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From (3.30), we have that (3.33) will follow once we show both

(3.34) limsup [ |4 (rft) =17~ dr < oo
0}
and
(3.35) limsupt™ [ |4} (#/1)|dr < co.
=0

4
From (3.31), we have that

[ sy —1rtdr < b, [ 5~as,
¢ 1

and (3.34) is established. -

‘We next establish (3.35). From (3.23) and (3.26), we see that for
n>>2, A2 (r) is a constant multiple of A%} (r)/r% But then from (3.24),
we have

(3.36) |42 ()] < constantfr?  for n>2.
On the other hand, for » = 1, we see from (3.23) that 4%’ (r) is a con-

o0
stant multiple of [ ™77, (s)s*+2dsr2. We conclude from ([7], p. 386)
that 0

(3.37) | 4%’ (r)] < constant/r.

(3.35) follows immediately from (3.36) and (3.37), and the proof of

Lemma 3 is complete.
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The range of a random function defined in the wumit disk

by
A. C. OFFORD (London)

To Anioni Zygmund

Abstract. This is a continuation of the investigation begun in ‘The distribution
of the values of o random function in the unit disk’, Studia Mathematica 41 (1972).
A family of domains is defined such that all members of the family are congruent
and have the following properties. Each point ¢ on the unit circumference is the
apex of a member Z(f) of the family and the closure of 2(6) less its apex lies entirely
within the unit disk. It is then shown that almost all functions of the family considered
have the property that in every 2 their range at the apex of 2 is the complex plane.

§ 1. Introduction. This paper like an earlier one is concerned with
the behaviour of a power series whose coefficients are random variables.
As in the previous paper [3] we shall for the most part restrict ourselves

to the Steinhaus family

eznwn(m) anzn

{1.1) f(z, 0)) =

e[\ﬂ 8

where the 9,(w) are independent random variables uniformly distributed
on the unit interval. We suppose that

(1.2) limsup (Ja )™ = 1
and -
(1.3) 2 [a,? = oo.

In the last paragraph we shall discuss various extensions of our results
to other prohability distributions:

Tt was shown in [3] that almost all funetions of (L.1) take every
value infinitely often in every sector of the unit ecircle. This result can
conveniently be expressed in terms of the notions of cluster set and range
(cf. [1] pp. 1 and 7). The cluster set of a funetion f at a point 2, is defined
as the set of valnes ¢ such that to each [ there exists a sequence {z,} such
that f(z,) tends to ¢ as 2, tends to z,. The range of f ab 2, is defined as
the seb of values ¢ such that to each { there exists a sequence {,} such
that 2, tends to 2, and f(2,) = {. It follows from the above result that
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almost all functions of (1.1) have the complex plane for their range a
all points #, on the unit circumference. A priori it follows that the cluster
set at all points will be the complex sphere.

However something more is true. We write

(1.4) M(r) = (Z”' |an|27”2n)llg,

then in view of (1.2) and (1.3) this function is an inecreasing function of »
which tends to infinity as 7 tends to unity. We show that in terms of
this function we can define a family of domains 2. Each of these domaing
has a single point z,, its apex, on the unit circumference is symmetric
about the radius vector Oz, and its closure less the point z, lies entirely
within the unit disk.

‘We can now speak of the range R(f, 2, #,) of f at 2, relative to 9.
It is the set of points { on the w-sphere such that there exists a sequence
{e.} = D(%,) —2, for which z, >z, and f(z,) = ¢ forall u. We show that
denoting the family (1.1) by & there exists a set & of measure zero such
that for w e\ & and all #, on the unit circumference the range R(f, 9, z,)
is the complex plane. The domain Z is determined solely by (1.4) and
the more rapidly M(r) tends to infinity the smaller we can take 2.

To define 2 we first choose y; = p,(r) such that

M(reosp,) = (M(r))
and then write

1.5) . ¥ = 3max (ypy, (log M(r)™Y

so that p = p(r) tends to zero as r tends to wmity. If r, <7 < 1 and 7o
is chosen appropriately the curve C(z,) given by the polar coordinates
(r, argzyL y) will lie in the unit disk. The domain 2(2,) is that bounded
by O(z) and [2| =1, and 2 is the family of all 9D(z). It inparticu-
lar IogM(r) = exp(l/(l—f')) then for 2(2,) we ecan take a sector vertex
%, defined by

argz,— [t < arg (s, —2) < argz,+n/d,  |gg—2| < 6.
We state our theorem as follows

TeworEM 1. There is a set & of measure zero such that if & denotes
the family (1.1) subject to (1.2) and (1.3) and if 0 e F\ & then f(z, w) takes
every complex value infinitely often in every D(z,). ’

The proof of this theorem wuses the methods of [3] extensively and
wherever the argument is similar to that used in [8] we refer the reader
to that paper.

©
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§ 2. Preliminary lemmas. We define D, as the domain common to
|| < r and [¢—7seca| < rtana. The Green’s funetion of this domain with
respect to the point rcosa is
| #(z—reosa)

z(zcosa—r)

@(z; reosa) = —lo

If ¢(2) has no zeros in D, then log|g(#)} is harmonic in D, and by Green’s

theorem

1 e
loglg(reosa)l =~ [ loglg(a)] = ds

27:0

oG -
where C is the frontier of D,. Putting in the value of I we find

(2.1)
a . T2—a :
loglg(reosa)| = flog]g(v'eio)]K(B,a)d8+ f loglg(2)| K (6, ©/2—a)db
—a —7[2+a
where
x(8 cosa cos f—cosa
@2) (8, a) = ©  1—2cosfcosa-costa

and in the second integral z = rseca— e rtana. We shall show that it B
is an w-set such that to each we B f(z, o) omits a value b(w) then the
measure of B cannot exceed (log M (7))~ In order to show this we make
use of the equality (2.1). First of all we have

Levma 1. If B is any o-set and b(o) any -measurable function of w,
satisfying [b(w)| < log M(rcosa), then

[ log|f(rcosa, @) —b(w)ldu< (L—7(r)) M(rcosa) u(B) — Cu(B)logu(E)
E

where 7(r) tends to zero as v tends to unity.
Proof. We have

log|f(reosa, w)—b(w)ldu < log* |f(reosa, o)l -+loglog M(reosa).

The desired conclusion now follows from Lemma 2.3 of [3]

LeMMA 2. Let {5}, j = 1,2, ..., N be a set of complew numbers; O?(‘)
the disk |z —z;] < 6 and O the disk [s—2| < 40. Denote by D, the domain
N N - .

UCP and by D, the domain ) Of. Suppose that, in D, g(2) is (i) regular
1

1
(ii) nowhere gero (iil) such that |g(2)| < M and suppose further that 1g' ()| > A -

for all 2;. Then we have in D,

loglg(z)| = —4log M +5log(d4).
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Proof. We have
9(2)
(z—2)

1

(8;) =— a;
g (=) 2mi @

|2—zjl=6
and so

sup |g(2)] = 04.
|z—24|=2

Let {; be a point on [g—z;| = & where |g(2)| attains its maximum. We
apply Lemma 5.3 of [3] to the disks O and Cf to obtain

loglg(e)| > —4log M +5loglg(L;)] = —4log M +5log 64

within {z—¢;] <26 and so within |z—#]|< ¢ and therefore within D,.

In the next Lemma we shall use D} for a domain obtained by ex-
panding D, by an amount 48 all round where 6 will be ((7))~2 or (1L —s)?
as the case may be. We use 7(r) for a quantity which tends to zero as r
tends to unity and write

(2.3) f log|f(re®) — b ()| K (8, a)db

where ¢ = =fk and & is an integer given by =n/(k+1) < 3w <
v is defined by (1.5). In consequence

(2.4) a > (log M(r)) ™"

We have to distinguish two cases. If M(r) grows fast enough so
that the hypothesis of Lemma 8.1 of [3] are satisfied we can choose #
50 that simultaneously

(2.5) (M) FA~2),  Mr+4M) ) < 4M(r).

Otherwise the hypotheses of Lemma 6.1 are satisfied and for appropriate r

(2.6) m(i;j—’) <M.

In case (2.5) we take 6 = ((r))~"* and in case (2.6) 5 = (L—r)%. We
choose points {#;} on the frontier of D, equally spaced and so that

8 < log—2_y| < 26

and write 6 for arge; if |e;| = » and 6; = arg(rseca—z) on the remaining
arc. We denote by B, the w-set for which

@7 sup|f' (2, o) < (M)
in case (2.5) and

(2.8)

[k where

ST If (&, o) < (1—

in case (2.6). We have
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LevmA 3. If the w-set E is such that to each we B there exisis b(w)
satisfying |b(w)] <logM(r) and if |f(2 o) —b(w)| has no zeros.m DF and

if By =TH\E, then

[ I()dp > (L—n)log M(r) u(B)+ O p(B)log u(B) — [(r)) .
5}
Proof. We write
By = {o|oc 1| (2, o) = (D@}
EZ]‘ = El\Elj
then, for z—2]< 8,
|f(z, w)— =1z, @
as in Lemmas 5.4, 6.3 and 7.3 of [3]. Whence
N 0+6
fI (w)dp > 2 f K (6, a)df flog %]fﬁj,m)l)d‘u+
= 6 i—38
; BJ-H

+2 fau [ logif(e, 0)—b(@) E(6, 0)a = £+ .

j=LHp  8—0-

But by Lemma 2.1 of [3]
f log|f(#;, w)ldu = log M(r) p(By)) + C u(BsYlog p(By).

Hy;
And by Lemma 3.3 of [3]
(2.9) p(B,) < ()
and so the second member is at least

log M(r) (By) + O u(By) log p (By) — (M ()
Now

fK(e, a)df =(1~3W5)

—a

and so ) o
D= ( - ﬁ) Log () 4 (By) + Ca(By)log p(By) — (W ()]

The treatment of 2, differs in the two cases. In case (2.5) we use (2.9)
and we apply Lemma 1 with 6 = (I(r))™* to obtain

log|f(2, @) —b(w)] > — Clog M(r)

Dz —cm

for |2—#] < 4,
whence

g [, 000 )"
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In case (2.6) we use the argument of Lemma 7.3 of [3]. The only change
is that the sum

is increased by a factor a2, but in view of (2.4) this makes no difference
to the final result.

We write
wf2—a
I(0) = 1og|f(z,w)_b(m)]1{(o,fi —a)do
—-‘1?7!—‘)41 2

and we have
Lemva 4. Under the hypotheses of Lemma 3

[ Ia(w)du > — Calog M(r) w(By) —Ca (M (r) "
By

Proof. In case (2.5) this follows from Lemma 2 on taking é = (9t (r))~2
and using the inequality K (0,-;E —a) <a,
Case (2.6) requires the argument of Lemma 7.3 .of [3]. We write
By ={o| 0cH, 121211) 1f (2, @) =b(@)] = (M)}

then with § = (1—7) we have by Lemma 2
8,40

an | loglf(z, w)—b(w)| K (9, — —a)dd > — Calog M(r).
3 fu | (o5

ioEy 40
Next ag in Lemma 7.3 we write

ENE,; = GEM
where the sets H,; are disjoint and in B,
457 <[5 s If(z, @) —b(e)] < 452,
Also 4, = (W(r))™
' 4, = 21"111'1, A7t < (1 —¢);< 471,
Using Lemma 2 we have as in Lemma 7.3 of [3]

(2.10) 2 2 fd/.t flogifz @) —b( [K(B —_a)de

7=1 By 6;—8

1
~—4malog4,, 5 Z #(Byy)

7=1

©
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Write

2 =rseca—é%r tana
go that for all j
r; = |g] > r(seca—tana).

Then as in Lemma 7.3 of [3]

(211) 2“ M)<(ZZWE NEy) )"

and

— g\ V6
w( By N Epy) /1—1’3(2 IR smz( ’))

If the sum in the second number is not less than AZl;, then
(2.12) u(By 0By < 04525

and the proof proceeds as before.
T not let ay, be the first non-vanishing term in the sequence &y, s, .-

Then

Z ot P77 77 smm(

so that

6. — 6
01) > laklz'lﬂc(seca——tana)z’“sinzk(, i . z)

0

-1

’)1< (A2 ay| ¥ (seca— tana))”

8. —
sink( 2
2

Since k is fixed independent of r and since o tends to'zero as 7 tends to
unity we may suppose
seca—tana >1—k7"

and then the number of terms which satisfy the above inequa]ity is at
most

ON* A5 |y~ < EN? A

where K depends on |a; but not on either  or p. Hence from (2.11) and

(2.12) we have
—117 Z p(By) < €A%
i
and on inserting this in (2. 10)

S(5)> —oe St~ oaue "
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‘Whence
[ Iy(w)du = — Calog M(r) p(B) — C[D(r))
B

a8 desired.

§ 3. Proof of Theorem 1. By Lemmas 5.1, 6.1 and 7.1 of [3] we can
find a sequence {r,} such that 7, —1 and either

_p\2
(M () <(1 4'“) and  Mfr, -+ 4D (7)) ) < 40 ()

or

m (}———{2-1’) < 8Mi(r,)

t?m.t is so that one of the conditions (2.5) and (2.6) is satisfied for an in-
finity of . With one of these values for » we divide the circumference

|#] = into =/a equal arcs. If the mid points of these arcs are f;, fs,...,

where f; = 0 then D, is the domain bounded by the ares

ol =7, B—a<argz<fy+a,

z = ¢¥kr(seca—6®tana) —g ta< egg —a.

We show that if there is an w-set B such that to each we B f(2, ») omits
a value b(w) in the domain Dj} then

#(B) < C(log M(r)) 2

It will clearly be sufficient to consider one domain only namely the

domain- D, for which f = 0. With the notation of Lemmas 3 and 4
we have

B c B,UE,.

By Lemma 3.3 of [3] the measure of the w-set for which |f' (2, w)| satisfies
(2.7) or (2.8) is at most (M(r))™** or (1—n" (W(r))™*? zccording to
whether (2.5) or (2.6) hold. In case (2.5) the number of points z; is of the
order of (M(r)]"* and so the measure of H, is at most of the order J(ED't(f"))‘” s
In case (2.6) the number of points 2; s of the order of (1—7)"* and s<;
the measure of H, is at most of order (1—r)* (W (r))~ A, .
o ]Z’Ve now .ha,ve to find an upper bound for the measure of B,. Under
e hypothesis that for we B, f(# w)—b(w) does not vanish in D7 for

some b isfyi ;
some imlﬁ)h::msfymg [b(w)] <log M(rcose) it follows from Lemmas 1,

(1 —7) p(Ey)log M(rcos a) — O u(H,)log u(F,)
= (1—n)log M(r) pu(By) — (WM ()~

- ©

icm

Range of a random function defined in the wnit disk 271

where # is & quantity which tends to zero with 1 —#. Now by (1.5) a = a(r)
was chosen so that
M(reosa) < (SIR(a»))”2
so that we have
O (o) log (1 (By)) > (3 — ) p(By)log M(r) — (We(r)) 7.
I u(B) < (W (#))""* there is nothing to prove. If otherwise then
Olog(1/u(H,)) = (3—n)log M(r)
or

w(By) < (M(r))~°
for some positive number ¢. Whence for r near enough to unity
p(By) < (log M(r))
and so for the domain D,
u(B) < (log M(r) ™

If now we denote by &, the union of these sets E for all the domains Dy
corresponding to |2| =7, then we have in view of (2.4).

‘ (&) < (log M)

By hypothesis M(r) tends to mﬁﬁty as » tends to unity and so by choosing
a sub-sequence of the {r,} we can arrange that

D) (log m(r)™
w(Ué)

=0

is convergent and so

tonds to zero. The set & = (U 4,) is the desired exceptional set. If
n y2n

weF\ & then we can find r, such that what ever b f(2, ) will take this

value b in every domain Dy (r,). But whatever the value of 2, the domain

2 (2,) must contain at least one domain D, (r,) for each » and so whate-

ver the value of 2, f(#, ©) must take the value b in 2(z,) infinitely often.

This completes the proof of Theorem 1.

§4. Further remarks. The results of this paper are not restricted to
the family (L.1). In [2] we considered the family

(41) e, 0) = 3 aa(0)#

where the a, (o) are independent random variables in one or two dimensions.
We denote the characteristic function of a, by ¢Pnftimt g (& n) where 8,
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and v, are respectively the expectations of the real and imaginary parts
of a,. We write a, = fp+iva and for the variances and co-variance
O;n,l = V(Rean)y 0';9‘,, == Usb,l_;_afbﬂ!
%, = Cov(Rea,, Ima,).

6721,2 = V(Im a’n) 1

We write §2(9) for the positive definite quadratic form
(0%, co82 O+ o, o 8in2d 4 2x, cos Hsin ). .
We assume that the characteristic functions ¢, (&, %) are such that
for & = gcos®, n = psind
® lpa(€, M) < 1—13s50°
(i) lpal€, ) <k<l for s,026,>0,
(1if) lon (&, 1) < M(s,0)° for all &y and some 4 >0.

The following theorems may be proved by the methods of [2] and [3]
and the present paper.

for s,0 < 4y,

oo
TegoREM 2. If 3 oir™ converges for v <1 and diverges for r>1,
) [ o
if the radius of convergence of 3 a,2" is not less than1, and if the characteristic
]

functions @,(E, 1) of the independent random variables {a,— a,} satisfy
conditions (i), (ii) and (iii) then almost all functions of the family (4.1) are
such that their range R(f, #,) at oll poinis 2, of the unit circumference is the
complex plane.

For the analogue of Theorem 1 of the present paper we replace the

function M(r) of (L4) by (3 o2#*")"® and define the domains () just
0

as in §1 but in terms of this new function. We have

THEOREM 3. If the conditions of Theorem 2 are satisfied then almost
all functions (4.1) take every value infinitely often in every D(z,).

We conclude with one more remark. We have assumed that the
coefficients. of the power series are independent. This in certain cases
can be replaced by the hypothesis that their differences are independent.
The condition needed is that :

2 V(a1z_ a‘n—-l)
1
shall be divergent. Indeed
9() = (L —=2)f(2) = ap+ D) (G —,_1)2"
1

and it can be proved just as in Theorem 1 that g(2) —b(L—2) has for
all b an infinity of zeros in every 2(z,).

icm
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