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STUDIA MATHEMATICA T. XLIV. (1972)

H*? spaces of generalized half-planes
by
A KORANYI (New York) and E, M. STEIN (Jerusalem)

Abstract. Paley—Wiener type characterization of the H? and Bergman spaces
on Siegel domains of type II. Formulas for their reproducing kernels.

Introduction. The classical result of Paley and Wiener characterizing
the H*-class of the upper half-plane was extended to tube domains over
cones by Bochner [2](*) and to all generalized half-planes by Gindikin [3].
Gindikin, however, only gives a sketeh of a proof which does not seem
easy to complete. In this paper we give a different proof of Gindikin’s
result, and also give another characterization of the class H; the latter
has been announced without proof in [4].

We will also deduce the existence of Z*-boundary values of H>-func-
tions and find an explicit formula for the Szegs kernel in a way different
from Gindikin’s. Finally we will indicate how the analogous results about
the Bergman space and the Bergman kernel can be proved.

1. Definitions and notation. A regular cone in a real vector space V
is a non-empty open convex cone 2 with vertex at 0 and containing no
enti.le straight line. The dual cone Q* is the set of all linear functionals

L on V such that <1, z)> > 0 for all Q.

Given a regular cone 2 in R™, we say that s Hermitian bﬂlnea,r map
&: C2xXC™ - C™ is Q-positive if ®(z,,2,)eQ for all zye O™ and if
D(2y, 25) = 0 implies z, = 0.

Given such an 2 and @, the associated generalized half-plane is defined
by D = {(2;, 2,)e C"1 x C™{Imz, — B(z,, ;) e 2}. This definition includes
the case where n, = 0; then D is the tube over 2 and is also denoted
by T. (Gindikin calls D a Siegel domain of type I if n, = 0, of type II
if ny> 0.)

The Bergman-Silov boundary of D is given by

B = {(21, 22) e C"1 X C™2|Im2; —D(2,, 2,) = 0}.

B is parametrized in a natural way by R™ x C™. The natural Euclidean
structure induces measures on R™, C": which we denote by dx, and

(*) See also reference [7], chapter IIL
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dx,dy,, respectively. The corresponding measure on B xjvill be denoted
by 8. ‘LE(B) will be the space of square-integrable functions on B with

respect to . . =
pGiven a function F: D — C and any t<£, we define ¥, on D by

Fz) = Fy(z, 2) = F(z,+1t,2,). )
: )N ow tH”‘l(’D‘; is deﬁx:lled a:s the set of all holomorphic #: D — C gsuch
thatb :
|| = St‘;P 1Bl 2@ < oo

(Of course, [[F)[l;2z means the L*(B)-norm of the restricti(?n of 7, to B.)
H*(D) is clearly a normed linear space, our main theorem will show among
other things that it is a Hilbert space.

2. Recall of some results. For convenient reference we list as lemmasg
certain known results

LeMMA 2.1. If Fe H*(D) and ¢ < 2, then, for all fived 2, C™, the function
2 > Floytie+id(z, ), 2,) s in H (To). If (2, ¢) stay in a compact
subset of C™x Q, then the corresponding H*(Tq)-norms stay bounded.

The first assertion is a lemma in [6]. The proof given there also yields
the second assertion immediately. :

Lemva 2.2. The map L*(2*) — H*(T,,) given by

9 > f(a) = [ &40 p(2)dh
A

s a Hilbert space isomorphism. The integral converges absolutely for all
Sfiwed 2,eT,.

This.is Bochner’s extension of the Paley-Wiener Theorem ( [2],
cf. also [7]).

Lemma 2.3. Let m be o natural number. Let B be a complew bilinear
Jorm on C™ whose restriction to R™ is positive definite. Let £% be the space
of holomorphic functions f on C™ such that

P = [ 1f@Pem®eddndy < co.
d‘n .
Then the map I*(R™) - F% given by. o > f(z) = f a(z, a)p{a)da, where
RrM

% (B(e,2) +B(a,a))+7 V2B(z,q)

2.1) a(z, @) = (detB)He

b

s a Hilbert space isomorphism. The inverse map is given by

2.2) () =lim [f(re)a(e, a)o™2EA gy dy,
. r>1-0 &

where im. means limit in the topology of L*(R™).
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Diagonalizing B and making some changes of variables this is immedia-
tely reduced to results of Bargmann [11.
We also note here that for B as in Lemma 2.3 we have

(23) [ eTB@ddy — (det B)V2,
Rm
If the Fourier transform is defined with the aid of B, i.e.
Fly) = [ flaye=mwegq,

n»m

[ emBeAazay — (det Byt
om

then the inversion formula and the Plancherel theorem take the following
form:

fla) = (det By [ f(y)e>Bwm gy,
Rm

1
det B

(2.4)

I = IFIE.

3. Further lemmas,

LEania 8.1, Let Fe HYD), and let K, = €7 pe compact. Let 5¢Q be
such that 5 —@(zy, 2a)e 2 for all 22K, (such & exists). Then the Junction
Po: Ky - HYT,) defined by Fo(z:)(z,) = Fz,+16,2,) 4s holomorphic.

Proof. Lemma 2.1 implies that Fy(z,)eH*(T,) and 1By (2)]| << ML
for all 2,¢K,, with some I,

It is an immediate consequence of Temma 2.2 that each Fy(z,) has
boundary values on the Bergman-Siloy boundary of Ty, ie. on R™M,
and the map assigning to Py (z,) its boundary function is an isomorphism
HT,) — L}*(R™). By the holomorphy of ¥ this boundary function is
given simply by z, = Fo(2) () = F (2,416, 2,).

Therefore, to show that #, is holomorphic we must show that for
all g« L*(R™) the function y: K, — C defined by

) = [ Poleo)@)pla)dey = [ Flog+is, 2)p(w,)dn,

rM rM

is holomorphic. This is clear for continuouns @ with compact support by
the holomorphy. of F. Given an arbitrary ¢ we approximate it in L*(R™)
by a sequence {p,} of continuous functions with compact support; the
corresponding y, are holomorphie, sinee Py (z)ll < M, the Schwarz
inequality shows that the funections ¥, are uniformly bounded on K,.
Also by the Schwarz inequality, v, tends to v pointwise. Hence v is holo-
morphie, finishing the proof. )

LEanIs 3.2, Let U < €™ be a domain, let M be a measure space and let
Jfi U —L*(3) be holomorphic. Then Jor each z<U one can define f(2)(p)

6 — Studia Mathematica XLIV.4
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for a.a. pe M, so that fm a.0. pe M, 2 — f(2)(p) is a holomorphic function
U —~C and (z,D) —f(2) is joimtly measwable on UxM. For each
sub-domain U, whose closm'e 1,3 compact in U, there exists a function peL* (M ),
so that |F(2)(p)] < p(p) for each ze Uy, and pe M.

Proof. It is clearly enough to consider the case where U is a polydise.
For simplicity of notation we assume that U is the unit disc in one variable;
the general case is no more difficult than this.

We make ﬁrst the obvious remark that, for any sequence of numbers
{a,} the property Z’r" la,| < oo (VO <

9

< oo (VO r<1).

Now we develop f into a power series at the origin: f(2)
(faeL*(M)). We have 3 r"[full < o (V07 <1), and hence by the
remark,

[ Yrifue)Pdp = 30" [ 1fu(p)Pdp = X "Il < 0

for all 0 < r < 1. This implies that, for a.a. p< M we have Z " lf
Hence, again by the remark, Y'r"|f,(p)| < oco. Defining f(2) Zz" (DY
we have all the desired properties. Clearly we may take w(p) = Z"r;” [fa (@),
if the subdomain U, is contained in the disc of radius 7y, ro << 1.

r < 1) is equivalent with 2 g, [?
0

=2

)P < ce.

4. The main result. Let D be a generalized half-plane as described
in Section 1. We shall use the notation

B:.(zz; w,) = 444, D(zy, W,)>

for 1¢Q; 2, wye C™. So for fixed A< 0¥, B, is a complex bﬂmear form
on C™ whose restriction to R™ is posmlve definite.
For all z = (2, 2,)eD we define the function x,: Q*xR™ - C by

7ok, @) = (det B,)* A 2V 3 0(e,0)— O(ag ) — B,y

ud . 5
o 34 2mi (A —7(3;_(22,:sz)TBﬂ(a,u))+m/2B,.(z2,u)
= (det B;)""¢ e .

Finally, we define the space 17 as the set of all functions 4: Q*x
% €™ — C such that (i) for all compact sets K, c Q% K, = €™ the map
#y — A(-, 2,) is a holomorphic function K, - L*(K,), and (ii)

Il = |

avxo™

e BB A (1, ) PdAdmy dy, < oo.

. (Note that, by Lemma 3.2, condition (i) implies that we can modify 4 on
sets of measure 0 in 1 for every fixed 2, so that 4 is jointly measurable
in (4, 2,). Hence the integral in (i) is meaningful).

TeworEM 4.1. The map ILIF(Q*xR") > H*(D) which ocarries
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¢eIH(Q* xR™) o
(4.1) Fi)= |

o*xR™

91, @) 7.(4, a)dida

and the map L* — H*(D) which carries A <I? to
(4.2) F(s) = [ A (4, 2,)dh
A

are Banach space isomorphisms. The integrals in (4.1) and (4.2) converge
absolutely for every fiwed z = (2, z,)eD. The limit imF,|p ewists in L*(B)
: >0

ta
Jor every FeH?(D) and defines an isometric imbedding of H*(D) into L*(B).
Proof. We will describe three maps, i;: L*(Q*x R™) - H*(D),
HYD) —~ I? and iy: I? - I*(Q* xR™). We will show that each of
them is isometric and that i;04,0%, = id on a dense subset of L*(2* x R"2).
%, will be the map defined by (4.1), and 4;* will turn out to be the map
defined by (4.2). This will prove all the assertions about isomorphisms;
th other assertions will be established along the way.

Let i; be defined by the integral (4.1). We first show that if K < D is
compact then there exists yzeL?(2* xR™) such that |y,|< |yx| for all
zeK. By the Schwarz inequality this will immediately show that (4.1)
converges absolutely and uniformly for ze K, and hence represents a holo-
morphic function.

The map 2z — Imz —®(z,, 2,) is continuous from D to £, hence
carries K to a compact subset of Q. It follows that there exists foeQ
such that Imz, —®(2,, 2,) —, e Q for a]l zeK. An eagy computation using

theidentity
ReB; (2, 2) = —By(22, %) +2B,(2,, 2,)

shows that if we define m by

= _
_ (detB;.)"m' JRCSYPRRS e“?Bl(“—sz’“*ﬁ“i)

then |z, < m, for z¢ K. Using this and the fact that f,¢ 2 one sees at once

that
sup A A
2K !j[ ;’£l ( !

Now the integral (4.1) is elearly a holomorphic function of z whenever
¢ is bounded and has compact support in Q% x R™. The uniformity of the
I*(Q* x R™) norms of y,, which we just observed, extends this assertion
to all pe L*(Q* x R™) (3ee the argument in Lemma 3.1). Hence the mapping
2 - %, is a holomorphic mapping from D to L*(Q* x R™), and thus Lemma
3.2 is applicable, and therefore the required majorant yz exists.

m(2, a)

a)Pdadi < oo.
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We still have to show that the function I represented by (4.1) belongs
to A*(D) and |F|| = [p]. So let t«Q2; we have to compute the L*(B)-norm
of F,|z. A simple computation gives

(48) Filg = Plo+i®(a, za) it zg) = [ 6Fha0 @/30me) 5
o*xR™

——;Bl(a—Vsz,a—p’Exq

“)dﬂ.da.

3 _aminty
X@ (4, a)(detB,)*e e
‘We know from the first part of the argument that this integral converges
absolutely. Hence, for a.a. ie<Q¥, the integral with respect to a exists.
Also for a.a. 4, ¢ i3 square-infegrable with respect to a. It follows that
for a.a. 4, our a-integral is the Fourier transform of a function in ' nI2
By (2.5) the square of the L*norm of this funetion is

—miB(ty. V) o

3 om/? —Vazs. a—VE:
(44) 2 = (detBremb 2 f 9 (2, o) e~ Bala=Vima—VEz) g
det B, A

It is clear that f n3dA < oco. Therefore (4.3) can be regarded as the Fourier
o

transform of a vector-valued function of 1 (while #, is still being kept fixed).
The vector-valued form of Plancherel’s theorem now gives

[ [ 1Plo,+i® (2, 2) +it) Py, do, = [niaz.

Rﬂl R’Il2 o
Finally, it follows that ;
' ”Ftﬂsz(B) = f 'nidldoc,_,‘

o xR"2

Using (4.4), Fubini’s theorem, and (2.3) one computes that
[ & Dip(L, o)PdAda.

Q*anz
From this formula it is clear that F eH*(D) and ||| = [lep].

At this point it is also easy to prove the last statement of the theorem,
at any rate for:F representable in the form (4.1) (we have not yet proved
that every F < H* (D) is representable like this). In fact, let ¢, ¢’ e 2. Writing
down formula (4.3) for (F,—F,)]| » and going through the same steps
as above, we find

WPy —~Fyliom =

“Fz”iz(B) =

f [6—27:(1,#) _ e~2w(l,£’)]2 |(p (2., a)lz dﬂ. dCl K
osxR™
From the Lebesgue dominated convergence theorem it follows now that
lim F; exists in Z*(B) and its norm equals ||p]l.

-0 ~
Now we will define i,: H*(D) — I? and prove that it is an isometry.
Let F<H*(D). For fixed #ge C™ and §- such that 8 —D(2g 2) e 2,
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Lemmas 2.1 and 2.2 show the existence of a unique function 4 ~ As(2, 2)
in I*(0*) such that

F(2y+idyz) = [ 6450 4,(2, 25)da.
&

I3

Defining 4 by 4,(2, 22) = 7% 4(1, 2,) it is clear that 4 is independent
of the choice of § and

Floyy2) = [ 4(4, )dn
&

for 2 such that Tmz; — B (2, 2,) € 2, i.e. for all zeD.

Now let K, = C™ be compact and 6 such that 3—D(2,, 2,)e 2 for
all z,¢ F,. Using Lemma 3.1 and the isomorphism of H2(T,) and A%
(Lemma 2.2) it follows that the map K, — L*(Q*) defined by 2, — As(-, 25)
is holomorphic.

If K e is compact, it follows by restriction and by the definition
of 4 that the map K, - [*(K,) defined by #zs — A(-, 2;) is holomorphie.

To compute the L*norm of 4, we let 1«2 and compute Follz2 s -
First of all, for fixed 2z, we have '

T F(v+ift 402y, 22)), 20)
r™

= [Herapey(h2)fah = [t bgintttamd |4 () o)pay.
o Q%

Integrating hoth sides and taking sup we find that P32y = UAH%Z.

teQ

Next, we have to describe the isometry 4,: I? - LA(Q* x R™),

Tet 4 eI By Lemma 3.2, given a compact K, = C", 4 can be rede-
fined so that 4 (1, #,) is a holomorphic function of 2, on K, for a.a. A,
Exhausting €™ by countably many compact sefs we see that A (4, )
is an entire function of z,¢ C™ for a. a. 1. Also, by definition of 2 and by
Fubini’s theorem,

[ e |42, 2,)P dwydy, < oo
o2
for a. a. A. For these 1, by Lemma 2.3 we have

) — 3 Bi(%,0)+7VZ By (5y,0)
A2, z) = (detBy)e = [ (1, a)e TR,
P
and
fe—nBz(zzagz)IA(l,zz)Iﬂdmzdyz = f o (%, a)f*da,
an R‘nz
where ¢(4, a) is an L*-function of « for a. a. A
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T we know that ¢ ig jointly measurable in (1, a), we can integrate
our last equality with respect to A and find 415, = llpl, which shows
that 4, defined by i;(4) =@ is an isometry as desired. Therefore we have
to prove now the measurability of ¢. :

Tor 0 < r < 1 we define 4, by 4,(4,2) = A(4,7%) and ¢ by 4,(4,).
Let us denote by a;(2,;, a) the function defined as in (2.1) with the aid
of the bilinear form B,. Then, by Lemma 2.3

Py a) = [ A, 2) @5z, @) B duydyy.

"

The integral here is jointly measurable in (4, a, 2,) by Lemma 3.2.. Hence,
by Fubini’s theorem, the integral taken over a compach subset of C"
is measurable in (4, a). Since the integral converges absolutely, it follows
that @,, as a pointwise limit of measurable functions, is measurable.

By the argument given before, it follows now that |l4,/z2 = le.l-
To prove that i, is an isometry it is enough to show that the functions
of the form 4, are dense in I?. This is best done by showing that lim A, = 4
in I* e

A change of variable gives
-—%Bl(zz,zz)

14,18, = " [ JA(%, z)e 7 A daydys.-

By the dominated convergence theorem this shows that lim |4, = |4
r—1-0

Tt is enough therefore to show that A, tends to A weakly. To do this,
we imbed I into the Hilbert space of all functions on 2% X" square-
integrable with respect to the weight function ¢"Bia®), In this space
the continuous functions b with compact support are dense. It is therefore
enough to show that

tim 4, (3, 2)b(1, 2,) 6”2 A2 dwy dy.
r>1—-0
= f AL, 2)b(R, 25) e ™Bx%%) @) dm, dy,.

This, however, follows from the dominated eonvergence theorem by chan-
ging the variable from rz, to 2, and taking into account that b is bounded
and has compact support.

We have shown that 4y, 4,, i; are isometric maps. Now we show that
i40440%, is the identity on the set of smooth functions with compact
support in Q% x R™, In fact, let ¢ be such a function and let F == i, ().
F is given by integral (4.1)., Let A = 4;(F); then A is uniquely determined
by (4.2); comparison with (4.1) gives that

3
A2y 2) = (@etB) [ ¢(4, a)e

r™

— 5 (Bilen i)+ o, )+ BBy o)
da
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(all integrals involve only smooth functions with compact support).
By the definition of i; we have now i3(4) = ¢, as we had to show.

We know now that iy, i,, ¢; are Hilbert space isomorphisms. Hence
the map defined by (4.2) is the inverse of 4,. This finishes the proof of all
the statements of the Theorem.

5. The Szegé kernel of D. Given a Hilbert ‘sparce H of functions on
a set B one says that a function K: FxF — C is a reproducing kernel
of H if, for all weE, K,: E - C defined by K,(2) = K(¢,w) is in H,
and (f, K,) = f(w) for all feH and weE.

We will show that H*(D) has a reproducing kernel, called the Szegd
kernel and denoted 8, and we will find an explicit formula for i.

Leava 3.1, Let E be a set, H a Hilbert space of functions on E, S
another Hilbert space. Suppose that for every zeE there exisis an element
1o H such that defining ¢: E — C for all g F by #(2) = (@, 2.), the mapping
@ — ¢ is an isomorphism # — H. Then H has a reproducing kernel K,
and K (z, ) = (%, 1) for all 2, wek.

Proof. Let K be defined by K(z, %) = (¥, 1) and K, by K, (2)
= K (2, ). Then by our definitions we have K, = 7,. Now, for all
e, weH, '

(‘2‘; K,) = ((}1 iw) = (@) ) = ‘;’(w)

which proves that K is a reproducing kernel.
THEOREM 5.1. The Seego kernel S of the generalized half-plane D is
given by
S(z,w) = [ A= (det B)aA,
ooar

where

o(e, w) = i(Wy—21) —2D (25, w3).

Proof. Use Lemma 3.1 with # = L*(Q* xR"Y), E = D, H = H*(D)
and y, defined as in Section 4. The assertion follows by a simple compu-
tation involving (2.3).

6. The Bergman kernel of D. Let #*(D) be the Hilbert space of
square-integrable holomorphie functions on the generalized half-plane D.
All the theory of H*(D) that we have developed can be extended to .#°(D)
by a close analogy.

LEana 6.1. Let M*: O — R be defined by

() = [Tty
2
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The map L*(Q%) — L*(Ty) defined by
¢ () = [0 p(2) M*(22)7dA
G

is a Hilbert space isomorphism. The integral converges absolutely for all
ZIETQ. .

The proof can be found in [5].

Lemma 6.1 is an analogue of Lemma 2.2. Similarly it is easy to prove
analogues of Lemmas 2.1 and 3.1, and finally one obtains the following
results. (The notation is the same as in Section 4.)

TeeoreM 6.1, The map L*(Q"xR"™) - Z(D) which
ee L (Q* X R™) to

(6.1) F(z) =

carries

[ o, )22, o) M* @A) drda
or R
and the map I* — H2(D) which carries A eL? to ,
(6.2) Fle) = [ &4 4 (22,) H*(22) A
A

are Hilbert space isomorphisms. The integrals (6.1), (6.2) converge absolutely
for every fived z = (2, 2,) e.D.

THEOREM 6.2. The Bergman kernel K of D, i.e. the reproducing kernel
of £*(D), is given by

Conid otz (A€6B3)
Kz uw) = [ o G g O
o -
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The initial value problem for parabolic equations
with data in Z?(R")
by
Eugene FABES* (Minneapolis, Minn.)

Abstract. Suppose u(z, t) belongs to the class of functions having derivatives,
Dyu(z, 1), la] < 2b, and Dyu (x, 8) in LP(R"x% (0, T)). Assume that Lu(z, 1) = 0 where

L= 3 @, t)D3—Dyisa parabolic operator with coefficients hounded and mea-
laj<2b

surable and for [a] = 25 uniformly continuous. Let w(s) denote the modulo of

()43
P ds < oo, then we show that for

1
continuity of a coefficient of order 2b. If f

1<p< oojlu(, Dizomny < cifu(-, 0)ilzrmn). This 4 priori estimate is used to resolve
uniquely the initial value problem, Lu(z,) =0, ¢t > 0, and = (x, 0) = g{x) where
g(@)eL?P (R™).
1. Introduction. In this paper we consider the initial value problem
for the uniformly parabolie operatar L = 3 a,(z,t)D¢—D, when the
laj<<2b
initial data, g(x), belongs to L? (E")y 1 <p < oo, and when the coefficients,
a,(2, %), are bounded, measurable, and for |a| = 2b, uniformly eontinuous
over the strip Sp = R"x (0, T'). As usual b is 3 positive integer, z is a point
in R" t¢(0,T), a = (a, .oy @) IS an m-tuple of non-negative integers,
n
D = 1[0z ... 8°n[Bain, and laj = 3 a;. By the uniform parabolicity
i=1
of L we mean that the real part of the form, 4 (x,3; &) = > a,(z, 1) (¢8)7
juj=20
satisfies the condition, Re (4 (z,t; &)< —7]& with > 0 and inde-
pendent of (z,t)eSy.

Given a function g(w) «LP(R"), 1 < p < oo, we consider the problem
of finding a unique funection u(x, t) such that
(i) for every 8, 0 < 6 < T, D2u, la| < 2b, and D, exist in the sense
of distributions over S, = R"x(8, T) and belong to L?(8, 1)
(I) (i) Zu =0 in 8y
(i) tli?l”u(" 1) —g (Mo = 0.
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