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Estimates for double Hilbert transforms
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Abstract. We prove that the truncated “singular integrals”

Dz Qo
Tuf(,9) = [ e i f@=s gy ey

|2'|>8
lyi>é
converge almost everywhere as &, 6+ 0, for fe Llog* L(R"+™), Here, ![21](:? and
x

Q
J—;I%)- are smooth Calderén-Zygmund kernels on R” and R™ respectively.

Tf = lim Tf is the simplest convolution operator whose kernel has a con-
tinuum of s?l;!;;lar points.

I. Introduction. Calderén-Zygmund theory deals with convolution
operators whose kernels are singular at zero and infinity. To handle op-
erators whose kernels have higher dimensional singular sets is an in-
teresting and difficult problem about which little is known. The purpose
of this paper is to extend the Calderén—Zygmund constructions for sin-
gular integrals (see [1]) to a (comparatively) simple case of an operator
with a one-dimensional singular set. That operator is the double Hilbert
transform, defined on funetions of two variables by the equation

(1) Ti@,g) = 1m [ [{O=TY=Y)

8, 85—>0

ds' dy’.

lz'1>8;
lyi>ey

T is often easy to deal with, because of the obvious factorization T = T, T,
where T is the Hilbert transform taken in the “z” variable and T, is
the Hilbert transform in the “y” variable. For example, we know that T
is bounded on I” (1. < p < co), since [Tl = [T, (T,f )y < CITyf lp < Ol -
Near L* we obtain from this argument that T'f is in weak I* for fe Llog* L.

* Acknowledgement. It is a pleasure to acknowledge E. M. Stein, who pointed
out to me the problem treated here, and was consistently helpful as I searched for
a solution.
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Actually, the factorization of 7' works so beautifully that one has to
think in order to find a non-trivial problem concerning it. One such problem
concerns the “maximal operator”

fff(m Y ) gy,

(2) Af(mi y) = sup

£1,59>0

|2']>
wl>52

In one dimension, we know that the maximal Hilbert transform behaves
just as well as the Hilbert transform, near L. The same is true in our
situation: ‘

TaROREM 1. Let fe Llog™ L(R?), and say support (f) < [0, 1]x[0,1].
Then Af belongs to weak L' on [0,1]1x[0,1] and

{{(m,y [0, 11% [0, 17| Af(2, ) >a}|<—~ [flog™ flly -+ /)

with ¢ independent of a and f.

For a proof using complex methods, see Zygmund [4]. Our purpose
here is to give a real-variable proof of Theorem 1. This forces us to extend
the Calderén-Zygmund methods of [1] to the present, more singular
context.

Our real-variable proof also establishes the analogue of Theorem 1

for operators of the form
f f .Ql(m £2,(y
lz™ I"

A*f(w,y) = sup f(a; o,y —y')do' dy'

81,690

la’|>sq
lyl>a2
2, Q '
on B"*™, where " |(Z) and [;(f’/”) are Calderén-Zygmund kernels. It

is enough to assume that Q, satisfies a Dini condition and £, is smooth.
This, of course, cannot be done by complex methods.

II. Preliminaries. Our proof of Theorem 1 is unfortunately rather
complicated, and requires a good deal of notation and preliminary dis-
cussion, Here is some of it:

(a) Let f be a function on R' For a given integer &, set f* equal to the
average of f over the dyadic interval of length 27" containing . Defining

fi =7 ——f" ~1, we obtain the Haar series of f, f = 2, fi- Bach £, is constant

k=—00

on dyadic intervals of Iength 27" and has average zero over dyadic inter-
vals of léngth 2%, The set of all functions with those two properties
will be called #;. Obviously if f, e .#, x, and fre Sy, (ko # k), then fy and fa
are orthogonal.
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If fe Llogt L0, 1], then we have the “Littlewood—Paley” inequality

= Z” (@)™

(b) Suppose that {f*} is a sequence of L* functions on R', and that
the Fourler transform f™* lives on {2*~* < |z| < 2%} for each k. Then

c- (k ;1 7).

This is just a simple variant of the maximal theorem for Z*. To prove it,
seb f = 3 f%, take a function ¢,e C®(RY) for which @, (z) =1 if j#|<1,

k=—o0
and gg (®) =0 if |o|> ). Then

I8 < C(liflog*fl.+C), where Sf(x)

2; and write g, (2) = 28p, (2%

5’ FH@) = g+ @)+

k=—oo

(F™ (@) — @ * F™ (@) — @ * I ().

The first term on the right-hand side is dominated by the maximal function

of f, which has L*-norm at most Cl|fi,<C{ 3 [f*I5)*% The second term
k=—co

on the right is dominated by ( Z ™ @) )+ ( Z [ f””(m )2,

( Z‘ IFFB)™ + ( 2 llpn* FHE)™ < ( Iflz)

< C. The thu‘d 1erm is ha,ndled similarly, eompletmg the

which has IL*norm <

since flpgli, <
proof.

(¢) For a funetion f on R? we have defined Tf and T,f to be Hilbert
transforms of f in the »# and y direction, respectively. Similarly, we can
define M,f, M f, the maximal functions in the # and y directions, and
A.f, A,f, the maximal Hilbert transforms.

(d) If J is any dyadic interval in RY, J~ denotes the dyadic interval
containing J and twice as large.

III. The basic construction. As in the proof of the Calderén-Zygrmund
inequality, the main idea of our proof is to find an L* function f~ corre-
sponding to each fe Llog*L, so that Af and Af  are approximately the
same. This section gives the construction of f.

Start, then, with a function fe Llog* L{R*) and a number a« > 0.

For each fixed y, regard f(z, y) as a function of », and write f = 3 fi,
k=—o0

as defined in II (a) above. Thug, for each fixed v, f,(-, ¥)e #%. We abuse
notation and write fie £;. As we noted in IT (a), [|[S(F). < C(jiflog™fll.+C),
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where S(f) (=, %) = ( 2 [ful®, 9)[})"*. Therefore, M,(S(f)) belongs fto
weak L', and the set !2,, = {(=, ¥)e B*| M,(8) (#, ) > o} has measure

c
|20] <— (Iflog* fl+)-
Using the set 2,, we are going to replace each f, by an fy ¢ ;. Our

replacement for f will be f = 2 faor fr is defined ag follows: Leb & be

a point of R, and suppose that T is the dyadic interval of length 2'-*
containing @. Let {J7}, . be the set of all the maximal dyadic intervals
J < R for which the rectangle I xJ < R? has move than half ity area
contained in Q,. For fixed «, &, the intervals Ji* are pairwise digjoint.
The function f; (x, *) ariges, s1mply by averaging f, (@, ) over the intervals
J%¥. That is,

fk (m7 ?/

= [y iy tor ye Tt
Ic

fI:(mM'I) =fi(z,y) for y¢Ll) Jfk'

Clearly f, ¢ #,. For future reference, define F (»,-) by averaging
Ife(z, )| over the {J7}, i.e.,

- 1 [ e

Fw,y) =g [lo )l i yedth
1 Jfk

Ty = lfhio,n) # g Y

Having defined repl&cements fr for the f,, we can now set

= 37

k=—o0

IV. Proof of Theorem 1. Now that we have constructed a replacement
f~ for f, our first order of business is to show that f~ < L*(R?) and has

suitable norm. Since ™ =
that ) ||fy IE < Oa([|f10g+f{]1+0 ‘We shall prove more:
I3

2 fr with f; <., this amounts to showing

) Z I3 < Ca(]flog* fil.+0),
k=—o0
Thus, f~ e L* will follow immediately from (3).
Our first step in proving (3) is to replace I, by a slightly smaller
function Fy, defined as follows: Fy(w,y) = Fy (v, y) if

icm
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Case 1. (a) (#,9)eR% yed™ {o}xJ; ™ & 0, (J¥ is then called
a “case I interval”) or

(b) (2, 9)e B y¢ U It (@, y)¢ Q, occurs.
In the contrary case,

Case IL. (a) (z,¥)eR%, yeJ%, @y xIF < Q) (J; ™
“a case II interval”) or

(b} (=, ) ER,’lJéUJf"; (@ y)e Lo,

we define (%, %) __0

In other words, F,(x,y) is defined to he F,:(w,y) for some (z, ¥),
and zero for other (z, y). Obviously, then, [[Fll, < {|Fy .. We claim that
1F7 e < O Fyle as well. To see this, note that F, is constant over each ’
rectangle I xdJ7* (wel, |I] = 2'%) and over each interval Ix {y} with
y¢ U I (eI, |I] = 2% ). Thus, to prove our claim, we have only to

obselve that case IT can occur on at most half the area (length) of any of
those rectangles (intervals). This iy obvious for the rectangles, since at
most half the area of I xJ;* is contained in Q, by maximality of J7;
and is also true for the infervals I x {y} for almost all y, since otherwise
more than half of 7 xJ would lie in Q4 for some small J, contradicting
yeU i

In any event, | F}, ||, < C||Fy],. Therefore, to prove (3) it will be enough
to prove

@) D) B35 < Ca(lflog*f [+ C).
k=-—oc0
For each ze R, let {L’} be the oolleetlon of all the maximal dyadic
intervals I with {z} x L" < Q,.
Then set

is then called

. 1
Gulo, ) =z [ Wl 9Ny’ for yeI7,
7 L
-

Gr(®, ) = fi(w, 9)|  for y¢ U If.
1

We shall prove (4) by comparing F, with @,. The comparison is not hard.
For fixed z, Fy(z, -) arises from |fi(z, -)| by averaging over the cage I
intervals {J7*}, and by setting F,(z, ) = 0 on the case II intervals and
points. On the other hand, Gy (%, -) arises from |f, (s, -)| by averaging over
certain other intervals {Lf}. We have to understand how the {L?} relate
to the {J”‘} It is not hard to see that for any =, k, any L7, and any case I

interval Ji*, we have LF < J¥ or else the intervals are disjoint. (This
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is because L and J are dyadic intervals, so that LnJ =@, L §~J, or
J < L. J = L is impossible since by definition of case Tand of L, L' = Q,
and J & 92,.)
Therefore, for a fixed =, %, and ¥,
[Fplo, y)l <

7 @9 == [ Gulo, vy i ye P
k

IJ””"!

If y¢ | J%, then either yesome L7, which implies (#, y)e 2, and case LT
1

oceurs, 5o that Fy(z,y) = 0; or else y¢U

= G (@,¥) = |fp(2,y)]. In all cases then, [ Fy(®, -)] is smaller than an
“gveraged-out” version of @,. Consequently, |Fyll, < [IGalls, which is the

Z NGl

Joss 00

¢, in which case Fy(z,y)

desired comparison between F; and G. (4) now reduces to

< Ca(|lflog* fll,+ 0), or in other words

(Iflog* i+ 0).

(5) I f (G, 9) )2 < Ca
k=—00

So f~ ¢ I? reduces to (5). Mercifully, (5) can be proved directly, without
further reductions, as follows: Regard (G4(®, ¥))_cwencw 88 & vector in I%.
Then (Gy(-,-)) is just an averaged-out version of (|f,(-, )}, using the
intervals {L7} to average over. Thus

I3 e 3

On the other hand, for any @, j, the interval L7 is defined to be big enough
(ie., {#} x L7® & @,) that.the average of Sf(w ) = 3 5 | File, 1))
Thus, for y,e¢ LY, ( 3‘ [Gk(w Vo) i) 2 the la .norm
of the average of the |f,(z

:m, VB = 18Ul < Ol flog* fll+ 0.

over L7 is at most Ca.

, )| overL, is at moai Ca, the average of the

Pnorm.  Similarly, ( 5’ Gz, o) Y2 z( \’ |fk(w o) )”’ = §f(ar, 4,)
k=
< Co for y0¢U 2, since then (@, Yy) ¢ 2. In both cabeh( 2 |G < O,
so that || 2 G (5 )| < Ca
k=-—o
Now we have strong control of both L' and IL*® norms of

(3 1P
If 1 < Ca(lflog*fll,+C), which was the goal of Section IV,

)%, and (5) follows at once. This proves that f ¢ I* and

icm
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V. More preliminaries. Starting with fe Llog™ L(R?), we now know
how to find and 7, and we know that f~ « I*(R*). It remains to show that
Af and Af” are approximately the same. Again, the proof is technical, and
we prefer to get some preliminaries out of the way before proceeding
further.

(a) First of all, we shall reduce the double Hilbert transform to a more
convenient form. Let H, be a C* function on RY, equal to i for |z| =
and equal to zero for |z <% For each integer %, set H, k(as) =2*H, (2"
Bimilarly, let ¢, be a non-negative €* function with compact support
and total integral 1 on R', and set ¢, (x) = s—1¢l(€—).

For all practical purposes, we may replace

Jlo—o',y—y)

Af(z, y) = sup o

1.8

dm'dy"
1z1> 81
i>ey

by the modified operator
! . 1 ’ 7
O Aufte, ) =sup | [ [ (o) @) Hus) flo—o', y -1ty
20 s &

1 x
(For convenience, we write (%*;) «HYxf for the above integral.) To

show that the two transforms are about the same, write

F fle—, y—y)

(7) T
x'y

l x
-ty — (g <t 1o, )
}a:a>e1 z
>z

[fff(m w,y y') o'y’

L' >ey
>eq

_ff(lp*%)(m —flo—o', y— y)dmdy]—l—

'|>2

H Jf

ly'1>eg

1 1 z !’ 7
() 05 Fo—ot, -y 10

1
[ () @Bt 0 -0y — gy a0 |
B
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The first term in brackets is dominated by M, (T,f) (#,¥) (see section
II (¢)), which is certainly in Weak L' if fe Llog™ L. Similarly, if we take
that k for which 27" < &, < 27% the second term in brackets is domi-
nated by M,(T,.f)(z,y). So, in fact Af and A,f are essentially the
same.

( ) Let us analyze H,. Writing K, = H,—H,_;, we obtain H,

2 K,. Pick functions ¢; on the real line, with 1he following proper-
tle;_iz;) <p, is supported in ‘)" 'g 2, (p, =1, and (ii)
%‘Pf (&) ”w: 0(9“"“ uniformly in 4, for ea;ch?;— By property (ii),

each K, is equal to ) Kk*zp, > K;; where by definition K, = I*

j=--00

< |o| < 27,

*g,_;. We shall need 2 11tt1e precise information on the size and behavier
of the Ky;. It is not very hard to convinee oneself of the fo]lowmg
Tf j >0, then K,;is a 0> function with “thickness” 2/~* and L®-norm

o

2

roughly 2%-%. In fact = 0(2%9+&=D) for each a, uniformly

K, Tej |
oo

in j and k.
If j < 0, then K,; is a C* function with “thickness” 2~F and L®-norm

. 0°

smaller than 2%/, In fact WK’”

in j and .

= 0(2F+7+%%) for each @, uniformly
From (6) we ded 2
rom we deduce easily that e o
© v k:Zw ((2’-’”4— =) )
u_nlfmmly in @, m, and j, provided j> 0. If j < 0, we obtain. slmlla,r]y

m 2
from (7) that (
k;_’l, 27"+ Jaf)?
may apply the proof of the standard Calderén—Zygmund lemma (8), to
prove inequality (9).

a
Kk} (50)

0
‘%‘Kkj(w) . =

LEMMA. Suppose that f = 3 f;, where each f, lives on an interval J
7

with center x;, and has average zero. Then outside the union of the doubles

of the Jy ’s, the mamimal Hilbert transform of f is dominated by the Marcin-
Fiewicz integral

(1] + o — )2

Lemma. Suppose that f = 3 f;, where each f, lives on an interval J,
1]

i

) As a consequence, we

icm
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and has average zero. Say that J; has length 275 and center m,.

each integer j

9) }? S‘Kk]*fl(mi <Ce

k=—co

Then for

2R
yf"‘}"ﬁhj—m_—a—*)z for all zeR"
7 - T

VI. Proof of Theorem 1, continued. In this section we show that Af
and Af” are roughly equal. By the results of V (a) this is equivalent to

1y -
estimating ((pE*I) *Hix(f—f ) (w,y) for all ¢ and m. We have

HY *(f Af~ = N EK¥s(f—f"). For technical reasons, it will be expedient

=00

to split the sum into Y and ', and henceforth any sum on the index
neven nodd
n will be implicitly assumed to run only over » of one fixed parity. At the

end of the section, we shall then have proved estimates for AF™™(f—F")
1\ -
= §u l ok -—) % N KV (f—
w (rg] s X KEey-s
m
Then we can write A4(f—F" ) < AN F—f )+ 439 f—f7), to deduce the

neven
estimates we really want. With this minor embarrassment out of the way,
we can proceed.

| -
)i and for A%(f—7f"), defined similarly.
i

2 i

=--00

- 1A ~
We have to estimate (%*;) * HY %(f—f ). Recall that f =

and f"= Y fp where fy, fi € %, We shall break up HY =l=(f—f~ into two
parts. To do so, say that f,—f; = Y fi, where fi = (f,—fr)- Hpe it with
1

@ge I, |I| = 2'% Thus, for fixed z,fi(z,-)
has average zero, and satisfies [fi(z, ). <

that JF* has length 2
Now

lives on the interval Jo%,
| Fy (2, . Say also

“r@hD angd center ¥ (xz, k, ).

BRI

m

Hyx(fo—fi) (@, ) = Y Hisfiw, ) = N 3 Kixfl(a, )

l 1 n=-o0
min(r{x, k1), m)
=Y K”*
s fule, -
L 11~—oo

+ N 7

L L
U n=min(r(z,k,1),m)+1

+Hmfk &y )

Kixfi, )

= Hmfk("v;
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1
Outside an exceptional set, we will be able to estimate both ((pg*—) *H,.f,
and (quz* —1-) *H, f,. Our estimates will be so sharp that we will be able
z

to combine the results for different % to estimate the maximal double
Hilbert transform of (f—7")
(a) The term H,,f,. We have

min(r(z, k,1),m) |

Hofulm,) =2 Y 3 Eixfi@,)

[3 N=—00 =0
o min(r,k,1),m) o
= N3 N Eisfie) = Y Huf@, ).
j=—00 1 = —00 Ja= o0
, ‘Ir(x,k,l) .
Set H,;fy (2, +) E_?. 2 Ky« fi(@, ). By (9),
N =—0o3

: . 3 Ifie, )2
H . \/0.2 .
el Dl @y —y (2, T, D

I @, ]y 2T

”11'7:207:,)
(2 1('clcl)+w (’I’ 70 Z)” N

< CZ—m

By a well-known inequality for Marcinkiewicz integrals (see [2]) ||H ;fylls
< 0-27"F l,. On the other hand, H.;fi¢#;, so that for different %,
the H,,f; are orthogonal. Hence

| X Hotl< o2 N B < 027V Ca(flog™ 1+ 0)
k=—o0 k=—o0
by inequality (3). Since 7T, the Hilbert transform in the # variable, is
bounded on I? it follows that

| > L@ fai< 02l flog* fl, +0).
k=—co
Recalling definitions, we have
o0 oo 5 »{x, k1)
kZ To(Hof) = X To[ D > Wixgi]
=00 k=—o0 1 n=—o0

:E g Al .2 K%f*'fi(%-)_la: }j‘m,

- Ifor which »(z,/,1)2n N= 00

So we have proved that H R“

< 02 g(|flog™f,+C). On the

Estimates for double Hilbert iransforms 11

other hand, the term K%; in R} ensures that the Fourier transform, taken
in the y variable, of R} lives in the region 27+"~! < |y| < 2/*"*'. Because

of our convention on > and > , these regions are pairwise disjoint
neven nodd

for fixed j, and so the lemma of II (b) shows that

hmaxml B, )]H OH < 02-a[flog* fll, +C).

‘What does that mean? We know that

min (m,r(z. k1)

S ramp = ZT[Z D Eiq

k=0 N=—00
m m
= 7
-3 Sal 3 meswo)= 3w
N=—c0 k=—00 1 for which n=-—00

r(z,kD)=n

So our L’-inequality means simply that

”sr;p]Tz[%”H;d*fk] .-

Now applying the maximal theorem for L?, we get

o e 2o S

k=—o0

Fg Oa-2729 (Jiflog* fll, + C).

< C-27%a(| flog* fll. +0).

Smnmjng over j yields

o3 s

—00

]\
< Ca(llflog*fll. +0),

which implies that

! |
(10) H(m, y)e R |'sup

>0
m

(o)~ (ki H;;fk) @9]>d
< 2 (1f10g" 1l +-0)-

This is exactly the estimate we need for the contribution of the H,, f, to

Ay(f—=f7)
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By the techniques we just used, we could also have proved that

& 2
Jsun| 3 mfite, ||} catisiog® 11, +0).
M p=—o0 .

(b) The term H,f,. A look at the definition of H,,f, will convince
the reader that H,,f; lives only on rectangles I xJ*, where I is dyadic
of length 2'~*, J* is an interval concentric with J and five times as large,
and J = J¥* fzor we I, By definition of J7*, such rectangles have at least
one tenth of their area inside £,. Consequently, ,fl,’,;f,c lives entirely on
the set 2, of all points of R* at which the strong maximal function of

1 " .

X, €xceeds 0 Furthermore, H,,f, always has average zero over the
component intervals of 2,N(R' X {y.}), for all y,e B So by inequality (8)
12 & '

above, sup ((ps*~m—) * Z H, f

e>0 Jom=—c0

kiewicz integral (in the & variable) of the function { 2 H

is dominated outside 2 by a Marcin-
H,y fr| Here, @
denotes the union of all the intervals I X {1 JO}, Whem I is o component
1\ °"
(2
@ Ira—oo
dom’m&ted outside 2 by a Marcinkiewicz intefrrzﬂ (again in the » variable)
of sup] _‘j H,, fkl It follows then flom the L' boundedness of Marcinkie-

m k=—o0

wicz integrals (see [4]) that .
(%*”“) 2 Hmflc(‘”iq/ ‘>a

'Supm

interval of {me RY(2, o) ¢ 2,}. Therefore, sup

e>0

) Houf

{(m,y ¢« B*— Q| sup

e>0

2 =2

k= —00

(,,, 2 3 s,
Joss —o0

< Oflog*fl,+0).

So to finish off our weak- -type estimate for sup
we need only show that oo

an)

supf > [Im fil

To prove this inequality, write H., Joo = Hix (fy—fp) —H,, £, 50 that

o

7 '
) H m.flc ‘

fe=—00

(12) V Hyfp =HL(f—f")—

l—»oo

Now by standard results on the maximal Hilbert transform,

ig

icm°®
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HSUP ol < O(Iflog*fll; +C) and
llsup [Hyxf” [1l; < Oa(lflog* fll. + 0).

by virtue of fe Llog™ L and f~ « I
We saw in VI (a) above that

(13)

(14) Ca(l|flog™ fll+0).

had 2
mpl 2 H;,Af,ci <
M k=—ow 2

(o}
Since | Q[ < 5|2;] < C[2,} (by the strong maximal theorem) < = (Iflog™ £+
+0), Holder’s inequality and (13), (14) show that

Jsup] 3 .5 <

"SUIP]HV *flllzie <

C(lflog*fll:+0),

C(llflog* flil: +0),

and

HSHP [HY*f" Hizyey < O(liflog* fll.+0).

Putting these estimates into (12) shows that

[sue| 3 w2, < ctmogtaio,
m T

(o)

which is exactly (11) since H,,f; lives on Q. This completes the proof of
our main weak-type inequality for H,, f,:

(%*——) Z H, iz, y) l>a

<L uprogtsi+o)

(15)

{(w,y e R*— Q[sup

(e) Oonclusmn From (15) and (10), and our Dasic decompogition
Hx(f—f7) Z ", fk+ 2 H,,f., we obtain the weak-type inequality

(186) 021} sup

e>0

(%*i) b (F—17) (@, y)}>a}

{(fv, y)e B*—

<% tiog* 1,400,
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Since also |2| < —g—(|]f10g+f||1+0), we have

~ c
an @,y B A(f—f") @ 9) > a}| <— (Iflog"flh+0).

Thus 4,(f) and 4,(f") are approximately equal.

VII. Proof of Theorem 1: Mop-Up. We have completed our program
of constructing an f~, showing that f ¢I? and proving that A(f)
~ A(f" ). The proof of Theorem 1 is now a triviality. Clearly

@, 9)e B} A(f) (w,9) >2a}| < [{(#, 9) e B* | A(f7) (%, 9) > o}
+|{(@, y)e B* | A() (w,?/)—A(f)(w;y) > a}].

HA(f )Hz

The first term is at most —=, ||f [HES ([|f10g+f||1—1- ), by

the Chebyshev inequality, the Lz-boundedness of A, and our estimate for
. . ¢
IIf 13 The second term is at most - (Iflog*fll,+ C) by inequality (17).

g .
Thug, [{(#, ¥)e R*| Af (2, y) > 2a}| g—;(]]flog+f\|1+0). The proof of Theo-

rem 1 is complete.

VIII. Remarks. (a) There must be a simpler way to do all this.

(b) Note tl'lat in order to find a non-trivial problem, we have to ask
for Theorem 1 in its full strength. For instance, suppose we merely want
to know that A4,(f) is in weak L' for fe Llog* L, where

fff(w w,y Y') d'dy|.

|ae!|>8
y'i>8

This ig a just semi-trivial observation, which we prove as follows: Take
any function 0(«,y) on R? with the properties

1. @ is homogeneous of degree zero on R? and O on R*—{0}.

Af(@,y) = sup

>0

1
2. 0(x,y) =1 for |z <? lyl, except at the origin,

1
3. 8(z, y) = 0 for |y <—§- lz|, except at the origin.

Then if T is the double Hilbert trangform, we have
[Tf(@, 1)]" = sgn(@)sgn(m)f " (v, )
= sgn(@)-[6(z, y)sgn(9)]-f" (z, y) +sgn(y)- [[L - (2, ))sin (a)]-F (@, y)
= 8gn(2) K (2, y) " (@, )+ sgn(y) K, (@, 9)-f (@,9),

em

Eslimates for double Hilberd transforms 15

where K, and K, are Calderén-Zygmund kernels on R2, In other words,
Tf = T (Ky*f)+T,(Ky*f), where T, and T, are as in II (c).

Had we taken ¢ into account in the above calculation, we would
have found A,f < A (K ,*f)+ A, (K,*f) + trivial error terms, where 4,
and 4, are the maximal Hilbert transforms in the # and y directions,
respectively. Therefore

A s < CIExf A OBy * £l <

Clifllziog+z.  ®
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