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Since (¢%)"Pe L' (@) and dominates |F(z,, )| we can apply the dominated
convergence theorem of Lebesgue to obtain the L'-convergence of F (@, *)
to the function f. From this, (3.4) and the fact that du(x) = f(x)dr follow
immediately and Theorem 3.2 is established.

Many other results connected with H?-space theory also admit similar
exfiensions. For example, the theory involving the Lusin area function, as
developed in chapter VII of Stein [8], ean be carried out in this situation ag
well. In this connection see also the results of Fefferman and Stein [4], [7].

The Riesz transforms alluded to above arve defined in Stein [97,
where a proof is given of their boundedness as operators on L7 (), 1 < P
< co. These Riesz transforms add a novel feature to the harmonie analysis
on semi-simple compact groups that does not appear in the commutative
case. When @ = SU(2) there exist linear combinations of these transforms
that are “shift”’ operators with respect to a “canonical” basis of M@
(see Coifman and Weiss [3]). The extension of the Riesz brothers’ theorem
obtained here implies a corresponding theorem for expansions of some
Jacobi polynomials (which are eonnected with the elements of this basis).
That this phenomenon is more general is evident from the fact that there
exists a root-space decomposition of the associated Lie algebra.
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On regular temperate distributions

by
Z, SZMYDT (Warszawa)

Abstract. There are given some conditions which imply that a locally Lebesgue
integrable function u defines a temperate distribution (%, o) by the relation (u, ¢) =
= [u(z)o(z)dr with the integral converging absolutely for every function rapidly

RY
decaying at infinity. It is shown that the assertion included in [1] about the
necessity of one of these conditions is not true.

1. Basic notations. The variable in the n-dimensional real Euclidean
space R™ will be denoted by # = (24, ..., #,). By a we shall denote multi-
indices, that is, n-tuples (e, ..., a,) of non-negative integers. We set

0
D* =D ... Dpp with D; = Fr Similarly we write 2 = a{1... 2%,
T

A complex valued function ¢ defined in R" is said to be a €™ function
if it possesses continuous partial derivatives of all orders. By €% we denote
the set of all functions in C* with eompact support in R™

By 8 or S(R") we denote the set of all functions ¢eC™ such that

1) sup [2° Do (2)] < oo

for all multi-indices o and f. The topology in § is defined by semi-norms
in the left-hand side of (1).

A continuous linear functional (u, o) on § is called a temperate distri-
bution. The set of all temperate distributions is denoted by &'

We denote by I1°°(R™) the space of locally Lebesgue integrable func-
tions, i.e. Lebesgue integrable on any compact subset of R™. We identify
every function ueIL°°(R") with the distribution = defined by:

@) (w,9) = [u(@p@ds for g<0F(R").
RBR®

A temperate distribution % is called regular if there exists a funection
we I°°(R™) such that

(3) (,0) = [u(@)o(@)dz for oeS(RY

RN
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and the integral

() J () o (x) dew

RV

converges absolutely for every oeS(R").

2. Suppose that the locally integrable function w(z) has a growth
not higher than a power type growth at infinity, i.e. that the inequality

{3) (@) < O(L+ |o])*

is satisfied when |@| > for some k>0 and r > 0.

I this condition is fulfilled the integral (4) converges absolutely for
every oef and (3) defines a regular temperate distribution.

This statement can be found in the treatise [1], chapter II, 1.5. But
the condition (3) is not necessary against the assertion in [1] and [2](*) as
it results from the following example:

BxavpLE 1. Let 4,,m =1,2,... be a sequence of intervals in R':

Ay = (m—27 00D g gy 4 9—(0tD) gy

Let us define the function » on R* as follows:
¢ if wéAm,m =1,2,...,

u(@) = .
0 otherwise.

Tt is easy to see that ueZP°(RY), and although condition (5) is not satistied,
the integral (4) converges absolutely for every oeS(R').

Note that in this example ue L, (R') what itself implies the regularity
of the temperate distribution (3). :

Somie other sufficient conditions for the regularity of (3) will be given
in the next section.

3. THROREM 1. If weIP°(R™ and the function w(z)/(1-+2)* belongs
to L, (R") for some & > 0, then the integral (4) converges absolutely for every
a8 (R") and the functional u defined by (3) is a regular temperate disiri-
bution.

Proof. Let us denote by » the function:

(@) = u(z)(1+a*)* for ze R".

(*) Let us reproduce this statement from the translation [2] of [1]: For absolute
convergence of the integral (4) in the space.S for every fundamental function o, it is
sufficient (and necessary) that the locally integrable function w have a growth not
higher than a power type at infinity.

icm
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Observe that veL,(R") and that for an arbitrary function oS (R") there
is a constant 0 < oo such that [(1+a*e(2)| < O for z<R™ So % () o ()
= o(@) (1 +2**o(x)e L, (RY), ie. the integral (4) converges absolutely.
Moreover, if limo,(z) = 0 in the space § (R™), then

>

lim (142%*0,(z) = 0

© 00

uniformly in R",
and consequently

lim(u, ,) =1lm [ o(@)(1+2%¥0,(2)dz = 0.
P00 P—>00 R
Remark 1. If u is a locally Lebesgue integrable funetion, condition

() implies the assumptions of Theorem 1, but not conversely, as we have
seen from the Example 1.

In the proof of the next theorem we shall use the following lemma.

LevmA. Let w be a locally integrable Sunction, non-negative almost
everywhere (a.e.) in R"™ and such that the distribution u defined by (2) is
femperate ().

Then the temperate distribution w is non-negative, i.e. (u,c) >0
Jor all non-negative functions oeS(R™).

Proof. Let o be a non-negative function belonging to S(R"). Denote
by v an arbitrary function satisfying the following conditions:

{6) velr(BY), 0<y(@)<1, 9@ =1 for o|<1.
It is easy to see that the functions ¢,(z) = a(@)p(zfv), » =1,2

have the following properties:
for ze R",

limg, = o

=00

g oy

0< (@) <o) ¢, 07 (R,

in S(RY).

7 v=1,2,...,

Combining (7) with the assumptions of lemma we obtain:

(1, 0) =1lim (s, p,) =lim [u(2)p,(@)ds> 0.

Y00 P00

THEOREM 2. Let w be o locally integrable function, non-negative a.e.
i R" and such that the distribution (2) is temperate,

Then the relation (3) holds, and the integral (4) converges absolutely for
every ae S(R™).

() It means that there is a functional %S’ (R") such that (&, @) = (u, @) for
every ¢ eGg" (R™). In the following we shall not apply the new symbol % for the temperate
digtribution « given by (2).
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Proof. Let ¢eS (R be given arbitrarily. It can be proved that there
exists a function ¢S (R" such that

(8) lo(@)] < o(z) for we R™.

Denote by v a function satisfying conditions (6) and observe that the
functions g, (z) = o(@)p(zfr),» =1,2, ..., belong to CP(R") and have
the following properties:
(9) 0< p@)<o(@ forazeR", »v=1,2,..,
(10) o, () = o) for [o|<»
In virtue of (9) the lemma stated before implies that (u, —@,) = 0;

as ue I°°(R™) we derive

fu(m)&,(m)dm:(u,&v)<(u,3)< o0, »=1,2,...

R’l’b

Since % = 0 a.e. by (10) and (9) we obtain:

f w{z)o (x)de = fu(w)@(m)dmé fu(w)z};,(w)dm, y=1,2,...,

iy Izl M
5o in virtue of (8) the integral (4) converges absolutely:

(11) f]uaa)a(m)|dw< f 2)de < (u,0) < o0, v=1,2,...

[}y ||y

‘We must now prove that the relation (3) holds. In order to do this observe

that the funetions g,(2) = o(@)p(@/r),» =1, 2, ..., belong to CF(R"}
and have the following properties:

(12) o, (@) < lo(@), »=1,2,..,

(13) limg, =0¢ in S(R".

In view of assumptions: ue S'(R"), we II*°(R™ we obtain from (13):

(14) (v, 0) =lim(u, @) =lim [ u(o)p,(o)do.

100 pn

Taking into account (11)-(13) and Lebesgue’s convergence theorem we
obtain (3) from (14).

By the fundamental structure theorem for distributions belonging
to 8’ (R™(*) we can give to Theorem 2 the following form:

() Cf. [3], p. 239.
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TEEOREM 3. Let w be a locally integrable function non-negative a.e.
in R™ and such that(*) w = D°h for some multi-index a and some continuous
Junction b having a growth not higher than a power type af nfinity (°).

Then w is a regular temperate distribution, i.e. for every fumction
ce S(R") the integral (4) comverges absolutely and the relation (3) defimes
a eontinuous linear functional on S(R™).

Remark 2. Note that Theorem 3 (and also Theorem 2) would not
be valid without the hypothesis on the sign of the function u.

ExAMPLE 2. Let 4 be the function defined by
2 v
u(x) = e°cose” = e (sine®)  for ze R'.

Tt is easy to see that for every function oe¢ S(RY)
+o0
{15) f e“cose"o(x)dy = f sine®o’ (v)do
T limo, = 0 in §(R"), then (1+2%) d)(z) converges uniformly to zero and
therefore by (15)
+o0
lim f w(#) o, (x)de = 0.

-0

iSo we have shown that the functional u defined by (3) belongs to S’ (R?).
But it is not a regular one. In fact if a non-negative function o S(R')
satisfies the conditions:

3
e ®  for x> ]11—4:1
o(z) =
k4
0 for m<]nz,

then

+oo oo
fle“coseﬂa(m)dm; flcose’”]dw

3
ey

> %Vég'(ln(kn+7})—ln(lm-—£)) = oo.

(%) The derivative D2 is obviously a derivative in the distribution sense.
(5) It means that h(x) = (1-+ |z|)%h (%) for some integer % and some continnous
bounded function h.
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Estimates for the spline orthonermal functions
and for their derivatives -

by
Z. CIESIELSKI (Sopot) and J. DOMSTA (Sopot)

Abstract. The aim of this note is to obtain local exponential estimates for the
spline functions f]{m,k) with > k~m,m> —1 and 0 < k< m-+1 which were con-
structed in the previous paper [2] of the authors. These estimates are important in
the investigations of order of approximation by partial sums of the expansions with
respect to the set (fzfm:k),j > kE—m), where 0 < k<< m+1.

1. Introduction. We are going to deseribe briefly the functions
o8 by means of the Haar functions: Let I = <0, 1) and let (,, n > 0)
be the dyadic sequence in I associated to the Haar system, i.e. t, = 0,
t;, =1 and for n =2"4» with p 20,1 <» < 2

2v—1

(1) oty =gt

For each m > 1 the subsequence (t;,7 = 0,...,7%) can be ordered
into an increasing sequence 0 =s,, <... <8§,, =1 and then it can
be extended as follows

(

z .
IF for ¢ =...,2v—1, 2v,

(2) Sn,i = .
§—

2[-'

for ¢ = 2v+1,2v42,...,

where 7 is ranging over all the integers.
The n-th Haar function is defined as follows %1 = 1,and forn = 2" 4y

with pu > 0,1<<» < 2*

2”/3 fOI‘ t€< Sn,2v—27 Sn,"v-—l)’
Xn(t) = _?’Mz for t5< Sp,ov—19 Sn,zv))
0 elsewhere in (0, 1),

and in addition yx, (1) = g,(1_).
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