”“dt)‘”dmsfe

jzi=1 1

ie., p satisfies (17) and similarly (27), (28) and (15) imply (18). Thus by
Lemma 1 (30) holds in case p = 2. By ([1], Theorem 2) (29) and (30)
now follow from

(31) [ ([ mo—9—n@prd)) < 0B

lzi=2lyl 0

which is valid since the left hand side equals

[ ([lote—y)—ptmend) " a

lzl>2 0

< f (“‘P(t(m—y'))-qp(tm)lztzn;ldt)l/zdx_i_

lzZi>2 0

2 [ (f g (te) 22— lczt)‘”d
l2l>1 "1
Hence (31) is implied by (26), (28).
As in the proof of Lemma 1 Proposition 1 will follow from the following
LevMA 3. Under the assumptions of Proposition 1 let

Fyo)= [ Q@dely), o= p(s)ds,
ey <tal~t 0

p(2) = 2(@) ]2~ p(|2)).
Then for all xeR"

1/2

(32) ([ 13(@) — aFy(to)]2dft) " < Ol (lpll + B).

{Note that aF,y(z) =0 for |o| < 1)
Proof. Observe that fq:(w)dw: a nflﬁ(m’)do'(w’). Hence in any case ¢
-
satisties (15), (16), (17) of Lemma 1 with |lg|, = |Ql |, and B replaced

say.
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by [1€2ll; B. As before it suffices to prove (32) in ease |2] = 1, so assume
this from now on. By the proof of Lemma 1

(33) [ lptm)2asft < ¢ 2l (gl +B).

Furthermore if 9 denotes the Fourier transform of ¢ extended to
all of B by p(s) =0 for s <0

plw)= [ @) [ e y(s)dsdo(y)
g1 0
= [ Q@")pltz-y)do(y)
-1

=50 [ ewlacw)+ [ L@)litey)—ip0)]doly)

lz-y' i1t lz-y'I<yt
+ [ W)l y)de(y) = aFy(ta)-+I(l0)+ L),
lz-v|>1¢

By (38) the proof of (32) will be complete if it can be shown that
(34) ([ 11 (t0) + Iotta) 2 deft) * < 0121yl + B).

1
Observe that it is sufficient to consider the case of real . Then @ ( —wu)

is the complex conjugate of ¢(u). Hence by means of Minkowski’s ine-
quality for integrals (34) is implied by

(35) f % () — $(0)[*du/u < C(llyll,+ BY,
(36) f [9(w)[2duju < O(lpll,+ B)*
Note that
1w =)
P(w)—p(0) = f (e™—1)p(v)dv+ f ey do— [ p(v)dv
lu 1/u

Hence (35) fo]lows exactly as in the first part of the proof of Lemma 1.
(36) was shown in the proof of (24) (which did not use (18)).

Returning to the last part of Proposition 1 ‘note that F, is continuous.
It follows that if T°F,(-») is unbounded then it is arbitrarily large on
sets of positive measure. Hence u cannot be bounded in I

Remark. By Minkowski’s inequality for integrals
1

F@<mp [ Rl [ a) )
1&-9]

= sup f 12(n)] (log |57 do ().
§l=1 gn~1
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By Young’s inequality (see e.g., [3] p.- 91 and [7] p. 275) and the inte-
grability of |£:n|™ for f<1

N@ <O+ [ 1Q0I(log* 12" de(n).
sr=1

2. Proof of Proposition 2. This proposition will be proved by inter-
polation between Proposition 1 and the following

Levva 4. Suppose Q is even, i.., Q(x) = 2(—a), has mean value 0
on 8% and the function y on R vanishes in (— oo, 0) and satisfies (2),
(10), (11), (12). Then for L<p < oo

lle(Flls < Opp’ [BI20+ 22’ Ipla (1 +|2| [ Llog* L])]-

Proof. If @ is any locally integrable function on E" which is homo-
geneous of degree 0 and ¢ is an integrable function on the interval (0, o)
it will be convenient to use the notation M (@, g)(f)(«, ¢) for the convo-
lution

7 [ o(y) lyl ™ gt YD (e —y) dy
so that, e.g., i
p(f)(@) = T*(H(Q, v)(H (@, )

Let A be an infinitely differentiable function supported in the interval
(1, 2) and such that [A(s)ds = L. Then for ¢ as in Lemma 3 and y, = p—al

M(Q,y) = M(Q, )+ oM (L2, 2).
Moreover [ y,(s)ds =0, [y, < 2|yl and y, satisfies (10), (11), (12) with B
1
replaced by B+ C where C depends on the choice of 1. Note that
(37) M2, p) ()@, ) = fIQ(?/’)f(w,t; y)do(y),
e
where
Fla, b5 9) =17 [ w7 0)flw—sy")ds.
[
By Lemma 2 for # = 1 applied to lines parallel to %’ it follows as
in [4] that
1227, 5 9l < O ) L+ I+ B)Ifly,  1<p < oo
Hence by Minkowski’s inequality for integrals (and double norms) (37)
implies
(38) 17 M(Q, 1) (8)ll, < Opp’ 120 (L + llpll -+ B) | llp-

As in [4] the proof that 7% M (R, 1) is bounded in L proceeds by
reducing it to the case of odd kernels by means of Riesz transforms. Let

icm
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A@) = Q(z) x|~ A(jz]) so that M (2, 1)(f)(#, t) = A,*f(x). If a function
¢ has the property that (L+ =) ™g(») is integrable then its n-vector
valued Riesz transform Rg = (R.g,..., B,g) is defined by

Rg(@) =c,lim [ yly|™ 'g(a—y)dy

=0 jyl>s
for an appropriate constant ¢,. It is well known that for fe I (1 < p < o0)
k3
f= = SRE(B, ).
i=

Assume that RA is integrable (which will be shown below). Then by
([11], Corollary 5 and Remark 8)

AxEB;(R;f) = R; A+ B;f
hence

(39) Apf = — D RA*R; f= —RAxRf = —(RA)*Rf,

where the pairing used in the definition of the convolution is the inner
product of two n-vectors,

Since the Riesz kernel is of class € away from 0 and 4 has compact
support contained in {z: |x| > 1} it follows that RA is of class C% in
{x: |»] < 1}. Further since 2 and so 4 has mean value ¢ for |z] >2

D'RA(@) = [ (D"R(z—y)—D"R(2)4(y)dy

lyj<2
(D* = (8]0m,) 1 +...-(8)0m,)n fOr a = (ayy ...y @), |a] = Da;). It follows
that ‘ =1
(40) D" RA(2)] < C,]| Rl Je~ "= for |z] > 4.

In what follows derivatives will be taken in the distribution sense.
Let r = |z| then

8/or RA(z) = r~1(0/08)(RA) (|51 = v~ B(8]08A%,1) (@)
hence .

(0/0r2RA(m) = r7[ —R(D[05A%|,.) (%) +R (8205, 05, 4% _,, 1) ()]
It follows that .
(41)y (8)0rYRA(z) = v R(4) (@) J=0,1,2
where A;(zx) = 2(x)A;(r) and

i
L) = ) aflr T E B ()

for certain constants af’ which also depend on =.
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Note that all 4; are suppor’éed in the interval (1, 2) and of clasg o>,
in particular, integrable hence by ([2], Chapter 1, Theorem 2)

|B4;(z)| < O(1+] 2| [Llog*L]),

12<|l<4

where O depends on i. Now (41) implies that for 1 =0,1,2, 1/2<r <4

(42)

4
(48) |(8/or)r" RA(ra)| < O D) |RAy(ra)].
. =0 -

Define
QF @) = sup |(8/or)r" L RA(rz')]

12<r<4

go that .
Q)< [0 [orr™" 1 RA (m’)i,=1,2| + f [(8/0r)2r" ' RA (r2") | dr.

12
Hence by (42), (43)
(44) [ 19" do(@) < O(L+ |12 [Llog* L.
o
Define

(45) Q% (@) = sup L +r)*H|(@0r) (" RA (m"))] .

Then from (40) and the digeussion preceding it and (44) it follows that

(46) [ (@) do(a) < 0(1+]€Q| [Llog™ L]).
sn—1

By a change to polar coordinates

(RA)*Bf (z) =t [ [ (RA) &y Rf(w—ry' )™ drdo (y')
sm—1 g

=@2) [+ [Py, 1) Bf(o—ry)drdo(y'),
sn—1 —00

where for [¢'| =1 ¥(y', r) = |#[* " RA(ry’). Note that, for each y', (¥, -}
is 0dd since A is even. It is easily verified that definition (45) implies that
for any y'e 8" P(y', ), < Q*(y') and P(y', -) satisties (10), (11), (12)
with B = 02%(y’) in (0, co) and hence on the whole real line. Since ¥(y’, +)
is odd it also has mean value 0. Thus by Lemma 2 applied to parallel
lines and Minkowski’s inequality for integrals

17 M(Q, 1) (i, < C'Ml’fﬂ* (@) do (") | Bf lip-
By (46) and the norm inequality for the Riesz transform this implies that

(47) 7% M (2, 3) (), < C(pp")* (L +]12 [Llog™ L) |fll,-
Along with (38) this completes the proof of Lemma 4.

icm°®
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To conclude the proof of Proposition 2 it suffices to establish (13)
for the odd and even parts of @ separately. If @ is odd (13) follows in
familiar fashion from Lemma 2 and Minkowski’s inequality for integrals
(ef. [9], Theorem 2).

So suppose 2 is even and further that Q< L(log™ L) where 1 < ¢ < 2.
For any complex number z define 2,, Q, by

Q;(m) = Q(x) [1+10g+ [Q(w)l]z;z_yg"
Q,=0C—o;' [ Q")do(),
g1

where , is the surface area of §" . Notice that

I sup |20 <C [ 12()(L+1og* Q")) do (@').
Res<2 g1

Hence if fe I' N L™ then for any @ and i M (2,, v)(f)(«, t) is a holomorphic
function of z in the region Rez < 2. In particular M(2,, v)(f)(z,?) is
hogomorphic in 0 < Rez < 1 and continuous and bounded in its closure.
Also ©, has mean value 0 on 8™ . Hence by Lemma 4 for Rez =0,
I<s<2

48)  IT* M(L2,, 9)(Hlls < O(s—1)7 (Il +B) - (1 + 12| [Llog* L) I ls-

Also by Proposition 1 and the remark at the end of Section 1, for
Rez =1

(49)
But
JSup Q) [Llog* L]+ sup |12 (L (log™ LY?] < O (1+ | 2 [ L (log™ L)¥4]).

I (2., 9) (Ml < Ollplls+ B) (L+1 ML (Log™ L) T)iif [la-

(Note that ¢(1+log*#)? is convex so that Jensen’s inequality applies to
the second term in the definition of £,.)

Suppose now ¢ <p<2 and set 1/s =1/2 (1/p—1/¢")/(1/2—1/¢") so
that (1—2/¢)1/s+(2/¢')1/2 =1/p. Note that £,,, = Q. Hence by
a theorem of Stein for analytic families of operators (which extends to
Banach space valued functions, see, e.g. [2])

I3 (2, 9) ()l < O(L/g—1[p) =" N(|lylls +B) (L + | U [L (log™ L)l f |, -

Applying this inequality to 42 for 4 >0 yields ’

(50)  \T* M (2, %) (f)llp < C(1/g—1[p)~*0~D (fjy], +B) x
X (A7 Q) [ Qog*™ ALY ) [,

The rest of the proof is analogous to an extrapolation argument of
Yano [12]. Let j, = [p']+1 and Qj(x) = Q(z) if log* |[Q2(z)| < 2%, =0
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otherwise. For any integer j >j, let Q}(ﬁ)l= Q(w) if 2f g 10g+|Q )]
<97, =0 otherwise. Also define &; = Qy-—cun f Qi . Then
0= 2 2,

Apply now (50) to Q; with 1/g =1/p +1/J, = j% and add to obtain

TM 2,v)(f) ”p

<O(lylh+3B) Zf“—“”“[ it f 19;(a)] log™ | 2;(a")[)** do (o)
J“‘.’Io

<Op*(lyli+B) [1+
+ [ 120 (tog*|2(w

This finishes the proof of (13) for 1 < p

If 2 < p < oo observe that the preceding argument (for even Q) can
be applied to the adjoint of the Hilbert space valued operator M (L, )
which takes ge I¥(H) into

M2, 9)(g)(@) = [ Q)" lyl)g(a—y, t)dtftdy.

Hence the validity of (13) for 2 < p < oo follows by duality.

)| (log* log |2(@") 0= G (') ]

3. Proof of Proposition 3. Suppose first n = 2. By the reasoning of
[12] it suffices to display a continuous periodic function of one variable
g and & suitable Q such that the truncated integral

: [ 1H@(f) (@, y; nizatse

which is independent of y is infinite for a.e. . g(@) will be of the form

Z’akexp (tng@) where ny, n,y, ... is & laeunary sequence of positive integers

for deﬁmteness SUPPOSe My q/n, > 2 and Z]ak| < oo,

As in [12] for 0 <h<1/4 let y, be the characteristic function of
the interval [0, %) and let

w(0) =17 3! (1Y 1, (0—jr[2).
j=—o00
For z-+iy = ¢ 8 real Q(z,y) will be of the form (8)

with 8,>0, » =1,2,..., 36, < co. Now =

M2, 1), t) = D) ad,exp (img)d (my, by, 1),

kyy=1

icm°®
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where

t h
J(’IL 72. t — (ﬁl —1 f[emseosb —mscﬂsﬁ 611Lssinﬂ~6~imsin6]d6ds
o 0

h
Py f[ sin(ncos 6t)
0

_ sin (% sin 6¢) ]dﬁ.
cosd

8in 6

The proof of Proposition 3 will be based on
LeMMA 5. J(n, b, 1) satisfies

(51) - W (n, by 1) < Cn2e for 0.<t< 4n,
(52) J(ny b, 8) < —1  for 4jn < i< 1f(nh),
(53) W (7 by 1) < Cf{mht).

Proof. Suppose nt<{4. To prove (51) note that |u™'sinnut— ni|
< Cn* 4 hence
sin(n cos 6f)
| cosf

sin(zn sin 6)
sind

]
| < ot
|

and so (51) follows by infegration over the interval (0, %).
If 4/n < t<1/(nh) observe that

)3
et —_
Ef Rneos ool < bicosajs) = Vo,
(4]

cos |

Also it is well known that «'sinu > 1 —u2/6 hence
h
46 > nhi— (1/6) f 236230 = nhi— (L/18)n’h*E
' 1
and therefore J(n,h,1) < —2(1—1/18 —-}/5/4). This proves (52).
In any case

fh Ssing sin 6t
sin 6

U' sin ncoth_ Bi < ]/5/4
cos f
and
Bt bSiDh sinnut -
g g g —
J sinnsin = f Vi—utdu|
" sing ID u [
nisinh

<

3
u‘lsiuudul +Cfudu< c.
0
Hence {H3) follows.

2 — Studia Mathematica XLIV
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Let now dy(t) = > 68,J (g, hy, t). Then
s =1

(54) J1M(2)(f) (@, D2dtft= oo ae.
if
(55) D a2 [ @ (paift = oo

k=1 0

see e.g., [14] Vol. 1 p. 203 which is well known to extend to Hilbert Space
alued functions).

However by Lemma 5

( ‘_]{1 G(0rarfe)" > ( ofl ( o) are)" —

4Imp<t<t/(ngh,)

-0 26 [%; ( lf/"k t3dt)1/2 n (th)_l( t_gdt)yz]
0 1(nigh,) N
1

2 J( 3 ofan)*~0 Sox( [ ( Zofar)*~o Y

Yng,  h,<1(ngt) Yng  h,<t

Let now b, =e" & = ¢(h)—¢(h,,y) for v=1,2,...
0 =p(e™?) < co and for t < ¢!

so that

=g

2.8 = plexp([logi)) > Uy (1).

he<t

Thus for m, sufficiently large

f qp(t)zdt/t)‘”.

Yng,

(fldk(t)zdt/t)‘”; o

Let now {a,} be an arbitrary sequence of nonvanishing complex
numbers such that Z|a,| < co and let the lacunary sequence of integers
{n:} increase at such a rate that

1
Jorat= a2
l/nk
Then (55) and hence (54) are satisfied.
Moreover 2 satisties (14). To see this note that if 0 < ¢ < n/4 then
O+t ‘

[ lo®)a8 < o).
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For if 6, = 0 then [l (0)|d6 < } 4, < ¢(f). Note that o is non-negative
0 R, <t oot t
and nondecreasing in [0, =/4]. It follows that for fixed ¢ of | (6)] a0
[

- 0
reaches its maximum value at 6, = 0 (as well as at =/2, x, 3=/2). It follows
that for any 0 <<t <<1

g+t Bg-+mt
(] + [ )e@ias<pn.
bg—t  Bgtm—t

Hence
lo(o)as< |

10— Ogmi2l<tnz

| (0)]d8 < 4o (xt/2).
Jeos (8- 6p)is<t

As in [12] a required pair of functions @, f can be constructed in n
dimensions by means of the kernel Q(£) = w(6) where § is the longitudinal
angle defined by &, +i%, = ¢®.
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