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Abstract. The compactness in an appropriate topology of a set of trajectories
of a control system is proved. The lower semi-continuity of certain functionals on
certain. sets of trajectories is also proved. Existence theorems for optimal controls
in ordinary and relaxed problems are obtained as immediate consequences of these
theorems. The conditions imposed on the control systems and the existence theorems
obtained are essentially those of Cesari, but the proofs are different in many important
aspects.

1. Introduction. In this paper we present a compactness and semi-
continuity theorem, Theorem 1 below, for control systems governed by
ordinary differential equations. From this theorem one can obtain general
existence theorems for optimal control problems in Mayer and Lagrange
form, as indicated in Section 6. Our existence theorems are not as general
as those of Cesari [3] in that our output function 6, defined in Section 2,
is real valued, while the analogous function in [3] ean be vector valued.
On the other hand, we require a version of Cesari’s property (Q) that is
weaker than that employed in [3]. Our theorems do cover the cases of
interest in applications and we feel that the contribution of this paper
lies in the simplification of the arguments in these cases.

Although our Theorem 1 can be viewed as a special case of the lower
closure theorems of Cesari (See [4] for a full account), our theorem is
general enough to yield the results we desire. Our methods, however,
do yield lower closure very simply when the derivatives of the convergent
sequence converge weakly in L;. The various growth conditions used in
variational and control problems guarantee that this is always true for
minimizing sequences.

2. Notation and definitions. We shall nse single letters to denote
vectors, we shall use subscripts to distinguish vectors, and we shall use
superscripts to denote components of vectors. The letter ¢ will denote
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a real variable, which we call time, the letter # will denote a vector z
= (a% ..., ") in R", which we call the state variable, the letter y wil
denote a real number, which we call the output variable, and the letter 4
will denote & vector in E™, which we call the control variable. By z, > 'R
we mean that every component of #, is greater than or equal to the cor-
responding component of x,. The euclidean norm of a vector © will be
denoted by |z].

Let f be a real function (¢, #, w) — f(4, #, w) defined on R x R"x g™
with range in E' and let g be a function (%, @, w) = g(t, ©, w) defined on
B XxE*x E™ with range in R" Tet # be a subset of (i, x)-space. Let Q
denote a mapping that assigns to each point (£, 2) in # a subset (1, z)
of B™ Let & be a set of points (fy, @1, 5, #,) in R™F? with 1, >1,.

An absolutely continuous function ¢ = (¢, ooy @") defined on an
interval [#, ,] is said to be an admissible trajectory if there exists a measur-
able function u = (u,...,u™) defined on the same interval such that
the following hold:

(i) (fe®)e® for all ¢ in [t,,1,],

(i) (tu AR ‘P(iz))f %,
(21) (@) ¢'(®) =g(t 9(0), w(®) a.e. in [t, 1],

(iv) wu(t)e 2, ¢(1) a.e. in [ty 4],

(V) flt o), w(®) is in Ly[t; ,].
T}%e function u is said to be an admissible control and the pair (g, u) is
said to be an admissible pair. By virtue of (2.1)-(v) we can define an

absolutely—continuous output-function 9 corresponding to each admissible
pair (g, #) as follows:

i
(2.2) 60 = [fls, o), u(@)ds  t<i<t,
a1

Output functions and output variables arise in applications and in the
reduetion of control problems in Lagrange formulation to control problems
in Mayer formulation. We define the number 6(t;) to be the output of the
system or simply the output.

3. Assumptions. In this section we list two sets of assumptions for
our thef)rems. One of the statements in A requires the introduction of
S f'unctlon Q* that assigns to each point (t, @) in # a subset Q*(t, x) of
R™ as follows:

QT (¢, @) = {(n, &): n=ft, @, w), &€ = g, @, w), we Q(, »)},

where 7 is-a sealar and £ is an s-vector.

©
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ASSUMPTION A. (1) # is a compact subset of R x R (2) The set #
is compact. (3) For each (¢, «) in # the set Q(f, z) is closed. (4) The set
2 = {{{, z,w): (, 2)e A, we L(f, x)} is closed. (5) For each {f, &) in #
the set Q (t, ) is closed and convex. (6) For all (i, 2, w) in Z, f(f, @, w) > 0.

From (2.1)-(i) and Assumption A(1) it follows that the graphs of
all trajectories lie in a eompact subset # of B x R™ Thus, all of the intervals
[%15 ;] corresponding to admissible pairs (@, ) are contained in a fixed
compact interval I. It further follows that all points (tl, (1), tas (p(tz))
corresponding to admissible trajectories will lie in a compact subset of
R*™**, Hence the assumption that # is compact rather than closed entails
no loss of generality.

Assumption A(4) is equivalent to the assamption that £ is upper
semi-continuouns in the sense of Kuratowski ([8], pp. 32-84) on #. As-
sumption A(5) was introduced by Cesari in [2].

The second set of assumptions involves a slight generalization of
Cesari’s property (Q). :

Let 6 >0, let (t,, #,) e &, and let N (i, @,, 6) denote the set of points
(to, @) in & such that |z—ay| < 6. Let Q¥ (N,(fy, 2o, 6)) = U {@F (4, 2):
(to, @) e N (fg, gy 0)}. For a set 4 let el co A denote the closure of the
convex hull of 4. The mapping Q7 is said to safisfy property (Q¥) at (£,, 2,)
if

Q7 (to, ) = Qucl c0Q* (N (ty, 24, 9)).
It is readily verified that if property (Q) holds at a point then so does
property (Q*). An extension of property (Q) similar to ours was also used
by Olech [12]. '

AsstyerioN B. (1) The function f is lower semicontinuous and g
is continuous. (2) The mapping Q% satisfies property (Q) at each point
in 2.

4. A compaciness and semi-continuity theorem. Let £ denote the
set of all continnous functions z defined on subintervals [{;, {,] of 1. We
extend the definition of 2 to a function Z defined on all of I by setting
2 () =2(t) if e<<t<t and 2° (1) = 2(ty) if £, <t < b Xf fe [{y, 1], then
2" (1) = 2(t). For #z in 2 defined on [#,,?,] and zye 2 defined on [ty, o],
we define

0(2, 20) = [ —t]+ jtoe—1o| +max [z, (1) —2" (B)],

where the max is taken over all ¢ in 1. It is easily checked that p is a metric
and that £ is complete under this metric. A sequence of functions {z}
defined on intervals [#;, %] converges to a function z defined on an
interval [¢,, t,] if and only if #; —*#;, i =1, 2 and z; — 2~ uniformly on I.
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Let o/ denote the clags of all admissible pairs and let <7, denote the
class of all admissible trajectories. Clearly &7, < #. Note that since we
do not assume that the differential equation 2" = g(t, @, u(t)) has a unique
solution for a given set of initial conditions, different admissible pairg
can have the same admissible control. The set <77 is a metric space in
the p-metric. .

THEOREM 1. Let Assumptions A and B hold. Let o/, be a set of admissible
pairs (@, u) such that the trajectories ¢ are equi-absolutely continuous and
such that the outputs 6(1,) are uniformly bounded. Then there exists a sequence

(@, Ug) i 74, a real number y and an admissible pasr (@, u) in o7 with

the following properties: (i) @ — @ in the o metric. (ii)
(1) y = 1m0y (1) 2 6(%),
k-0

where 8, is the output fumction associated with (8, uy) and 0 is the output
Sfunction associated with (g, u). *

The conclusion of the theorem says that the set 7, of trajectories
corresponding to admissible pairs in 7, is conditionally compact in g,
and that the output 6(1,) is lower semicontinuous on 7.

Cesari [3], [B], gives very gemeral conditions that guarantee equi-
absolute continuity of the components of ¢. In our notation the most
important of these is the following.

LevwaA 1. Let there exwist a non-negative lower semicontinuous function
H': (1, @ w) — H'(t, @, w) and o constant A* such that for each admissible
pair (g, u) in &, H"(thq;(t), (1)) is integrable on [t,,1,] and

Iy
(£.2) [ H{t, (1), uit))de < 45,
t

where [iy,1,] s the interval of definition of (p, u). For each & > 0 lot there
ewist o function M defined and integrable on I such that

(4.3) " O = (g"(t 0 (0), wle)) < M)+ B (8, 0 (8), u(t)).

Then the functions ¢* are equi-absoluiely continwous.

Another condition that ensures equi-absolute continuity of the
integrals of ¢%, and hence of ¢, is that of de la Valée—Poussin (See [11]
Theorem 7, p. 159). In particular this condition implies that if there is
2 p; >1 and a constant C; >0 such that for all (p, u) in «7,,

ly
(4.4) [l wPa< ¢
i1
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then the functions ¢* are equi-absolutely continuous. It can also be shown
directly that (4.4) implies (4.2) and (4.3) with H® = |g%j":.

Theorem 1 remains true if we weaken the hypotheses somewhat.
First, we can replace A(6) by the requirement that f be bounded below.
Second, we can replace B(1) by the following condition.

AsstaPTION C. For each ¢ in I, the function F = (J, g) is a conti-
nuous function of (x, w) on B*** and for each {x, w) in R**! the function 7 .
is measurable with respect to t in I.

We can weaken B(2) by requiring the property (Q*) to hold at every
point of Z with the possible exception of a set of peints whese {-eoordinate
lies in a set of measure zero in I.

At the appropriate places in the proof of Theorem 1 we shall indicate
the modifications that must be made to accomodate the weakened hy-
potheses.

5. Proof of Theorem 1. The proot will exploit the weak convergence
in I, of a sequence of derivatives ¢; and Mazur’s theorem which states
that a strongly closed convex set in a Banach space is weakly closed.
In the proof we shall select subsequences of various sequences. Unless
stated otherwise, we shall relabel the subsequence with the labeling of
the original sequence. We break the proof up into several steps.

Step 1. There is a sequence {{g;, uz)} of elements in ofy, a real yp,
points ¢, and £, in I with ¢, >4,, and points x,; and z,, in R” such that
for ¢ = 1,2, (t;, Zp) e B, (ty; For, f2) Zs) € B, and
(5.1) te >l gpty) > 20, Op(ly) —y.

Since the set of outputs #(i,) corresponding to pairs (g, «) in o7 is
bounded it follows that there is a real number v and a sequence {or, uz)}
of admissible pairs in &/, such that 6(fy) — », where 0y is the output
corresponding to (gy, u). Since # is compact there is a subsequence of
this sequence such that (fy, gu(fu), tw, ¢x(fy)) converges to a point
(b1s Zory Ty %oo) In #. Hence #, >1,. Since (tg, glty))e®, i =1,2, it
follows that (i;, z,;) e Z.

Step 2. There exists an absolutely continuous funection @ defined on
{t;,1,] and a subsequence {g;} such that g, — ¢ in the o metric and for
the extended functions, ¢;  — ¢~  weakly in IL,[I 1. Moreover, ¢ satisfies
{2.1)-(i) and (2.1)-(ii).

Since the graphs of all trajectories in 7, lie in the compact set &,
the functions ¢, are uniformly bounded and so are their extensions P -
Since the functions ¢, are equi-absolutely continuous, the same is true
of their extensions ¢ . It therefore follows from Ascoli’s theorem that
there exists a subsequence {¢; } and a function ¢ defined on I such that

6 — Studia Mathematica XLIV


GUEST


280 L. D. Berkovitz

@5 converges to ¢ uniformly on I. Moreover, the function ¢~ is abso-
lutely continuous, so that ¢~ exists and is in Z;. Thus,
z
(5.2) o () =9 (a)+ [ ¢ (s)ds a<i<h.
a
The function ¢  is readily seen to be the extension of the function P
" defined by
) =t [o7(8)ds  L<I<ty
4
Thus ¢ (@) = &y;. Since &, -1, ¢ = 1, 2, we have shown that P> @
in the p metric.

From (3.2) with ¢ (a) replaced by z,;, from (5.1), the relation,

t
oi (1) = gt + [ (s)ds  a<i<b,

and the convergence of gy, to ¢ it follows that for all ¢ in [a, b]

i 11
[ o' (s)ds — [ o™ (s)ds.

Slnce the functions ¢, are equi-absolutely continuous, their derivatives

" have equi- absolutelv continuous mteglals Hence (See Banach [1],
page 136) @ — ¢~ weakly in IL,[I].

Since ¢ is the uniform limit of functions for which (2.1)-(i) and (ii)
hold, these conditions hold for ¢.

Step 3. There exists a function 4 that is integrable on [y, ?,] such
that (A(2), ¢’ (2)) e @*(t, ¢ (1)) for a.e. ¢ in [ty, t,] and such that
(5.3) A(8)ds < y.

iy
Since o = o " weakly in L, we obtain the following statement from
a corollary to Mazur’s theorem ([6], Oorollamy, Theorem 2.9.3, p. 36).
For each integer j there exists an integer n;, a set of 1ntegers i=1,..,k
where k = k(j) depends on §, and a set of numbers Ogjy eeny Opj satlsfymg
(5.4) a; =0, i=1,,..
such that N1 >0+ k(j) and
b k . o

(5.5) Jlo7 = Y agorns| ar < 1.
a il

.
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Let y; =i§a,.,-%i’+i. It for t¢[fy,th,] we define g, ¢,(t), ug(t)) = 0
=1

(recall u, is only defined on [t f,,]), We write w; a8

(5.6)

yi(t) = Zaug ’ ¢nJTz 1), gy —z(t))

In terms of y;, (5.5) says that y; — ¢ in L,;[T]. Hence there is a sub-

sequence {w;} such that
(8.7)

We suppose that (5.6) is now this subsequence. Corresponding to the
sequence (5.6) we define a sequence {4} as. follows:

() > ¢ '(t) a.e in I.

k
= E (l,-,f(t, ‘pnj+i(t)3 uy;j+i(t))7

i=1

(5.8)

where if t ¢ [1,, fay], f{E, @q(t), u, ) = 0 and where for each j the numbers
a;, the indiees n;+i and the functions Fnjri and u, .; are as in (5.6).
Note that if z‘¢[11, t,], there exists a j, such that if j > j, then y;(t) = 0,
and %) = 0.

Define

(5.9) A(t) = liminfA,(1).

Since f> 0, it follows that 13> 0. Moreover if t¢[f;, 1, ], then Ai(t) = 0.
From this and from Fatou’s theorem we get, upon setting f, = f ( 72(),
U (1)) )

ia
(3.10) [ 2dt = f Adi < liminf S as f Fagidd
i 1—1
I3 3 S+
= liminf Va,, f fnﬁ,dt = 11mmf2;I n i tz,n,_“)
i~1 1, 917—-1

The inequality (5.3) now follows from (5.1) and (5.4). Since 2 > 0 it follows
that 4 is in L,[T] and is finite a.e. on [#;, #,]. We note that the arguments
just made could also be carried out if we merely assumed f to be bounded
from below.

We now show that (A(t), ¢ (t))sQ*(t, @(t)) a.e. Let T, denote the set
of points in [, t,] at which A(#) is finite and ;(t) — ¢'(f). If we weaken
B(2) then we also assume that property (Q*) holds for all £ in T,. For
each k define a set By as follows: By, = {t: te [ty, ty], uz(l)¢ 20, o ()}
Then by (§ )-(iv), meas E; = 0. Let E denote the union of the sets B,
and let 7, denote the set of pomts in [y, t,] that do not belong to E.
Let 7" = T, nT,. Clearly, meas T' =

_tl
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et 4, be a fixed element in 1", fo # #;; ¢ =1, 2. There exists a sub-
sequence {4;(f,)}, which depends on &, such that A;(f) — A(ty). For the
corresponding subsequence {p; (1)} we have, by (5.7), that () —~ ¢’ (1)
Sinee 1, is interior (f;, %), and &y =¥, i = 1, 2, it follows that there exists
a j, such that if j >j,, then toe(tl,,,f”, tz,,,jﬂ-). For each 6 >0, there
exists an integer &, depending on & such that % > ky, |@p(te) — o) < 6.
Hence, for k > ko, (to; @xlto))e N, (t, p(t), 8). Therefore for j sufficiently
large

(Fltos @uys(i0)s tngss(te)]s 9lfos Pagsilto) s tnygslte)) € @ (Neflo, @ (1), 3.
Therefore, by (5.6), (5.8), and (5.4),
(A5(to), ws(to) € cOQ™ (N (to, @ (), 8)).
Since A;(t,) — A(fo) and w;(t,) — ¢’ (%), We have that
(Alt), ' (fo)) € cleo@* (Naft, ¢ (t0) 8))-

Since 8 is arbitrary, (A(), ¢ (%)} is in cleoQ* (N, (L), @(ty), 8) for every
& > 0 and hence in the intersection of these sets. Therefore, by Assumption
B(2), we get that (A(f), ¢’ (f))e @ (fo, @(to))- Since #, was an arbitrary
point in 7' different from %, or t,, we get the desired result.

Step 4. There exists a measurable function « defined on [#,, ;] such
that for almost all #: (i) ¢'(£) = g{t, @(®), w(®); () u(f)e QK @@); (i)
A(t) = flt, 9(8), u(®))-

The existence of a function v satistying the conclusion of Step 4
is a restatement of (A(t), ¢'(£)e@* (¢, (t)). We show that there exists
a measurable function w with this property. Let T = {t: (A(%),
o' )@t o))}, lebt Z =R xB"XR"x E' and let D = {(t, @, w,n):
(t, ¢, w)e D, n = f(1, 2, w)}. The functions ¢’ and A are measurable. Clearly,
T is measurable and Z is Hausdorff. Since by Assumption A.(4) 2 is closed
and by Assumption B(1) f is lower semicontinuous, the set D is closed
and hence can be written as the union of a countable number of compact
sets. Let I': t — (£, p(t), ¢’ (2), A(t)]; thus I' is a measurable map from 7T
to Z. Let &: (i, x, w, ) — (t, z, g(t, ®, w), n), Then & is a continuous map
from D to Z and I'(T) = G(D). Thus, the hypotheses of the McShane—
‘Warfield extension of Filippov’s Lemma [9] are satisfied. Hence there
exists a measurable mapping u: T — D, say u: ¢ — (1{2), o(2), u(t), n{t)
such that

Glu(®) = (£, 2(0), [t (D), 2(0), u(®), (1) = (1) = (¢, ¢(1), ¢’ (1), 2(1).

From this Step 4 follows.
If we replace the continuity assumptions on F in B by Assumption C

then by a well known theorem ([11], Thm. 18.2, p. 142 or [13]) there

©
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exists for each & >0 an open set E < I such that meas. (E) < ¢ and such
that F is continuous on (I —E)x R"x R™ We proceed as above to obtain
a measurable % on T— (B NT), and since ¢ is arbitrary we obtain the
desired result. For details see [7] or [12]. .

Step 5. Completion of proof. Statements (i) and (ii) of Step 4
assert that (¢, ) satisfies (2.1)-(iii) and (iv). Since ¢ and % are measurable
and f is either lower semicontinuous or satisfies Assumption C, it follows
that f(t, @(t), u(t)) is measurable. Since A is integrable and f is bounded
from below, it follows from (iii) of Step 4 that f (t, (1), u(t)) is integrable.
Hence (g, #) satisfies (2.1)-(v). From this and from Step 2 it follows
that (¢, ) is admissible and that ¢, — ¢ in the g metric. It therefore
only remains to prove (4.1).

The equality in (4.1) was established in Step 1. Let 6 be the output
corresponding to (@, #). Then from (iii) of Step 4 and (5.3) it follows that
v = 0(t,) and (4.1) is thereby established.

We now show that if we require the components of admissible pairs
to satisfy (4.2) and if we take f = HY, then the pair (¢, u) of Theorem
is admissible. From (5.10) we get :

ty
[amat< 4,
31

and the assertion now follows from (iii) of Step 4.

If (4.4) is required to hold for all admissible pairs then it holds for
(g, u) by virtue of the fact that (4.4) implies that for a suitable subsequence
¢ — ¢ weakly in I, ag well as in L,.

6. Existence theorems. We illustrate how the preceding results are
applied to obtain existence theorems by considering the following control
problem. Let the class </ of admissible pairs be non-empty. If (g, «) is
in o and 6 is the corresponding output let %(g, u) = {t, @(f), sy @(t),
H(tz)). Let e be a real valued function on # X R'; €: (Iy, @1, T, @5, ¥s) > €(15,
2y, 1y, Ty, ¥s). Define a functional J on & as follows: J(p, u) = e(n(g, u)).
Let p = inf{J (¢, u): (¢, u)e «}. The problem is to find an element (¢*, u*)
in & such that J(¢* u*) = u. Such a pair is called an- optimal pair.

AssumprioN D. The function e is lower semicontinuous on % x R
and is nondecreasing in y,. i

THEOREM 2. Let Assumptions A, B and D hold and let the outputs
0(ty) lie in a bounded set. Let <7 be non empty and let there exist a mini-
mizing sequence such that the functions ¢, are equi-absolutely continuous.
Then p is finite and there exists an optimal pair (g%, u*).

Since for admissible (g, u); f(t,cp(t), u(t)) is in L,[¢;, t5], it follows
that g < + co. Let (¢, ;) be a minimizing sequence with equi-absolutely
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continuous functions ¢,. Then by the definition of a minimizing sequence,
¢(1(9rs ) = u. On the other hand, by Theorem 1 with &7, = {(¢,, ),
there exists a (p*, u*) in o defined on an interval [#}, 4 and a subsequence
{(g, we)} such that 9@y, wp) (0, ¢ (81), 1, ¢* (&), ¥) =P* By the
lower semi-continuity of e, liminfe(n(gy, u,)) > e(P*). Hence x> e(PY
> —co. But sinee y > §*(1,), it follows from the monotonicity of ¢ that
1> 6(P") > ¢(n(g* u¥) = p. Hence p = e(y(p*, u*).

If the sets @ (7, #) are not convex one can replace the original problem

with a “relaxed problem” in which the derivatives of the trajectories -

Lie in co@™ (¢, #). This can be done in several ways ([3], [10], [15], [16]).
If it is done as in [3] the relaxed problem is cast as a new control problem
in which the set that plays the role of @+ (¢, #) is convex. An existence
theorem for the relaxed problem is then obtained as a straightforward
application of Theorem 1 to the new control problem. The statement
of the theorem and the details should be clear to the reader who hag
consulted. [3]. ‘ - .

Existence. theorems for Lagrange problems are obtained by trans-
forming them into Mayer problems in the. standard way. See e.g. [3].
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