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_f;ci(see [2], page 36). Hen(j,e feZ% and Theorem 4 applies and we

have

(8.10) % (fy @) = F@)  orp  ae, f>A—1.

The “dimension” of this capacity is <k —a,9 = E(k— o) /(£ — a,). We let
a,—>0 and see that the ““dimension” of the set where (3.10) holds is not larger
than k—a.

Remark. The problem of Riesz—Bochner summability for Fourier
series below the eritical index for exceptional sets remains open. For
almost everywhere results in Lebesgue measure see [7] and [8].

Remark. In Theorem 6 it is not necessary to assume fe L', as in
Theorem 4, provided one uses as the definition of ¢%(f, ), the Bochner
integral representation (see [6]) instead of (1.2).
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Some remarks on interpolation of
operators and Fourier coefficients

by
YORAM SAGHER (Rechovot)

To my teacher, Antoni Zygmund

Abstract. The weak interpolation theory is applied in this note to problems on
Fourier coefficients of some special function classes which, in general, do not form
linear spaces.

Introduction. The connection between the weak interpolation theory
and theorems on Fourier coefficients is well known. In fact the theory
of L(p, ¢) spaces, the cornerstone of the weak interpolation theory, was
motivated by the classical theorems of Hardy, Littlewood and Paley on
Fourier coefficients. }

Recently, we have shown [7], that the theory of weak interpolation
can be generalized in a way which permits application also to problems
on Fourier coefficients of special elasses of functions.

In the first part of this note some results on interpolation are presented
in brief, to make the exposition reasonably complete. We then present
some applications of the theory to problems on Fourier coefficients.
The use of interpolation and L(p, ) notation make the statements and
proofs of the theorems more conceptual. In most cases the theorems are
also strengthened. We have therefore included theorems proved elsewhere,
but by a different technique.

I. Interpolation.

DEFINITION 1. Let 7 be a vector space. A subset @ of 7 is called
a quasi-cone (QC) iff Q+Q < Q. It is a cone if also @ < @ for all 0 < A,

DEFINITION 2. Let 7 be a vector space. A quasi-norm on « is a fune-
tion || |: o7 — R* satisfying:

(a) llai =0 iff @ = 0.

(b) For all Ae C, ae o, |Za]| = |1] |ja]].

(e) A number & = I(

iy + aal] <

.517) exists so that

k(o +llasl)  all ai, aye o7,
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A quasi-normed space is a t.v.5. whose topology is given by a quasi-norm.

DeFINTTION 3. Let (4;, || ), ¢ = 0,1 be two quasi-normed spaces.
If both are continuously embedded in a t.v.s. &/ we shall say that
(4o, | s Ay | s ) is an interpolation triplet. When «, || ||; are clear
from the context they are usually dropped, and one talks of the interpo-
lation pair (4,, A,).

DEFINITION 4. Let (4,, 4,) be an interpolation pair, ¢; a @C in 4,.
Let aec@y,+@,. Define:

(5) K(t, a; @, Q1) = Inf{ma,xtiﬂa,i”i: Gt ay = @, e Q).
i=0,1

DEFINITION 6. Let 0 < 6 < 1. 0 < g < co. Define:

at\Ya
(7) llalls,g.0; = (f [P K, a5 Qo, @) — < o0

when g < oo, and
(8) lalls,c0,0; = Su?t”ﬁK(t, a3 Qo; @)
. o<

(@0, 1), is now defined as the set of all elements of @+, so that
Il lo.go; < oo It is easily seen that (dg, 4,), i 2 quasi—lnormed space,
With || Jlog = || llo,q4; SeTving as a quasi-norm. (@, @), is & quasi-cone
in (4,, -Al)l),q'

DerFmNITION 9. Let (A4,, 4,), (By, B;) be two interpolation pairs.
Q, quasi-cones in A4;, R; in B;. An operator 1: Q,+@, - Ey+ R, will
be called a gquasi-linear operator from (§,, @,) to (R,, B,) iff K, exist so
that for every age @y, a;cQ; we can find b;e R; so that

(10) T(ay+ay) = bo+by

‘”bi”B < K llagd.q,-
THrOREM 11. Let T' be a quasi-linear operator from (Q,, Q,) to (Ry, R,).
Then for 0 <0 <1, 0 <q<< oo, T maps (Qo, Q1) into (R,,, Ry)o,q and

(12) 17 ally,, < E5~" K7 lall,q-

DerinrrIoN 13. Let (44, 4,) be an interpolation pair. @ a quasi-
cone in Ay+4,. @ will be called a Marcinkiewicz quasi-cone (MQC) iff,
for Q; = Q@ N A; we have

(14) (@05 @1)e,q

forall < <1, 0<g< o

THEOREM 15. Let (A4, A1) be an interpolation pair. E; = (4,, A1) 0,0
where 0 < 0; <1, 0 < g; < 0o andfy # 0,. Then if Q is a MQC in A,+ 4,
then QN(By+E,) is a MQC in B,+H,.

=@ nN(4y,4,)

0,q
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The following theorem gives a natural sufficient condition for a QC
to be a MQC. It generalizes in the context of weak interpolation theory
@ theorem of Baouendi and Goulauic [2], which in turn formalizes an
idea of Stein [8].

THEOREM 16. Let @ be a QC in A,+A,. Then if for every age Ag,
acd, satisfying @+ @y € Q, we can find aze Q N A, such that aj-+a, = a,+ a,
and |laifl; < Mlagl;, then @ is a MQC in (4, A,).

Proof. Let aec@. Clearly K (¢, a; 4,, A) < E(t,a; Qp, Q,) Where
Q; = Q NA;. Therefore

QO:Ql)ﬁq A-NA )ﬂq Q

On the other hand if & = a,+a, a;¢ 4;, find a; as in hypothesis, and we
have

Kty a5 @, @) < ME(L, a5 4,, A,)

and we have also

Qn(d,, 4 < (Qoy Qi)og

DerFINrTIoN 17. Let (X, ,/4) be a o-finite measure space 0< u
For every measurable f we define:

(18) I (@) = wiz/\f(@)] >y},
For 0<p< oo, 0<g< o0

() = Inf{y/fi(y) < 12}.

RO dt e
(19) ifi5e = ( fu orenT)
while for 0 <p < o
20) Wl = Supdefeqy

In all cases: L(p, q) = {f: [flp, < oo}
DerinrrioN 21. I fe L(p, q), r <p, 7 < g, r <1, define:
I 0o<t<ulX)

(22) 0 = suf( 2= [wran) i< =)}
. ATy B &
While if 4(X) <

" 1 r . ir
(29) s = (3 Jura)

Define also for 0 < p < o0, 0 < g < co:

ar\u
(24 Wi = | [ i 4"
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while for 0 <p < o©

(25) Iflpee = Sﬂg}’t”’]f**(t)

It can be shown that §| |5, ~1 ln,g-
THEOREM 26. We have

-0 8
= L(p,7) + oy Po F Py

Po D1

\ 1
L(®1; @, where—; =

(L (Pos Lo)y
We also have

1 1—-6 [/}
(L(:ﬂ: Qo) L{p, Q1))6,q =L(p, q) where z = 0 +—q:

The connection between interpolation theory and L(p,q) spaces
1 .
becomes clearer when we note that—t— K(t,a; Qo,9,) is monotone non-

increasing and the quasi-norm on the intermediate spaces (Agy Ay, is

1 £
M?K(t7a;AO’A1) }_1_
{

=

We note also, that since

(27) [frora = [If@)Pd.
0 X

We have L(p,p) = LP
DEFINTTION 28. Let (X, 2, u) be as above. Let « be a positive mea-
surable function on X. Define

={: ([ 1o/ Pau)” < oo}

THEOREM 29. (Peetre [5], Stein—~Weiss, [8]). We have

L.(p, p)

(La“ (pm Po); La1 (Pl; pl))ﬁ,ﬂ = Las—eag (17 3 P)
1—-86 [/
Po Py

1
where — =
P

THEOREM 30. Let Q be a QC in L(py, q0)+L{p., ¢;) where py # P1-

Then if for every feQ and every 0 <y both:

_[f ify<ifl,
"=lo i<y,
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and:
f _{0 if y<Ifl,
U difisy

belong to Q, then @ is a MQC.
Basic in the theory of L(p, q) spaces are Hardy’s inequalities:

{81) (f [f fls) ] _d;)” " (f." [f(t)]qt'%t—)uq
and: ’
@ ( w[ ’ (s)fﬂq”?)w <dqlr ( fm {f(t)}qr'%)w,

where 0 <{f, 0 <7, L<g< oo

Either one can be derived from the other by a simple change of
variable.

Using interpolation, an inequality analogous to (31), but which is
sometimes stronger, can be proved.

Consider the sublinear operator

(33) s 5 [ IS
/

By Holder’s inequality:

1

(34 _1)1@' 55t

(1) < ( -~

1
—- =1, throughout this paper).

1
<+

»
(34) is valid for any 1< p < co. We can express (34) by
{35) T: L(p, p) - L(p, ),
Interpolating between two different p’s we get

{36) T: L(k, @) ~ Lk, q),

1<p < oo.

where 1 < k<< 00, 0 < g< o0.

Denoting g/k = we have shown:

f f [y e )" <o, ([ trore )"

where 0 < g << o0, 0 <7 <g.
We shall apply this inequality in the sequel. It is of mterest to com-
pare (37) with Hardy’s inequality. It is weaker than Hardy’s when 0 <7 < 1,

{37)
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stronger when 1 < r < ¢. In the range 0 <g < 1 Hardy’s inequality does
not hold, but (37) does.
Tt would be of interest to find a best possible C,, in (37).

II. Tntegrability conditions and Fourier coefficients. The L(p, g)
spaces we shall consider will be over (0, n) with Lebesgue measure, or
else over the positive integers with measure 1 assigned to each integer.
Tn the second case the spaces will be denoted by I(p, ¢) and we shall write:

[{anHip,co

ki

E f g()sinnawdy. Then:
T

0

by, 1
and therefore:
4) Dbn™ " < oo

If g(z)e L, (1, 1), 0< g(») in a right neighbourhood of 0, then if (4
then ge L(1,1).

) @ik, = (Z aranar— )1/4

Lip o *
= Supn ?a,.
n

TEEOREM 2. Let ge Lp(1,1), b

) holds,

b,
Proof. Consider T': g—>{7 } ‘We have

P T

2 14
®) bl <= [ lf(@)sinnalde < = [ olg(@)|du

w [ [
and:

2 ki
(®) bl <= [ lg(@)ida.
0 .

The first inequality proves
M T2 Ly(1,1) —1(co, )

o b\ 12 F
while (6) implies (_ﬁ') <—;;Of |g (%)|dz so that:

(8) ) T: L(1,1) = I(1, o).
Interpolation gives
T: (L(ls 1), L1, 1))6,1 bl

(l(l; o0), I{ o0, °°.))0,l
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that is:

T: Ls(1, 1)—>1( iﬂ,l)

(9) S‘(—bf)*wk ¢, f 2 lg (@) dx

8

Since #~° is decreasing we also have

= oo bn *
DA () »
For the second part of the ‘rheorem, see ([3], 3. 11) and ([3], 3.13).

THEOREM 10. Let feL,2-20(1,1), a, = ~~ff(m) (1—ecosnx)dr. We

have then: For 1/2 < 6 <1
a, 1
{?}”(29-1’ 1)’
a,
1)

oo
,Zlanlnﬁﬂ-—3< 0.
1

If 0 < f(=) in a right neighbourhood of 0 and (13) holds, then fe L 220 (1, 1).

147
z;Jjgf-(m)[dac 50

(11)
while for 0 < < 1
(12)
(11) and (12) imply

(13)

Proof. Consider T,: f——>{n} ‘We have 14| <
n

that also
a\* 14 [
14 =) g == ;
14 () <o = [ e
9
We also have: [a,| <— [ |f(a)]- 2:5m2 da: and so0:
T3
2 1
(15) [“"I = [ 1f(@)-0ds.
T [}
Therefore :
Ty: L(1,1) >1(1, o) and Ty: L(1,1) —1(oo, o).
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Interpolating:

1
(16) Tyt Lpn(1,1) -1 (‘1—_—17, 1)'

Writing 2(1—0) =7, we get for 1/2 < <1

o0 a, % kd ~
) D) (&)< a R
n=1
a, 1 4 ¢
Consider now T,: f»{%} We have: —2<— — Of |f(@)lde, so that
a\* 1 4 [
(18) (%) <2 [ rtaas.

[
l ki3
We also have |a,| g;—'nzfa;ﬂf(m)ldm, 50 that
EI ]

Ty: Lp(1,1) > 1{o0, o)
while from (18) we have

: 1
T,: L(1,1) —>l(5, 00).

Interpolating:
1
{19) Ty: Lpa-o)(1,1) ~1 (2_9‘7 1))
that is:
oo a, *‘ k. y
(20) 2(;;) w1 < 6 [ |f(a)|e* .
n=1 3 0
For 0 < 0 1/2 we have:

0 3 a\* 3
Staiwrss S(eY s <o, iaracoa
n=1 n=1

0

while for 1/2 < § <1 we have:

Dl Y (ij;)n“ <G f @)oo

For the proof of the last part of the theorem, see ([37], 3.14).
We next consider series with positive coefficients.
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THEOREM 21. Let 0 < A, be the Fourier sine or cosine coefficients of f.

Let

(w>—~ff, PR Y

-—n

then: Anel(p, @) iff o(x)e L(p', q). Here 1< p < o0, 0 < g < co.
Proof. Assume f(#) = Yi,cosnz. {4,} is a non-increasing sequence.
Therefore {,}¢(p, q) implies g(x) = DA, cosnxe L(p', ). We have:

g(x) =E%

(‘Dn(m) - 1/2)
and so:

Z Ay Sin(n+1/2)2 sin(n+1/2)z

—smap L@, 0,

cosz /2

Ay T .
m27s1nm—rl/22?eosme L(p', q),

E —Zﬁeosm; = E A, cosnz — E AysicO8M8.
n

Since {A,}¢1(p, g),
2 % cosna. Therefore

(22) cosz/2 ST ﬁ

2sinw[2 L4 n

both series are in L(p’, q) and hence, so is

sinnxe L(p, q).

2 . .
Since g (x) =Z—?—:— sinnz we have in a right neighbourhood of 0,

peL(p’y q). Away from 0 however ¢ is bounded, so that peL(p’, q).

The proof can be reversed without many changes, and so the converse
is also proved. The case of a sine series is also easily proved.

The condition ge L(p’, q) can be replaced by
(23) f 1o (2)|%2%7 1 dr < oo

0

which is stronger when p‘ < ¢, weaker when g < p’. To see this we note
that for series with monotone coefficients

[lglaian < co it ge L', g).
0

(See [7]). Apply this to g(z) and proceed as in the proof.

4 — Studia Mathematica XLIV
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The theorem of Boas (see [4], Theorem 8):°

fle)z~?e L%~ implies Zﬂqyﬁ'q‘z(Zk‘llk)q < co,

n=1 k=n

where 4 <y <—1—, follows from Theorem 21 and the subsequent

q - . L
remark. In fact the eendition 1 < ¢ < co imposed there can be replaced

by 1<g< . ) ‘ ‘
TaEOREM 24. Let {4,} be the Fourier sine or cosine coefficients of 0 < f,
fi on (0, w). The following conditions are equivalent:
(2} feL(p, q);
(b)) {Zatellp’, @),
(6) 314"t < oo,
where 1 < p < oo, 1< g oo,

Proof. Consider T: f — {4,}. Clearly
(25) T: L(1,1) —1{oo, co).

Integration by parts yields

(26) ok S f s o1 F4

50 that 4 < %]i fllo,00- Denoting by @ the cone of monotone non-incre-
asing functions, we have: v
27 T: L(oo, 0)NQ —1(1, 00). "
Since @ is a Marcinkiewicz cone we get:
(28) T: Lip, ) 0@ —~1(p"; 9),
We could have interpreted (26) as:
(29) T: L(co, 00) NG —1y(o0, )
and interpolating this with (25) gives:
(30) T:L(p, ) 0 Q =l ( o0, oo).
Interpolating again with
T: L(r,r"yn@ = 1{r',#)

we have :

T: (L(p, ), L, ))o,g N Q = (luiw (00, 00); 10", 7))o, g0
Taking ¢ = f¢ we have:
(31) T: L(s, 9) nQ = Lys—vja(g, q).

icm°®

Interpolation of operaiors and Fourier coefficients 249
Therefore:
(32) (Z [Z"anq's'—])llq < Cs,q(j [f(.zr)]q;rq’ys"‘dm)uq.

=1 !

‘We have shown that (a) implies both (b) and (e). The proof of the con-
verses makes use of Theorem 21. There is a difference here between the
case of sine series and that of cosine series. This is so since if g = 3, sinnz
is monotone non-increasing, then 0 < b,. Invoking Theorem 21, we note
that (b) implies (A,}el(p’,q) by 137 while (e) implies it by Hardy’s
inequality 1.31. We therefore have: ‘

1 x
#(@) :;nfgeL(p,m.

Since 0 < g is non-increasing, we have 0 < g < ¢ so that ge L(p, q), and
the proof for the sine-series case is finished.
For the cosine series we define: .

a, if a,>0,
“=1 o ita<o,
(33) .
P 0 if a,>0,
" —a, if a, <0,
so that, denoting )
= 3 %k = N ﬁ."_
(34) A"ZL B—ZL
Both (b) and (¢) imply:
(35) {An}E Wp'y @) and {Bn} € l(p/‘, q)-

This, by Theorem 21, implies

x
a(2) :% [ (za,cosntyte L(p, )
] .

(36) and
1 g

&

7a(z) = (ZBneosnt)dic L(p, q).

&

[

1 x
Therefore ¢(z) = ;ff = g,— ¢ze L(p, q).
0
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Since 0 < f is non-inereasing, 0 < f< ¢ and so fe L(p, g). This con-
cludes the proof of the theorem. An alternative proof can be worked out
by properly generalizing Zygmund’s proof of Theorem XIT 6.8 in {10].

We next consider quasi-monotone functions. Askey and Boas in [1]
give two results for this class of functions. We show how these results
follow from results for monotone functions via a standard decomposition.
The procedure is analogous to one we introduced in [6] for quasi-monotone
sequences.

DEFINITION 37. f(#) i3 quasi-monotone on (0, w) iff 0 < 2 ff(w) Vs
for some 0 < §.

TrmorEM 38. Let f be quasi-monotone, 0 < B such that x~"f(z)|
Define:

(59) fie) = [105, o) =5+

The f; are non-negative and non-increasing.
Proof. The statement for f, is trivial. To see f, | note that if 1 < a,
0 < ax < w, then f(az) < o’f(w). Let 0 < @, < ®; < m. Then

N
—fo(a) = fla) —f(a) + 5 f OB

> fla)— f{n) + B (@) f ( )——>0

Since finally f,(x) =0, fo= 0.
THEOREM 40. Let f be quasi-monotone. Then fe L(p, q) iff

H at
(41) [orer <

L]
where L <p < 00, 1< g o0
Proof. Let feL(p, g). Define fl,f2 as in (39) By 1.37 f,e L(p, q)

and so fye L(p, q). Since f; | , it 1sf[f ]qt‘m’ < oo,

By Minkowski’s inequality we have algo (41). The converse is
proved similarly, using I.31 rather than I.37.

TEEOREM 42. Let f be quasi-monotone, A, ils Fourier sine or cosine
coefficients, The following statements are equivalent:

Fe L(p, q),

(b) {A}el(p’; 0),
(e) XAl n?"" ! < oo,
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Proof. Define f; as in (39). Then i, =f, (n)—pf, (n). fieL(p, g),
0 < f; | , 80 that by Theorem 24, {f;(n)} satisfy both (b) and (¢), so that 4,
do too.

Do the converse in the cosine case:

T,
sinnd

™ 4 4 = d 1
%fl('n) = chosm:ff(t)%dm = ;;

17 sinné si.u(n—i—l/z)t]
-=(p
- f (O (08— f [ e el (0L
= 4,+B,.
Clearly [|4,] < —C—i— ..+, < OXKF, so that if 4, satisfies either

C
(b) or (), so does 4,,. It is easy to check that |B,| < . IIFl} 1, s0 that B,

satisfies both (b) and (c). We have shown therefore that if {4,} satisfies
either (b) or (c), so does {f, (n)}, and since f, (n) = 4,+ ﬂfl(n) we have
that {f, (n)} satisfies (b) or (c) too. Now 0 < f; | » 50 that by Theorem 24,
fie L(p, q) and so f = f,— Bfie L(p, g)- The proof is complete.

We end presenting the dual of Theorem 21.

THEOREM 43. Let 0 < fe L. 4, the Fourier sine or cosine coefficients
of f. Denote:
Foo @ 1
4 = —_— = — e .
(44) v@) = [J0F Gum gt 4

Then p(@)e L(p, q) if Cpel(p', g), whers 1 <p < o0, 0 < < o0
Proof. Do the sine case. We have

- jssinm;ff(t)%dm = %fr cosm:f(t)dt

z

1 e 1 [ 1—cosnt _ cost/2—cos(n+1/2)
| Dwsas o | [= : Jrwas

It

2sint /2
By

¢ N :
Clearly |B,| S If1,1, s0 that Crel(p’, g) iff p(n)el(p’, ¢). But 0< vy,
so that p(n)el(p’, ) iff e L(p, ) and the proof is complete.
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Singular integrals and spherical convergence -
by
‘“VICTOR L. SHAPIRO* (Riverside, Calif.)

Dedicated to Professor Antoni Zygmund on the occasion
of his 50th year of mathematical publication

Abstract. With K (x) designating a spherical harmonic kernel of Calderén-Zyg-
mund type and letting f(x) be in L' on the N-torus, thiz paper studies the connection
between the convergence of the singular integral [f(z—y)HK (y)dy and the spherical
convergence of the multiple trigonometric series 3’7" (m)K” (m) eilm:z),

1. Intmduchon» Let f(x) be a real-valued Mpperlodm funetion in
I'[—=%, =), and for m an integer, set f~ (m) = (2=)* [f aa)e"'mtlw Also,

let K(x) = 2%, and let K" () demgnate its prineipal- valued Fourier trans-

form. In particular, K~ (0) =0, and K~ (m) = —i(sgnm)/2. Suppose that
at a fixed point % there exists a positive constant 4 such that for m = 0
@) S E (e (—m) K (—m)e™ > — A fm].

Then Hardy and Littlewood showed in [3] that a necessary and sufficient
condition that
(1.2) Tim vf (ME" (m)é eme® — a,

R Im)<R

where a is finite-valued, is that

(1.3) ]Jm Y fe— @) K(w) ]_>a "as e—0.
e<|z|<R
Motivated by our recent paper [4], we intend to show here that
a similar situation prevails in Euclidean N-space, Hy; N > 2, when K (x)
is a spherical harmonic kernel of the Calderén-Zygmund type.

From now on. & = (#,...,2y), (2,¥Y) = &Y+ ... —2yYn, T,
={r: —=<ay< =, j=1,...,N} and i
(1.4) f"(m) = [ x)a”(’"’)dm
. - T
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