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Dedicaied with deep homage to Professor Antoni Zygmund
on the fifiieth anniversary of his scientific work

Abstract. Analogues and generalisations of a famons theorem of Fatonw and
Zygmund are obtained for compact Abelian groups. Given a compact [Hausdorff]
Abelian group G with character group X, and an inereasing sequence & = (X2,

o0
of finite symmetric subsets of X, we consider a subset P of Xy = X, and write
Aa=1

&n(P) for the linear space of all Hermitian complex-valued functim;s on P. Write
P, =PnX, and for u e Fp(P), write

st = ¥ u(y).y
EPW

For a measurable set W < & such that W< (int(W))~, the following property is
investigated :
(%) i weFa(P) and sup [supsyu(t)] < o, then uell(P).

n2=l W

The validity of this implication is shown to be independent of the choice of &. Aceord-
ingly, if (+) holds, we say that the FZ (P, W) property holds and we call P an FZ (-
set. A number of properties of P are shown to be equivalent to property FZ (P, ).
In particular, certain matching properties of bounded Hermitian functions on P are
shown to characterise F.Z (W)-sets. For example, P is an FZ (G)-set if and only if every
bounded Hermitian function on P is matched on P by the Fourier—Stieltjes transform
of a nonnegative measure in M(G). A large class of FZ{G)-sets iz identified and the
union of two FZ (&)-sets is shown to be another FZ (G)-set. Every FZ {W)-set is a Sidon
set; the converse is an open question for W = G.

§ 1. Introduction.

1.1. History. This paper is of course related to the first two in the
sequence [4], [5], but may be read independently of [4]. We will oceasion-

* Supported by National Science Foundation Grant GP-28513.
** Supported by National Science Foundation Grant GP-28250.


GUEST


430 R.E. Edwards, E. Hewitt and K. A. Ross

ally refer to [5]. In the present paper we take up a famous theorem for
trigonometric series on the circle group which admit Hadamard gaps.
Consider a trigonometric series

2 6, exp (i1,2),
keZ

where the ¢, are complex numbers and the n, integers,
0<1@1<%2< Mg < .oowy O_p = Cpy N = — Ny,
;mf"}k+l/'ibk = ¢ >1 (Hadamard’s gap condition).
>0
The symmetric partial sums
n
(1) o) = D oxexp (ina)
k=—n

of this series are plainly real valued. Suppose that these partial sums
satisfy the condition

(2) sups, (z) < o

nz=l

for every z in some nonvoid open interval; the conclusion is that

Dol < oo,
keZ

We refer to this result as the Fatou—Zygmund theorem. Note that the
hypothesis (2) is equivalent to the condition
(3) supsy (z) < oo,
=1 .

where #T = max({, 0) for every real number {. The version (3) is more
convenient than (2), and we will use it henceforth.

The Fatou-Zygmund theorem goes back to Fatou, who in [6], p. 397,
announced without proof the result for ¢ > 2, Re(e,) = 0, and the variant

hypothesis that s,(z) converges for all » in some nonvoid open interval.:

The full theorem is due to Zygmund [16]. A proof appears in Zygmund
[17), Vol T, p. 247, Th. (6.3). The Fatou-Zygmund theorem has been
extended to a much wider class of lacunary sets {N1}rez Py Gapolkin [7].
An analogous but apparently not identical property has been studied
for conneeted compact Abelian groups by Déchamps-Gondim [1]: We
will discuss the contributions of these writers at appropriate places infra.

1.2. Mige en scéne. Our aim is to extend the Fatou-Zygmund
theorem, or more properly, to study the lacunarity property embodied
in it, for sets of characters of compact Abelian groups. Let G be a compact
infinite Abelian group with character group X. Let P be a symmetric
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subset of X, and let U be a certain set of complex-valued functions u

on P which are Hermitian in the sense that u(z™) = T;?) for all ye P.
With every » we may associate the formal trigonometric series”:
(1) Du(z)z.

P

Suppose that we are given a method of assigning to each ue 1l a sequence
(sa)y=; of real-valued finite linear combinations of y’s in P that may
serve as partial sums in some reasonable sense for the series {1). (For
the classical case, I consists of all Hermitian functions on {#}zz and the
funetions s,u are the symmetric partial sums 1.1.(1). As we shall see,
many other possibilities present themselves.) We ask the following
question. What sort of lacunarity for the set P is expressed by the require-
ment that

2) Dlulpl< o
xeP

for every weU for which the funections s; u are bounded in some preas-
signed sense? That is, we turn the conclusion of the Fatou-Zygmund
theorem into a definition of a lacunarity property of P. Plainly the possi-
bilities at this stage are very wide, since we have left open the definitions
of U, of s,u, and of boundedness of s u. We will call the property of P
expressed by this assumption a generalised Fatou—-Zygmund property. The
precise nature of this property cbviously depends upon our choices of I,
of the convergence or summability method defining s, u, and of the defi-
nition of boundedness of the funections s; u.

The Fatou-Zygmund theorem suggests that at least some variants
of the generalised Fatou-Zygmund property of P may be related to
Sidonicity of P. Our reasoning here is tenuous at best: all we have to go
on is the fact that sets with Hadamard gaps are Sidon sets and also have
the Fatou—Zygmund property. We investigate this connection from
a funectional analytic point of view. We will express some generalised
Fatou-Zygmund properties in terms of the possibility of matching more
or less arbitrary bounded Hermitian functions on P by Fourier—Stieltjes
transforms of nonnegative real-valued measures on G having restricted
supports (analogous to the corresponding well-known characterisation
of Sidon sets; see, for example ([8] 37.2. ii)).

1.3. Conventions. All notation and terminology not explained
here are as in [3] and {8]. We will adhere throughout to the following
notation. The symbol @ will denote a compact Abelian Hausdorff group
and X will denote its character group. Normalised Haar measure on G
will be denoted by 2. For 0 < p < co, 87(G) is the usual Lebesgue space
of pth power integrable functions on ¢ with respect to i. The symbol
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(@) denotes the space of all complex-valued continuous functions on G.

The gymbol T(@F) denotes the linear space of all trigonometric polynomials -

S‘ az % on G The symbol A(G) denotes the subspace of €(G) consisting
=1
«’;f all f having the form %%Z where Z’X la,| = |Iflly is finite.

€. €.

The symbol M(@) de;‘mtes the space of all complex Radon measures
on G, defined as in [8], § 14. For a subset § of &, the symbol M(S) denotes
the set of all ue M(G) such that Supp|u| = §. The symbols M,.(8) and
M, (S) denote respectively the sets of real-valued and nonnegative real-
valued measures in M(S).

For a complex-valued function f on any group @, f~ denotes the
function 1~ (2) = f(—m“_l). For a set' & of complex-valued functions, the
symbols Z, and F, denote respectively the sets of real-valued and non-
negative real-valued functions in. E. The symbol E, denotes the set of
all fe B such that f =f.

The mappings f —f and p— u~ are the Fourier and Fourier-Stieltjes
transforms, defined on L'(G) and M(@), respectively.

If E is a subset of 21(G) or M(G) and if Y is a subset of X, then Hy
will denote the set of fe B such that f () = 0 for ye X\ Y.

§ 2. Some abstract lemmas. We set down here some needed lemmas
from functional analysis. .

2.1. DerFNrTION. Let B be a real linear space. Let @(H) denote the
set of all functions 7: B — [0, oo] such that

r@+y) <r@)+(y) and z(aw) = ar(x)

for all 4, y e H and ae [0, oo[. (We adopt the usual conventions concerning
oo; in particular, the product 0- co is taken to be 0.) If e @(H) and
7(—o) = v(») for all e F, v is called symmetric. If F is a topological
real linear space, we define @, (#) as the set {zr< @(F): 7 is lower semicontin-
uous on F}.

2.2, Remarks. We list without proof some simple facts.

(a) A function 7e¢ @(E) belongs to D,(E) if and only if the set
{weFB: v(2) <1}

is closed in H.

(b) Ii 7,7 e @y(E) (or P(E)), then v+’ belongs to B, (H) (or O(E)).

(¢) If ¥ is a nonvoid subset of @,(H), then the function 7 = sup {g:
ge ¥} belongs to @y (H). -

(d) I 7¢ §y(F), then the function x - 7(—x) = v*(z) also belongs
to D,(E).

Our first lemma is simple and surprisingly useful.

©
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2.3. Luwwma. Let E be a complele, firgt countable, locally convex topo-
logical linear space (not necessarily satisfying any separation axiom). Let o
and T be elemenis of D,(E). Suppose that

(i) ze B and =(x) # co imply that ¢(x) # oo and ¢(—ax) # oo.

Then there exist a positive real number x and a cORLINUOUS SEMINOTIY &
on E such that

(i) p(x) < max{o(x), x-v(x)} for every xe E.

If B is a Banach space, then the seminorm o in (ii) can be taken as a
multiple of the norm in B.

Proof. This is, in essence, a straight category argument. Take contin-
UOUS Seminorms oy, Os, O3, ... such that o; < oy <... and such that
the sets o, ([0, 1]) form a base at 0 in E. Introduce the associated semi-
metrie

Az,y) = Y 2" ou@—y) /(L + 02— )-

Plainly E is ecomplete in the semimetric d, since it defines the uniformity
of E.

Consider the set B = {r< E: 7(z) < 1} as a topological subspace of E.
It is closed in E, since 7¢ @4(E); and nonvoid since 0eB. The set B is
therefore » nonvoid eomplete semimetrisable space. By (i), the restriction
@|B assumes only finite values. The function ¢|B is also lower semi-
continuous, and so for every positive integer m, the set

B, = {reB: ¢(2) < m}

is closed in the relative topology of B. Since B = |J B,,, Baire’s theorem
m=1

entails that some B,, has nonvoid interior in the relative topology of B
That is, there exist z,¢ B and a positive real number r such that

(1) reB

Now choose a real number @ such that 0 < @ <1 and so small that
A((L—a)zy, 7)) < 7. We write (L—a)z, = x,. From (1) we see that

(2)
Since 1—a >0, we also have
(3

From (3) and (i) we have p(—;) < oo. Now write m, = m+@(—xy).
Choose b and n# so that 0 <b<<a and

(4) ye B

and d(z,z,) <r imply that ¢(z) < m.

ze B and d{z, z,) < ir imply that ¢(x) <m.

(@) = (L—a)7(%) <1—a.

and o¢,(y)<b imply that d(y, 0) < %r.
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If ¥ iz a Banach space, each ¢, can trivially be taken as a multiple of

the norm in BE. By (2), (4), and (3) it may be seen that
plo+y)<m

whenever ye B, 0,(y) < b, and 7(y) < a. Thus we have proved:

(8) yeE, o,(y)<b, and <(y)<d imply that ¢(y) < m,.

Now write » = m,;b~* and ¢ = xc,. Then (5) shows that

(6) zel, o@)<1l, and xr(z)<1l imply @(z) <1.

The relation (6) is obviously equivalent to (ii). m

We continue with two lemmas somewhat like lemmas given by
Kahane and Salem ([11], p. 141) and Kahane ([10], p. 106), but different
enough to warrant in our opinion separate treatment.

2.4. ITERATION LMMA. Let B be o topological linear space, and B
a bounded, conves, sequentially complete subset of B such that 0< B. Let F
be a normed linear space and T a linear map of E -into F whose graph is
closed in B X F. Let Ty denote the closed unit ball in F. Suppose that there

is a real number « such that 0 < « < 1 and suck that for every ye Iy there
exists an xe B such that

@ lly —Tal| < o
Then the inclusion

(i) F,c(l—a)'T(B

holds.

Proof. The proof is by “iteration”. Given ye F';, choose #,¢ B such
that

‘ ly — Tl < a
We proceed by induction. Suppose that m, s Lyyaee

chosen so that
ly—7( 2" | < .

~ Then the element v, —a“‘""'”(y T(Za a')) belongs to F,, and by
hypothesm we can choose x,,,¢ B 50 that 1y — T
= Za’r,. Then we have

i=a

@ fy — T, < o+

» &, in B have been

il < @ Write w, =
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for ne{0,1,2,3,...}. Since B is convex and contains 0, we have
w,e{l—a)"'B.

For 0 < m < n, the same properties of B imply that

"B c(1—a) ta™B.

Since B is bounded, (2) implies that the sequence ({1 — a)#,)s-, is a Cauchy

sequence in B. Let w’ be its limit, which belongs to B. Then w = (1 —a) v

belongs to (1 —a)~'B. By (1), we see that im Tw, = y. Since T is a closed
00

@) Wy — Wpe (1 —a) (@™ —

mapping, we infer that Tw =y. Thus (i) holds. wm
2.5, Liemva. Let E, F, F,, and T be as in Lemma 2.4, with the added
hypothesis that F be a Banach space. Let (4,)5_, be a sequence of subseis
of B satisfying the following conditions.
(i) For all m and n, the set 4,,+ A, is coniained in a bounded, conver,
sequentially complete subset B, , of E that contains 0.

(ii) The equality T(\J A,) = F obtains.
n=1

Then there exist positive integers ¢, w,, and 1, such that

(iii) Fy = T(qBpyn)-

Proof. Since F = UT(A,,) = {J{T(4,)), Baire's
n=1 fA=1

the existence of a positive integer n, for which (T{4,))” has nonvoid

interior in F. That is, there exist a positive integer » and an element

Yoc F such that

theorem implies

(1) yeF and |y—yol<r' imply that ye(T(4,))"

There is also a positive integer », such that

(2 —Yoe T(A4,).

Thus for yeF such that jiyl < ™', we have

B) ¥ =Wty —yoe (T(4,))” +T(An) = (T(Ay))” +{T(dy)”
S (T(dpy+42))” < (T(Bygu)) 5

in the last line of (3), By, q, 18 as in (i). From (3) we see that

(4) By < {T(rBpyn)} ™

The set 7B, ,, is bounded, convex, and sequentially complete, and contains
0. From (4) we see that (i) of Lemma 2.4 holds with B =B, _,, for all
positive real numbers a, and so (ii) of Lemma 2.4 holds for all ae ]0, 1].

Therefore (iii) holds for any integer ¢ >7r. =
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§ 3. Generalised Fatou-Zygmund properties. In this section we estab-
lish the notation and terminology for the remainder of the paper.

3.1. Standing conventions. We shall select a sequence (h,)®,
of elements of U.(G), the rdle of which is to generate convergence or

summability methods for formal trigonometric series on @. Further speci-

fication is left until 3.4 and 3.7.
In any case we shall write

Ko = {xe Xz limh, (z) = 1};

gince every h, is real valued, X, is a symmetric subset of X. Each set
{ze X: h, (1) 5 0} is countable and so X, is also a countable subset of X,

Our Fatou-Zygmund properties are studied for certain subsets P
of X. Except where the contrary is explicitly indicated, we suppose that

(i) P is a symmetric subset of X.

The symbol §(P) denotes the space of all complex-valued functions
defined on P, B(P) the space of all bounded functions in F(P), and. c,(P)
the subspace of B(P) consisting of all functions that are arbitrarily small
in absolute value outside of appropriately chosen finite subsets of P.
Let Top denote the topology of pointwise convergence in the real linear
space §,(P); see 1.3 for the meaning of the suffix “A”. It is obvious
that (F,(P), Top) is & Fréchet space.

3.2. The function spaces . We will examine Fatou—-Zygmund
properties for P based on certain subspaces U of Fn(P). We will suppose
that U is a (real) linear subspace of §,(P) with the following properties:

(@) U = 4(P);
{ii) W is a Fréchet space under some topology;
(iii) the topology of Il is equal to or stronger than Top|1;

(iv) there is a basis (R,)°, at 0 in I such that oo ..o, >
> ..., each 9, is convex and balanced, and if w,vel, u| < |v] and ve Ry,
then ue%R,.

Sinee U is a Fréchet space, its topology can be described by a sequence
(On)pmy Of seminorms where o, is the Minkowski gauge of M,:

o (%) =]':uf{a: a >0,~1—-us iRﬂ}
a

From this definition it is clear that (iv) is equivalent to:

(v:) the topology of U is defined by an increasing sequence (o).,
of seminorms that are monotone in the sense that o, (4) < 0, (v) whenever
%0l and |u] < Jo|.

®
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Finally we suppose that

(vi) for every positive integer # and every function ue U, we have
D hy (uiz)] < .
xeP

In view of (vi) we may define

(1) sate = by (D) u(z) 2
x<P

for every » and every uell. Bach s,u is trivially an element of %y (G).
In our study of Fatou-Zygmund properties, we examine not the sums
s,% but their nonunegative parts s}u = (s,u)" = max(s,u, 0). These
functions are in €, (@) bub not in general in A(G).

3.3. LEMmA. Let W be any A-measurable subset of G, let n be any posi-
tive integer, and let p be in [1, o). Then the mapping
(i) %~ |[Egs,ull,
is a continuous seminorm on W and the mapping
(i) u = Epsiull,

s @ continuous gauge on . Hence both of these mappings belong to Do(A).
Proof. By 3.2.(vi), the mapping

w = D'y (2)u(z)] = [84ulls
2P

is a seminorm on . By 3.2. (iii), this seminorm is lower semicontinuous
on U. By 3.2. (ii) and [3] 6.2.3. and 7.2.1, this seminorm is necessarily
continuous. Thus # — s, u is a continuous mapping of U into A(GF). The
lemma now follows from the inequalities

[ satlly— 1§ sa0llo} < [ sa(u—2)llp < I8 (u— )y < l8n (2 — )l
and
e s wlip— 1587 vllp] < max {§w s (u— )iy, [msa (v—w)llp}
< lsale—0), <lisp(u—0)lg. =
3.4. Case A: ordinary partial sums. Our major attention will
be given to a direct gemeralisation of the Fatou-Zygmund theorem in
the following setting. Let &= (X,)7., be an increasing sequence of finite

symmetric subsets of X. Given &, we define convergence factors h, as
in 3.1 by
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)

We obviously have X, = (J X, in this case. By analogy with the standard
n=1
Dirichlet kernel for @ =T, X = Z, and X, = {meZ: |m| < n}, we wil
denote these particular functions by D,.
Now consider our symmetric subset P of X. We write P, for the set
X,NP, n=1,2,... For uel and positive integers m and =, we have

(1) saw = D) u(x)z
26Pp,
and
(2) Dn* (sm%) = Smin (m,n) U+
3.5. Remark. We think of P-spectral trigonometric series
(1) Duln)x
2eP

as special instances of general trigonometric series

2) Do),

%X .
namely those for which ¢(y) = 0 for ye X\ P. Likewise, we seek to arrange
matters so that the partial sums s, arise from applying to (1) a procedure
for forming partial sums which is natural for general series (2). Thus,
although it would be possible to arrange that :

st = D u(y)y
Py,

for any increasing sequence (P,) ., of finite symmetric subsets of P with

union equal to P, we have elected in Case A to arrange that P, is in fact
chosen to be X, NP, where & = (X,)>., is a sequence independent of P
yielding sensible partial sums for any trigonometric series (2) for which ¢
vanishes off X. Normally, one will try to make X, as “fat” as possible.
(We ean make X, = X if and only if G is first countable, i.e., metrisable.
In the contrary case, sequences would have to be replaced by nets, which
bring complications of their own.)

3.6. DEFINITION. Let # denote the family of all nonvoid A-measurahle
subsets W of & such that W « (int(W))~.

Note that for ge €(@) and We F, we have

1Ewgle = lEwgle = lémw-gll,.

. 3.7, Ca.se B: summability factors. In this case the h,, are sub-
Jected to different conditions, as follows:

(i) each h, is in A, (&) and M = sup bl < oo;
nx=l

icm

©
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(ii) there is a sequence (W,)72, of (not necessarily open) symmetric
neighbourhoods of ¢ in @ such that W,¢ # and W,., = W, for every
positive integer 7, and to every such r there corresponds a positive integer
7o(r) sueh that

Wy -(Supph,) = W,_;

for every n = n,y(r) (W, is understood to be G).

3.8. Remarks. (a) In case 3.7 we admit the possibility that all W,
are equal; they may for example all be equal to G-

(b) If the torsion subgroup of X is finite, then we cannot satisfy
3.7. (i) with k, = D, except in the trivial case that X, is finite. This was
proved by Hewitt and Zuckerman [9]. Note also that D, can never be
nonnegative for all n. For if D, > 0, we have

1Dalh = D, (1},

which is 1 or 0 according as the character 1 is in X, or is not in X,,, and
by Hewitt and Zuckerman, loc. ¢if., we have lim{D,|l; = oo.
A->00

(e) The case of connected G deserves special mention. For an arbi-
trary @, let f be a trigonometric polynomial on @ that vanishes on a nonvoid
open set U. Then f vanishes on each connected component of G that
intersects U. (Let (' denote the connected component of @ containing
e, and suppose that xre U. Let ¢ be any continuous homomorphism of R
into @. Then f,cq¢ is a trigonometric polynomial on R vanishing in an
interval about 0. It follows that f,~¢ vanishes identically on R, and so
f, vanishes identically on ¢(R). The union of all subgroups ¢(R) iz dense
in ¢ (see for example [8], (25.20)). Thus f, vanishes throughout ¢ and so f
vanishes throughout «C.) If @ itself is connected, the kernels D, must there-
fore have support equal to @, and 3.7. {ii) holds if and only if W, = Gforall r.

(d) Remarks (b) and (c¢) explain why Cases A and B demand separate
treatments.

(e) As was adumbrated in 3.1, the h, are to play the role of summa-
bility kernels of the type frequently used in connection with trigonometric
series. A given sequence of summability kernels (4,);_; may or may not
satisfy the conditions laid down in 3.7 for a given choice of the W,.
Although 3.7. (i) and positivity of &, are natural enough, the inclusions
3.7. (ii) fail for many familiar kernels if (W,);2, collapses to e.

3.9. 'What we shall come to term Fatou-Zygmund properties are
special cases of the following type of property. Let P and (h,)5-; be as
in 3.1, let W and s, be as in 3.2, let W be a i-measurable subset of @,
let p be in [1, oc], and let ¢ P(U). Consider the statements
i) uell and  supléysy ull, < oo,

nz=l
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and
(i) uell and ¢(u)< oo.

The implication (i) implies (ii) will be taken as expressing a type of gener-
alised Fatou-Zygmund property of the system {P, 1, (k,)pl., W, p, ¢}

The special cases singled out for closer study are detailed in Sections 5
and 6. ’

§ 4. Necessary and sufficient inequalities. This section contains
abstract formulations of Fatou—Zygmund properties. We begin with
a necessary condition, which we formulate in more generality than is
immediately needed.

4.1. In the following theorem, notation is as in 3.1 and 3.2; W
denotes & 7-measurable subset of @ and p lies in [1, co]. The theorem is
based on Lemma 2.3.

4.2. THEOREM. Let ¢ be a symmetric element of D) that is lower semi-
continuous for Top|U. Suppose that the inequality

(1) plu) < oo
holds for every well salisfying the condition

(i) sup {lé 87 ulfp} < oo.
n2=l

Then to every positive integer n, there correspond a continuous seminorm o
on U and a postlive real number = (both possibly depending upon my) Such
that

(i) o(f ) < max{o(f"), »- Sup {ew (hax ) 1,3}

Jor every fe Tp . (@).

Prooi. Suppose that (i) holds for every uell satisfying (ii). For
& given positive integer ., we define v on the linear space I by

T(w) = sup {[|Ems7 ull,}-
n>ng ‘

Plainly < is in @(U), and from 3.3 and 2.2. (¢) we see that r is actually
in @(N). Since ¢ is lower semicontinuous for Top U, it is lower semi-
continuous on U (see 3.2. (iii)), ie., is in @,(U). We now apply Lemma
2.3. H 7(u) < oo for a given uell, then (ii) holds and so (i) holds. Our
present hypotheses thus imply the hypothesis of Lemma, 2.3, and the
conclusion 2.3. (ii) becomes

@ ¢ (u) < max{o(u), z- sup {|&psf i)}
n}na

Now let f be any function in Tp,»(G). The restriction f™|P of f~ to P
belongs to the funection space U, by 3.2. (i). Using the identity s,f" = hn*/,
we obtain (iii) at once from (1). m
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‘We now establish the converse of Theorem 4.2 for the special functions
b, = D, of Case A.

4.3. TewoREM. Nofation and hypotheses are as in 4.1 and 4.2 with
the restriction that h, = D, for all n, as in 3.2. Suppose that there exist
a continuous seminorm o on U and a positive real constant » such that 4.2.
(iif) holds with ny = 1 for all fe Tp (G). Then if uell and 4.2. (i) holds,
4.2. (i) holds as well.

Proof. Let # be any element of W for which the left side of 4.2.
{ii) is finite: write this number as L. The function s, « belongs to Tp AG).
By 3.4. (1) and 3.4. (2), we have (s, u) = Ep % A Dy * (%) = Sun g, m) ¥
for all positive integers n. Applying 4.2. (iii) with 5, = 1, we find that
(1) olép,u) < max{o{ép u), # Sup {llw (s,0) )} <max {o(£p, u), #L}.

<j<m
‘We may suppose that o is one of the defining seminorms ¢, of the topology
of U, and so 3.2. (v) and (1) combine to show that

o(ép,w) < max{o(u), xL}.
Since ¢ is lower semicontinuous for Top|l, we have

¢(v) < liminfe(fp u) < max{o(u), L} < oo,
Le., 4.2. (i) implies 4.2. (i) under the hypothesis 4.2. (iii). m
4.4. Note. One might hope to prove Theorems 4.2 and 4.3 for asym-
metrie ¢, replacing 4.2. (i) by

(i) plu) < co  and g{—u) < oo.

Since there need be no connection between f+ and (—f)*, we see no way
to prove that ¢(—u) < oo for asymmetric ¢ under the hypothesis 4.2. (iii).
4.5. We now take up abstract versions of Fatou-Zygmund properties
in Case B (see 3.7). In Theorems 4.6 and 4.7, (h,)2., and (W,)2, are as
in 3.7, p is an element of [1, co], Wis asin 3.2, and ¢ is a symmetric element
of O(Y) that is lower semicontinuous for Top|.
4.6. THEOREM. Suppose that

(i) glu) < oo

for all wel for which

(i) inf{sup {{[£5. 57 ull,}} < oo.
=1 n>1

Then for every positive integer v, there exist a positive constant =, and & con-
tinuous seminorm o, on W such that

(i) ¢(f") <max{o,(f), % i&w I}

for all fe Ty, (@).
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Proof. For all r> 1, we define n, = ny(r) a8 in 3.7. (ii). Our hy-
potheses obviously imply that g(u) < co if

sup {[é5-, 55 Ty} < oo,
nz=1

and so by Theorem 4.2, there exist a positive real constant x, and a contin-
nous seminorm o, on U such that

(1) . ¢(f max{a yr SHP{HfWr hn*f “p}}

for every feXp,.(G). To obtain (ili) from (1), we need to majorise the
sopremum in (1) by a constant multiple of {|& f"“l]p To accomplish this,
we must use the special hypotheses of Cage B
Since h, is nonnegative, its convolution 7,*w with any funetion
we £ (§) is nonnegative. From this a simple argument (which we omit)
shows that
(B w)* < By % (07)

for all we 2(@). Thus for feITp,(G) we obtain
2) E, (h* ) < By, (B> (F)).

Now let g be any function in 2% (@) (we agree as usual that 1’ =
and that oo’ = 1). For typographical convenience, write 6 for the function
fyy,9 and 6% for the function @ — (xz~Y). It is clear that Suppd < Wr.
Let » be any integer greater than or equal to n,. Now using (2), elementary
properties of convolution, and 3.7. (ii), we write

@) [, (hxf)Tgdh = [ (hyxf)* 032 < [ (B, (f*)) 002
o (2} (&3

= (ha* (7)) %6 (e) = =[w,_

Applying Hélder’s inequality to the last part of (3), then the norm ine-
quality {fk,* 6%, < [Baf, 116", (see for example [8], (20. 14)), and finally
3.7. (i), we obtain

W

(F5)* (R, % 6%)(e) (B 0%)F dA.

(o ® 6% A2 < [, 1 % 0%, <

<<f§W, 1f I M lgly
), we find

®) | & (hax )7 g0 <
G

W6, 1o M1 6]l

Combining (3) and (4
(e, I lollghy -

By a well-known property of §* norms (see for example [87], (12.13)),
(5} implies that

U (R xf )i < Mitw, i,

©
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L ity for 0

This inequality combines with (1) to yield (ili) with o, = o,,; and =,
=Mx,,. =

TWe now state and prove the converse of Theorem 4.6.

41.7. TuEOREM. All nolation and hypotheses are as in 4.5. Suppose
thal for each positive integer r, there exist a positive constant », and a contin-
uous seminorm @, on W such that 4.6. (iii) holds for all feTp,(G). Then
the condition 4.6. (ii) implies £.6. (i), for all ue<ll.

Proof. As noted in 3.2. (v), our continuous seminorm o, can be taken
to be monotone Let g be any funetion in % ,.(G). By 3.2. (i), the Fourier
transform ¢~ | P belongs to Y. Let (P ')i—: be an increasing sequence of
finite symmetric sets with union P. For every positive integer j, let f;
be the polynomial such that

f; = fpjg .
It is obvious that fieIp (@), Iff 1< 1lg"],

and lim|/f;—gil, = 0. Since ¢ is lower semicontinuous for Top|l, we

limf; (z) = g” () for all ze X,
700

o0
infer that
(1) 7lg') < hmmftp i)
By 4.6. (iii), we have
@) o(fi) <max{o(f7), % liEw f7 o} < max{o,(g"), % &m 1 1}
It is plain that
(3) w15 o — 1w, 0 Il < U — 07 1o
Since ||f;—gil. — 0, we also have ||f; —g"']}u — 0, and this with (3) shows

that
lim [[&g- £, = 6w, g7 llp-
Jo0

Applying this to (2) and using (1), we find

(4) ¢lg ) <max{o,(g"), % &m0 p}s

which is 4.6. (iii) for the function g.
Now let % be any element of U for which 4.6. (ii) holds. Fix any pos-
itive integer r for which

L = sup| 1w, 55 u[1p< oo,
n=1

As noted in 3.2, the functions s, are in Ap (&), and s0 we may apply (4)

to write
(5) qﬂ(h; %) < max {Gr(hr: u), ”rL}'

3 — Siudia Mathematica XLIV.5
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Since .
[ | < Il < M,

we have |k, | << M|u| and by the monotonicity of ¢, and (5) we find
{6) @ (hy ) < max{M-o,(u), %L} < co.

By 3.1. (i), we have
limh, (y)u(x) =u(y) for all yeP.

Again the lower semicontinuity of ¢ for Top|d implies thatb

@(u) < limint (b, u),

and so (6) guarantees that ¢(u) < co. =
§ 5. Examples of case A. The theorems of § 4 are an abstract formu-
lation of a. large variety of theorems of Fatou—Zygmund type, which
we obtain by special choices of (h,)oq, U, ¢, 9, W, and (W,)2,. We
consider here and in Section 6 some particular cases.
5.1 Let &= (X,);—, and (D,);~; be as in 3.4, and let P be a sym-
o

metric subset of X, = X,. We take U to be the entire space §,(P),
n=1

with the topology Top of pointwise convergence, ¢ to be the function

plu) = D ()] = [l
xeP
and £ to be as in 3.6; we also set p = oo.
We note first that the continuous seminorms o on 1l are exactly
those majorised by some seminorm

% - Constmax [u ()|,
yeZ

where X' is a finite subset of P. The proof is simple and is omitted.
5.2. DEFINITION. Given a set- W in ,#, we denote by #'Z(P, &, W)
the following statement. If ue §,(P) and

() sup ||&g 57 wlly, < oo,
nzl

then

(ii) uel}(P).

If FZ(P, &, W) holds, we say that P has the FZ (&, W) property and
that P is an FZ (&, W)-set. Plainly FZ (P, &, W) expresses a special Fatou—
—Zygmund property of the type described in 3.9.
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5.3. DEFINITION. If P has the FZ (%, W) property for every W in ¢,
then we say that P has the full IZ (%) property and that P is a full FZ (&)-set.
In other words, P is a full FZ(%)-set if every u that satisfies 5.2. (i) for
some W in £ belongs to I*(P). .

‘We will show in 8.8 that the FZ (<, W) properties and the full FZ (&)
property do not depend on the choice of &, and so after 8.8 we will refer
simply to the FZ(W) property, to FZ(W)-sets, ete. See 8.9.

5.4. The original Fatou-Zygmund theorem deals with the circle
group T and its character group Z with X, = {meZ: |m|<n} and
& = (X,)n-1- The Fatou—Zygmund theorem asserts that any symmetric
Hadamard set in Z possesses the full FZ (&) property.

Gapolkin [7] has extended the Fatou-Zygmund theorem to a large
class of sets, again in the group Z. These are the sets discovered by Stedkin
[15]; see 10.2 and 10.4.

Tor the special situation described in 5.1, we can state Theorems
4.2 and 4.3 as follows.

5.5. ConpITroN. Notation is as in"5.1; n, i3 a positive integer and
there exist a finite subset 2 of P and a positive real number » (both perhaps
depending upon #,) such that the inequality
(i) If "1 < #max {max | (x)], Sup 1&m (Do*f)F 1}

2ex n=ng
obtains for all fe Tp , (G).

5.6. THROREM. The set P has the FZ(%, W) property if and only if
Condition 5.5 holds for all positive integers n,. If 5.5 holds for some n,,
then P has the FZ (5, W) property.

5.7. COROLLARY. If P has the FZ(5, W) property, then P is a Sidon
set.

Proof. From 5.6 it follows that 5.5. (i) holds for every feTp ().
For fe Tp (&), we have ||f " [lo, < ||f]l, and Dy*f = f for sufficiently large ,
and so

(1) ”fAHI < %Supﬂ”Dn*f”u'
Let us write P, = PN X, and sp f = 2 (x)2 Thus (1) signifies that
2Py,

(2) : “f'\ Hl < ”SuanSPanu

for every fe Tp . (@). If fe Tp(6) we may, since P is symmetrie, apply (2)
to each of Ref and Imf and so conclude that

IF I < 2xsupyisp, £l

for every fe Tp(G). Applying 3.9 of [5] (with w = 0, p = 2 and every o
equal to the unit mass at ¢), we see that P is a Sidon set. m
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§ 6. Examples of case B.

6.1. We make specialisations a little different from those in § 5.

As in § 5, ¢ is still defined by p(u) = 3 |u(y)| and again we take P = oo,
" zeP

X

The set P is again an arbitrary symmetric subset of X, and the sequences
(W2, and (h,),-, are as in 3.7. The functions s, are again as in 3.2.
The space Il this time is taken to be the space B,(P), topologised with
the usual uniform or I norm, denoted by |[u|l..

The continuous seminorms on i this time are exactly those seminorms
on U that are majorised by a constant times ||-||.

‘We think of the implication ‘‘4.6. (i) implies 4.6. (i)”” in this cage
as a generalised Fatou—Zygmund property. If W is a set in ¢, GFZ (P,
(hy), W) denotes the following statement: 5.2. (i) implies 5.2. (ii) for all
functions % in B,(P). This is another specialisation of the ideas in 3.9.

The symbol GFZ(P, (h.n)) denotes the statement: if 5.2. (ii) holds
for W equal to some W,, then 5.2. (i) holds. We say that {P, (hy)} has the
GFZ-property it GFZ(P, (k,)) holds.

The GFZ-property has no analogue, 3o far as we know, in classical
Fourier analysis. '

6.2. ConprrroN. Notation is as in 6.1. For every positive integer r,
there exists a positive real number s, such that for all fe Tp,+(@), we have

@) 17l < mmax {JIf |l e, It -
Theorems 4.6 and 4.7 can be stated as follows.

6.3. TEEOREM. The assertion GFZ (P, (h,)) holds if and only if Con-
dition 6.2 holds.

‘We note also the following version of Theorem 4.2.

6.4. THEOREM. Suppose that GFZ (P, (h,), W) holds for some W in 2.

Then for every positive integer ng, there is a positive real number % such
that the inequality

() 1"l < e {1 "o, SUD [|Epp (B f) "}

holds for all feTp,(@).
6.5. Cororrary. If GFZ(P, (h,), W) holds, then P is o Sidon set.

Proof. The hypothesis implies that 6.4 (i) holds for every fe Tp (&)
In view of 3.7. (i), it follows at once that n

I < sty 7, < M,
for every feTp ,(@). So, as in the proof of 5.7, we have
Il < 20 £, -
for every fe Tp(@); this implies ([8], 37.2. vii) that P is a Sidon set. m

icm
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§ 7. Matching properties and the FZ-property, Sidonicity of a subset P
of X can be expressed as a matching property: P is a Sidon set if and
only if every bounded complex-valued function on P is matched on P
by the Fourier-Stieltjes transform u” of some (complex) measure x in
M(G). A similar characterisation exists for FZ-sets, with the refinement
that the measures u ave in M, (G).

For the reader’s convenience, we repeat here a definition from [5}, § 3.

7.1. DEFINITION. Let § be a complex normed linear space with norm
8 — |islly and I any infinite index set. Let f: ¢ — F(:) be an element of &7
Suppose that there is an element s e § such that for every >0 in S,
there is a finite subset J of I with the property that

17(0) ~sullg< &
for all ve INJ. (Plainly s, is unique if it exists at all.) We then write

li}n f =84,

8, denoting the constant funetion ¢ —»s, in S% Let ¢(I, §) denote the
set of all fe ST for which limf exists, and ¢o(I, 8) the set of all fe ¢(I, 8)

for which limf = 0. Let I'(I, §) denote the set of all functions f in §7
for which
Al = D 1IF s < oo
el

7.2. Remarks. Plainly f(I) is'a bounded seb in § for all fee(l, S),
and 8o we may. define

Ml = sup (s>

a8 in [6], § 8. It is trivial to check that ¢(I, §) is a normed linear space
under coordinatewise linear operations and the norm f — |||fl|le. It is
easy to check that ¢(I, §) is » Banach space if § is a Banach space. Anal-
ogous remarks apply to I*(I, 8).

We now describe the conjugate space of ¢(I, S).

7.3. Lmmma. Let S be as in T.1 and 8 the space of all bounded linear
Sunctionals on 8. Let I be a bounded linear functional on ¢(I, 8). Then
there emist an element A of 11(I, 8') and an element Ay, of 8 such that for all
fee(I, 8), we have ‘

@ L(f) = Zeo(limf) + 3] 20} (F0)-

el
Conversely, every function on o(I, 8) of the form (i) is & bounded linear
functional. The norm of the functional L is

(if) I = Nl -+ HIAN]2-
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Proof. The proof is an easy extension of the proof of Lemma 3.3

of [5], to which the reader is referred. ®
We can now state and prove our main matching theorem.

7.4. THEOREM. Notation and hypotheses are as in 3.1 and 3.4. Let W
be a set in F. The following are egquivalent.

(a) The set P has the FZ(S, W) property.

(b) Bvery function B in B, (P) admits an expression

'+ 2 ’D')L ’Vﬂ

for oll 4 P, where a is in B, (P) and has finite support, the measures v, and
Ve are i M (W)Y, and

@ Blx) = alx) +7e(x

(i) Dl < oo

n=1

Furthermore, if (b) holds, there exist o finite subset X of P and a positive
real number x (both depending on P and W) such that a representation (i)
can be found for which

(iii) Suppe = X
and
(iv) Hal.lw vl + 2 [#all < %{Blloo -

=1

Proof. The proof, while not intringsically ' difficult, is rather long.
Suppose first that FZ(P, &, W) holds. We cite Theorem 5.6 and so may
apply the inequality 5.5. (i) with n, = 1, and with the X of the present
theorem being any finite symmetric subset of P containing the set X
defined in 5.5. Thus there is a positive constant »'' such that

6 If < %"m&X{maéX If" (ol sup 1€ (Duxf)*llu}

for all fe Tp ,(G). To obtain a representation (i) for our function B eB,(P),
we first define a linear functional ! on Tp (@) by the rule

2) = 2 B(f ()
It is easy to see that I is real valued and real linear on the real linear space
Tp,(@). Applying (1), we find

B AN <IBlalf < %’max{mix v (01, sup{llém (Dpxf)* [}

for all fe Ty, (@), where «’

= %" |1Blleo-

©
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Next we introduce the real linear space

Y = Fu(P) x o{I, €.(W 7)),
where the index set I is {1,2,3,...}. For (u, (g)%.,) in ¥, define the
gauge p by '
(4) P{w; (gu)is) = max{max ju(z)], sup {llg; 1}
P nzl

Let us map Tp (@) into ¥ by the mapping y, which we define as
P(f) = (1P, (D f) W) .

The inequality (3) in our new notation asserts that

(5) FA < %oy (f)

for all fe Tp (&)

We now claim that there is a real-valued real-linear functionsal I
on y{Tp (@) such that

(6) LE) =1y (f))
E)lr 17.51411 feZp, (@) . In fact, if y(f;) = y(f,) for Jiy foe Tp (@), (B) shows
a
[B(f) =Vl = Mfr—F)l < #' D (v (fr—f2)
=#ply(f)—y(f) = #p(0) = 0.
Accordingly 7, is well defined on y(tp,,(G)). Plainly 1, is real valued and
linear. The inequality (5) and the definition (6) show that

(1) L < «'ply)

for all ye y(IP, ) « Y. By the Hahn-Banach theorem, we may extend
lo to a linear functional on ¥ (which we will still write as I,) for which (7 )
holds for all ye Y.

Restricting 7, to &,(P)x {0} Z ¥, we see from (7) and (4 ) that I,
on this subspace is a real linear ﬁmctmnal satisfying the inequality

|l0 u: n)n=1)| <% ma.x]u X '
. y

for all we &, (P). Since  is finite and symmetric, there accordingly exists
a function « in §,(P) such that (iii) holds,

(®) e < flafh <
and
® (s (00)3) = Y alz)u(z)

for all ue &, (P).
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Similarly, observe that the mapping
(gn)ne1 =~ lo(oa (gfz);o=1}

is & bounded linear functional on ¢(Z, C,(W~)). Since the conjugate space
of G.(W™) is M,.(W™), we infer from Lemma 7.3 that there are measures
Yoy ADQ [y, By Hay oevy oy -+ o 0 ML(WT) such that

ZO(O} (9n)$=1) = fgoodfucc"_ Z f.(/nd/‘n
G

n=1G

(10)

for all (g,)2 e c(L, C.(W™)). (Here g, is the uniform limit on W~ of
(ga)ie:.) Lemma 7.3 also combines with (7) to guarantee that

ltoll + D, lltall = morm of 7, on o(I, €,(W")) < #',

fn=1

Combining (10), (7), and (4), we obtain

(11)

(12) [ oot D) [ guipn < ' 5u {13}
G n=>

n=1 G

Given ge €, (W) and a positive integer m, first let g, = S,,9 (ne{l,2,
3,...}). Putting this (g,), into (12), we find

fgd;“m < #g ||
G

which implies that p,e M, (W~). Next let ¢, =0 if n<m and g, =¢
if m > n. Putting this (g,)5., into (12), we find

> Jedm < #gt gl Y -

n=m+1 G n=m+1

(13) [ 98 < ¥ llg* N~
G

In view of (11), the last sum in (13) is arbitrarily small for m sufficiently
large. This implies that p,e M, (W").
Combining (9) and (10), we obtain

bty (gnlims) = D aln)wl(n) + [ godp+ f [ g,
G

%eZ n=1 @

for all (u, (g,)5-1)« ¥. This equality, (2), (8), and the definition of y show
that for all feTp, () we have the identities

(14) ‘
;Pﬁwf‘ ) =Uf) =Lly(N) = Danf ()+ Gf Fltat Y [ (Dyrf) .

2eP n=1 Q@
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Define the measures vy, and », by v, = u, and », = #n - Then (14) shows
that

(15)
%jﬂ(x)f’(x) = Zpa(m‘(m ZPv;mf“(xH 2| fﬂ,:u)v,: D] £ (2
%P XE. ZE. 2P n=1

for fe Tp,(@). For any f in Tp(@), (15) applies to both Ref and Imf and
go (15) also holds for f. Putting f = v in (15) for each pin P, we gsee that (1)
holds. The ineclusion (iii) has been established above. Finally, writing
% = 2'', we at Once infer (iv) from (8) and (11). This completes the proof
that (a) implies (i)—(iv).

We turn now to a proof of the converse. Supposing that the matehing
property (i) and (ii) of (b) obtains, we wish to show that FZ (P, &, W)
holds. As above, let I = {1,2,38,...}, and form the real Banach spaces
ZI(I, Mr((W”)‘l)) and 7;(P) and the product space

B =T0,(P)x M,(W-)™)xP(I, M,(w=)7).

Clearly F is a Banach space under the norm

s 7eos (il = ey + el Y 1l

n=1

(16)
Define a mapping T of F into B,(P) by

(17) T(ay ey (i) = at s+ > D70y )P,
-om=1

Plainly 7' is a bounded linear transformation whose norm does not exceed 1.
For every positive integer ¢, let A, be the subset of Z defined by

Suppa = Py vy wme My (W)Y, llala+ el + Y Il < .

n=1

(18)

Plainly each 4, is closed in Z (and so is sequentially complete), and is
bounded and convex and containg 0. Furthermore, the inclusions 4,4+ 4, <
< Ay, ¢4, = Ay are easy to check, for all positive integers ¢, %, and g¢.
The hypothesis (b) simply asserts that

2(04) = Bi(P).

Hence we may apply Lemma 2.8, with B, , = An.n,, and infer that
there iy a positive integer % such that

(19) the unit ball in B, (P) is contained in T'(4,).
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Now we choose any nonzero feTp (G and define B, (P) as (sgnf ") | P.

Since [|fll. =1, We apply (19), (17), and (18) to write § as

,3 = a’l‘("’;'l“ S‘D?:q’?:)iP,

n=1

(20)
where Suppa = P, and

lalls+ lpeall+ ) livall < T
n=1
Recall too that »,, and all », are in M, ((W~)™"). Now multiply (20) through
by f* and sum over P (since f is a trigonometric polynomial, the sum is
actually finite). We obtain

@ If k=D s
xeP

= Y wew+ X e+ X (D5 0D v (0)-

%Py 2eP n=1 geP

For the first sum on the right side of (21), we have

| D1 aln|< maxdif” (0l el
7Py,

wePy,

(22)

To estimate the second and third sums, we note that

(28) D raln) = 3 (Fr92) " (2) = frvele)
2P 2P .

= [ fu M) = [fav
Wt w-

= [max{f, 0}dz+ [min{f, 0},
w- w—

< [ g < Pl lewf -
>

Similar estimates apply to each summand in the third sum, and so we
combine (21), (22), and (23) to write

@) I k< Ilalllnzlgf{lf(x)l}-%Ilvwll'waf*Hqu D Iall- 16 (Dt f)* -

n=1

For all sufficiently large n, we have D *f = f, and so (24) and (18) yield
(25) I 1 < klnax{lrgx{ 17 (01}, sup € (Dy % 5) L)
XL, nz=1

The inequality (25) is exactly 5.5. (i) with x =k, ¥ = P,, and N =1,
and so Theorem 5.6 implies that (a) of the present theorem obtains. m
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We end this section with the analogue of Theorem 7.4 applying to
the GFZ-property.

7.5. THEOREM. Notation ond hypotheses are as in 6.1. The Sfollowing
statements are equivalent.

(a) The set P has the GFZ-property.

(b) For cvery re{0,1,2,...}, every feB,(P) admiis an eLPression

) B(x) = & (x)+, (2)
for all ye P, where a,eU,(P) and v,e M, (W)™,

Furthermore, if (b) holds, there ewists for every re {0,1, 2, ...} a positive
real number x, such that every feB,(P) admits an expression (i) in which
a el (P), e M (W)Y, and

(i) ' llerlla =+ Al < % 11Blle -

Proof. This is based upon Theorem 6.3 in exactly the same way
as the proof of Theorem 7.4 is based upon Theorem 5.6. In the present
case the details are a good deal simpler and are omitted. m

Throughout the rest of the paper we will concentrate on FZ-properties -
[i.e. Case A] and the exploitation of Theorem 7.4.

§ 8. More matching properties. Throughout this section, V iz an
arbitrary but fixed neighbourhood of ¢ in @, Wis asetin £, and & = (X,)2,,
P, P,, and (D,);-, are as in 3.1 and 3.4. We begin with a technical fact.

8.1. TurorEM. Suppose that FZ(P, S, W) holds. Then there exist
a positive real number » and a finite subset X of P (both depending wpon
P, &, and W) with the following property. To every fe Lp ,(G) there corresponds
@ sequence (N,)m-1 of nonnegative real numbers (depending upon f and also
upon & and W) such that '

() limz, = 0;
(id) (L =) If " |2 < #{card(ZUP,,)- max {5 (OB + w7 o) -

Proof. Let § = sgnfTIP. Applying Theorem 7.4, we write g in the
form 7.4. (i), with Suppa < Z, where X' i3 as in Theorem 7.4. For each
positive integer m, let

m
(1) ty =a+ Y Dy,
- =1
It is clear that Suppa,, < ZUP,, and that a,eB,(P). We define 1, by

@) =) Iball.

n=m-+1
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By 7.4. (i) we see that lims,, = 0, ie, (i) holds. It is also clear from
N N>

7.4. (i) that for all ye P, the inequality

(3) ]ﬁ(x)_am(;{)"”;(xn <
holds.

In proving (ii), we may restriet ourselves to m such that #, <1.
Tet us write a,, for the trigonometric polynomial such that a,, = a;:
plainly a,, is in Tp, ().

Now consider a sequence (k)52 of continuous, nonnegative, positive-
definite functions on G sueh that:

(4)  SuppK; VY [EKdai=1; jnmuK;f”nlmnf”nl.

(For the existence of such a sequence, see [8], Vol. IT, Theorem 33.11.)
For each positive integer j, form the funetion .

g5 = Kjxapxf+Kixvo*f.
Plainly g, is in G,(@), and on the set P, we have

) g =K (and) =K (1 b o va) sgnf”).
n=m-+

It is clear that

oo

Dl =

n=m-+1

©® | X Diww (nsenf” (0] <
n=m+1

for all y¢ P and so Reg; is nonnegative on P. On X\ P, g; vanishes. Now

define the function ; by b; = 3(g;+¢;): It is obvious that h; = Reg;,

ie., h; is a continuons real-valued function on & with nonnegative Fourier

transform. By [8], Vol. II, Theorem 31.42, h,f is in 1*(X) and by ibid.,

31.44. ¢, (7@,-“)“ is equal to %; everywhere on @ Combining (5) and (6),

we find that
(L~ ES If 1<,
and 8o }
(7 A=) 1B F < I = D0y () = () (o)

%X
= hy(e) = gi(e) = Kj*a’m*f(@)'}"]fj*"’m *f(#)-

Since K;*a,*f is a trigonometric polynomial, we have

@) Exanrfe) = D E (Nan(0f (1) = D Ei(men(f (1)

76X 2 Z Py,
< Y eI If (0] < llamlimax {17 ()1}
2eZVP,, eIV Py,

icm
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From (1) we see thab

lotwls << (oot | SD; "

and from 7.4. (iv) that

w) -card(Z'UP,),

m

lallot || 3 Do om < et X ol <.
f=1 n=1

Combining these estimates with (8), we obtain

@ Ey%ay*f(e) < we card (ZUPy) max {|f” (1)]}.

2 EVP,,

In estimating IK;*w,*f(¢), we may and will suppose that f has been re-
defined on a set of A-measure 0 so as to satisfy the inequality

sup {f* (@)} = l&m-. 7S lloo-
ZeW =V
Since K; > 0 and »,, > 0, we may cite (4) to write'

Kyt #f(0) < Kyt (0) = [ Eyfa™) (v *) (@) 84(0) < [ 5e* o
@

Algo, for A-almost all xe V, we have

Voot f T () = (W__(_lf*'(?/"lw)d”m(y) < ”"}w”:ceISaEPV{f+<m)} = [eoll lEp—7f oo
Since el < # by 7.4. (iv), we see thab

(10) Kk f(e) < llém—7f llo- ’

Combining (7), (9), and (10), and using the fact that }_ig”K,—‘fA = If Il

we obtain (ii). m

We now draw some easy inferences from Theorem 3.1.

8.2. COROLLARY. Suppose that FZ(P, &, W) holds. Let f be any function
in 8, (@) such that ||Ey—yf*lle < co. Then f ds in U(X).

Proof. This follows at once from (i) of 8.1. =

8.3. Corornary. Suppose that FZ(P, S, W) holds. Then there 18
o positive real mumber » (which depends upon P, &, W, and V) such thal -
for all fe 8% (), the inequality .

() 171 < % max {[fls, ll&r—pf Flico

holds.
Proof. We wish to apply Lemma 2.3. For fe 8p,.(6), let e(f) =1f Ik
and 7(f) = ||y S [l Routine arguments, which we omit, show that
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Dboth ¢ and 7 belong to Py (Rp,, (). By Corollary 8.2, we see thatb £ 7(f) < oo,
then ¢(f) and @(—J) are also finite. Thus Lemma 2.3'15 applicable with
2% ,(6) = B, and we need only note that for the seminorm o of 2.3 we
may take a multiple of the @-norm in 83,.(6). =

We now obtain a new matching property.

8.4. TuEorEM. Suppose that FZ (P, S, W) holds and that V is a com-
pact neighbourhood of e in G. Then there is a positive real number » (which
depends upon P, &, W, and V) with the following property. For every fmwm'm
B8 in B, (P), there exist a function ge °(G) and o measure ve M, (W - 7Y
sueh that:

(1) B =g +v on P;
(i) 191leo -+ 11l < % 1Bllco -

Proof. This theorem follows from Corollary 8.3 much as the first
implication in Theorem 7.4 follows from Theorem 5.6. We outline the
proof.” For fe Ip,(G), define I(f) by

(0 = D (B
2P

From 8.3. (i), we infer that

@) [0 < #]|Blleo X IS [l €= 5 f* 1}

Now consider the linear space B = 8 ,.(G)x G, (W~ V) with the
norm

(9, y) - max{llgll, lpll} = 7(p, v)
and the gauge )
(@, ) = max{ig]l, Iy} = oo, v).

Imbed Tp, (@) into B by the injective map f — (f,f|W~- V). From (2)
and the Hahn-Banach theorem we se¢ that there is a linear functional
on E, which we continue to call I, such that

U FIW=-V) =1(f) for all  feTp, (@)
and

3) Ues ) < % Bl (9, ¥) < #- Bl (@) 9).

The space F is a Banach space under the norm v, and (3 (3) informs us that
1 is a bounded linear functional on E. It follows that

) Upsv) = [ ple)h(z)do+ f )du (@)
G

for some he £°(Q) and e M, (W~-V) satlsfymg

(5) llos ~+ 1] < ¢ 1Bl

©
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The first of the inequalities in (3) shows that pe M (W= V). For fe Tp (@),
) de - f Fl@) du(x).

(4) becomes
Ji@
wey

(6)

For yze P and a complex number ¢, (6) yields

(M Wox+ex™) =oh” (3 ™) +h" () +en” (y™)+ou" ().

Combine (1) and (7) and set ¢ = and ¢ = —4i in turn. This yields
(8) Blx) =0" (z N +u" (Y.

Defining ¢ = %" and v = u”, we obtain (i (i) from (8) and (i) from (5). m

8.5. Note. If P has the full FZ (%) property 5 .3, then the set W~ ¥
in 8.4 may be replaced by an arbitrary compact nelghbourhood of e.

We continue with analogues for FZ-properties of certain _approxi-
mation properties known to be equivalent to Sidonicity.

8.6. DEFINITION. Let D(P) be the set of all complex-valued funetions
B on P such that [B(x)] =1 for all yeP.

8.7. THEOREM. The following statements are equivalent.

(2) The set P possesses the FZ(S, W) property.

(b) There exists a positive real number » such that to every B in B, (P)
there. corresponds @ we M ((W™)™Y) satisfying

W =

i) ' lltll < #1810
and
(i) Lm[ sup {lu” (x)—B(x)}] = 0.

m—ro0 1P\ Py,

(e) For every B im Dy, (P), there ewists a pe M, ((W™)™Y) satisfying

(i) limsup[ sup {|u" (x)—B(n)}]1<1.

m—rc0  yeP\Pp,

Proof. To prove that (a) implies (b), we apply Theorem 7.4. Write
as in 7.4. (i) and take y = »,. Then we have

Bl —u" () = aln)+ D Du (2 (2)-

n=1
For m so large that Suppe c P, we find for all ye P\P, that
o oo
< D bl
N=1m+1 N=m+1

Since the last term in (1) has limit 0 as m — oo, (ii) holds. The existence
of » and the inequality (i) follow from 7.4. (iv).

1) 1B(x)—
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Tt is trivial that (b) implies (¢). Suppose now that (¢) holds. Consider

any funetion % in §,(P) and let f = sgnu. Given a y satisfying (ifi) for -

this g, we can find a finite symmetric subset £ of P and a real number ¢
such that 0 < d <1 for which the inequality

1B(z)—u ()] <1—d
holds for all ye P\X. For a given positive integer u, write 3" for a sum

n
over P,\ZX, Y for a sum over P,nZ, and )’ for a sum over P,. Then
we have » i

Ml =Y putn < X v uln+a—d) Y ()],

n

which implies that
@
‘We also have

8 D =

a Y < Y W)

[ [ 2 uwa@|aum— 3w (uin).

W)=l n

We can estimate the integral in (3) as follows:
J [ X v zt]dut = [ [ unzm|as o

w1 % W= :

= [ sau®dp” (1) < lul- U5 vl
w=

(4)

Combining (2), (3) and (4), we find
(8) a3 )] < Nl Nw-siully+ X 10" (0w )

Now suppose that sup {j|&;-s;f ull,} < oo. Letting # — co in (5), we see
n=1

that wel'(P); that is, P possesses the FZ (&, W) property. This proves
that (¢) implies (a). m

8.8. COROLLARY. If & = (X)), and &+ = (X, are sequences
as in 3.4, and if P is o symmelric subset of X satisfying P < (U X, and

n=1

P e U X7, then P possesses property FZ(F, W) if and only if it possesses

n=1
Property FZ(S*, W). Likewise P possesses the full FZ(&%) property if
and only if it possesses the full FZ (F*) property.
Proof. The left side of 8.7. (ii) is actually equal to
inf sup {|u" (z)—B(x)[},

T gePN\T

©
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where 2 runs over all finite subsets of P. Hence the validity of statement
(b) in 8.7 depends only on P and not on any particular sequence &. m

8.9. DeFINITION. Let P be a countable symmetric subset of X. We
write FZ(P, W) provided FZ(P, &, W) holds for some (and hence for
every) & the union of whose elements contains P; we say that P has
the TZ (W) property or that P is an FZ(W)-sei. Similarly, P has the full
FZ property and P is called a full FZ-set if it has the full FZ (&) property
for some (and hence every) & whose union contains P.

We now obtain a matching property strongly reminiscent of F.
Riesz’s matching property for Sidonieity.

8.10. TamorEM. Let P be a countable symmetrie subset of X. The property
FZ (P, G) obtains if and only if every function in B,(P) can be represented
in the form
(i) Blx) = 1" (2)
u being a measure in M, (G).

Proof. Suppose that (i) holds for all g as described. Then we can
write § in the form 7.4. (i) with 4 = v, ally, = 0,and o = BY—p (1) €y
if 1eP and a =0 if 1¢ P. By Theorem 7.4, FZ(P, @) holds.

To prove the mnecessity of our condition, we cite Theorem 8.4 with
V =@. Given f<®B,(P), we find ge 2°(¢) and yye M, (G) such that

(1) B =(g" +u)P.

Now write s = (||glle + 4) A+ . Plainly g belongs to M, (&), and from (1),
»" matches f on P\ {1}, inasmuch as A° ’

38.11. Remarks. (a) The foregoing theorem clarifies the relation of
the Fatou~Zygmund property to Sidonicity. A subset P of X is of course -
a Sidon set if and only if every bounded complex-valued function on P
i8 matchable [on P] by a Fourier—Stieltjes transform u”, where x is some
complez measure in M(@) (see for example [8], Vol. IT, Theorem 37.2).
A countable symmetric subset P of X is an FZ(G)-set if and only if every
bounded Hermitian function on P is matched except perhaps at 1 by
the Fourier-Stieltjes transform of a nonnegative measure.

(b) Consider a countably infinite symmetric subset P of X that is

Jor all  ye PN\{1},

= & L

Can FZ (@)-set. A bounded function f on P such that f(x~") = B(x) can

be redefined at 1 (if 1e P) so that g admits a positive-definite extension
over all of X. This follows from 8.10 since u~ is positive-definite for
we M, (G). Since 1&gy, is positive-definite for ¢> 0 and sums of positive-
-definite functions are positive-definite, we see that f--t&y, admits a
positive-definite extension over X for all > u” (1) —f(1).

(e) Now let @ be a finite subset of X, and consider the finite sym-
metric set @O~ = ¥, Plainly ¥ is an FZ(G)-set and so every symmetric

4 — Studia Mathematica XLIV.5
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function on ¥ can be redefined at 1 so as to admit a positive-definite
extension over X. For previous results in this directiqn, see [14].

We next establish an analogue of 8.10 for :Eunctlogs in ¢,(P), sug-
gested by a well known fact for Sidon sets. We precede this by a technical
lemma. 3

8.12. LEMMA. Let @ be a finite subset of X\ {1} and lef & be a positive
real number. There exists a funclion fe T (G) such that f (x) =1 for all
ze @ and ||fll; <1+e ‘

Proof. With no loss of generality, we may suppose that & ix sym-
metrie. By [8], Vol. II, Theorem 28.57, there is a sequence (I,)X., of
functions in T, (&) such that |K,|, =1 and

ImE, (y) =1

N0

for all ye®.

Define
fo= Kot D =K, () 2+ D 1=K, ()]
ye® yed -
Plainly £, is in T, (6), and since 1¢ @, we have f, (1) =1 for all ye D.
Also we have
Wb =fa (1) = B 0+ Y 1=K, ()] =1+ Y 1—E; (),

269 zed®

and this is less than 1+ & for » sufficiently large. m

8.13. THEOREM. The property FZ(P,@) holds if and only if every
Junction B in co,(P) can be represented in the form

@ Blzx) =f"(x) for all ye PN{1},
where f is a function in L4 (G).

Proof. A glance at 8.10. (i) and (i) shows that we lose o generality
in supposing that 1¢ P. :

Suppose that (i) holds. We will apply Lemma 2.5 with B = EiA(G),
F = ¢ (P) (both with the usual norms) and 7 the mapping f —f" |P.
For 4, (nef{l,2,3,...}) we take {fe2L(&): ||f|l, <n}. The mapping T
is linear and continuous, hence closed. Plainly 4,4, is contained in
A, myand A, ., s closed, convex, contains 0, and is sequentially complete.
Also the equality ¢4, = A, holds for all positive integers ¢ and n. The

matching property (i) is just the assertion T (UA4,) = ey (P). Hence the
=1

conclusion of Lemma 2.5 holds. Reworded glightly, this asserts that
there is a positive real number » such that for all Be 0y,(P), the function f
in (i) may be chosen so that

) 171 < %[1Blco-

icm°
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Now given a function y in B,(P), we can trivially find a sequence ()32,
such that

limf;(y) = y(y) for all 1€ P,
J—00

(2)

Bic an(P); il < ylle-
For each j, choose fje ﬁi(G‘) for which
(3) 1P =g

and (£l < #[lBle < # |17/l v

The sequence (f;)%2., admits a convergent subnet in the weak-* topol-
ogy of {ve M(@): ||| < x||p|lo}- Lt u be the limit of this subnet. Plainly u
is in M (&), and from (2) and (3) it is clear that AP =y.

Let us prove the converse. Suppose that FZ (P, @) holds, and cite
the matching theorem 8.10. Another application of Lemma 2.5 shows
the existence of a positive real number » such that the measure g in
8.10. (i) can be chosen so that

(4) fleell < 1B oo
Consider any fe ¢, (P). For every positive integer j, define
Py = {xe P: 27lfllo < 1B(2)] < 277 Bll,.}.

Plainly P; is a finite symmetric subset of P. Define
that

()

B; a8 :351',-' It is clear

1Bille <27+ 1Bllos D' = p.
J=1

Using (4) and (5), we find measures tie M (@) such that

(6) # 1P =By gl <27 % )1fll.

Now use Lemma 8.12 to choose polynomials p; in T, (@) such that
(N

lpdli<? and p =1 on P

Define the function f as Y pu,. It is easy to check from (6) and (7)
j=1

that fe 8} (@) (and incidentally that (lfll: < 3%)|B]l). From (6) and (7)
it is also clear that

FIP=3puIP=Yp=p m
J=1 j=1

8.14. Remarks. We do not know whether or not every symmetric
countably infinite Sidon set P is an FZ(G)-set. Nevertheless, we can set
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down some. conditions equivalent to FZ(P,d) that look considerably
:strongel' than Sidonieity. For a real-valued function f on @, we write
max (f) and min(f) for max {f(»): v« ¢} and min {f(): # e G}, respectively.

8.15. THROREM. Let P be a countably imfinite symmetric subset of X
not containing 1. The following conditions are equivalent:

(i) P satisfies the property FZ(P,Q);

(i) every fumction B in By(P) is matchable on P by u” for some
pe M (&); .

(iii) there is a positive constant » such that ||f ||, < % max (f) Sfor all
FeTp, (63 )

(iv} there is a positive constant » such that ||f” ||, < »-esssup ) for all
felp,(@); ,

(V) fe Lp.(6) and esssup(f) < co imply f~ eI} (X);

(Vi) pe Mp (@) and p< ch for some real number ¢ (which depends
on ) imply u’ e1'(X);

(vii) there is a positive constant x such that p in My (@) and u< el
(¢ depending on p) imply |u” ||, < xe.

The constants in (iii), (iv) and (vii) may be taken equal.

Proof. The equivalence of (i) and (i) is Theorem 8.10. It is simple
to establish directly that (iii) implies (i), and we will now do thig. Suppose
that (iii) holds, and that # is any function in Fn(P). If the functions
8, = Y u(y)y are bounded above by say « on G, then from (iii) we have

xeP,

n -
lsals = > u(x)] < »max(s,) < #a,
%Py,
and so -taking the limit as n — oo, we find that wel*(P), ie., property
FZ(P, ) holds.

We now prove that (ii) implies (iii). 'We firgt apply Lemma 2.5
with B = M(&), F = B,(P), T(s) = 4" |P, and 4, = {uwe M, (@): |u] < n}.
Lemma 2.5 shows that there exists a Positive integer m such that {88 ,(P):
Bllo <1} = (4,,)". In other terms, there is a positive constant » such
that for every pe®B,(P), there is a #e M (@) for which [u| < #|jf|l, and
for which #"|P-=f. Now let f be a polynomial in I ,(G); define B as
]slgnf”, and choose pue M, () such that Jju|| < « and 4" |P = B. Then we

ave

Il = 21 @80 = 35" w’ ) = T+ () 2te)
xeP xeP xeP
=Frule) = [fy™)au(y) < max(f) |ul) < max(f) .
(23

??Jis is exactly (iii). We have established the equivalence of (i), (ii), and
i), ‘
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For p in My ,(&), we have 0 = #" (1) = [1du, and so any ¢ ag in
G

(vi) or (vil) must be nonnegative. Condition (vii) trivially implies (iv)
with the same value of «, and (iv) trivially irplies (ifi) with the same
value of x. Suppose now that (iii) holds; we prove (vii). Let 4 in My (@)
have the property that u < eA. By [8], Vol. II, 28.57, there is a sequence
(K;)7%, of functions in T, (&) such that JE;d) =1 and IimE; () = 1

- . G > -
for all ye P. Consider the polynomials fy = uxE;. For ea\,chJ g% them and

for all z¢@, we have ,

@) = [ B 0)auy) <o [ Ky 0)arty) = o [Kyar —o.
G G &

By (iii) and the evident fact that fi€ Tp (@), we have
177 1l < =e.

By Fatou’s lemma for series, we have

"l = D mIES ()" () < Yimint | 371K ()" (1]
J=>c0 %P

2P i-00

= liminf||f; [, < xc.
J~re0

Thus (vii) holds with the same value of x.

‘We have thus proved the equivalence of (1), (i), (iii), (iv) and (vii).
Since (vii) obviously implies (vi) and (vi) obviously implies (v), it suffices
for us to prove that (v) implies (iii). First we show that

@ Ifll: < 2max () for feTp,(6).

We have f = f*—f~ where f* = max(f, 0) and f~ = —min(f, 0). Since 1
is not in P, we have

0=f"(1) = [far = [frai— [f-ar = |ftl—If s,
G (23 =3

and hence
Iflly = I+ 17l = 2If < 201f )l = 2max (f).

This establishes (1). Now we apply Lemma 2.3 with
B =80, o) =Ifh amd <(f) = esssup(f).

Hypothesis 2.3. (i) holds in view of (v). We conclude that there is a con-
stant x» such that

2) I Il < %max {||f];, esssup(f)}
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for all fe 8} ,.(6). Inequalities (1) and (2) yield
IF Il < 2#max(f) for feTp,(G),

and so (iii) holds. m
‘We list yet another property equivalent to FZ(P, @).

8.16. TEHEOREM. Let P be a countable symmetric subset of X not containing
1. In order that P be an FZ(G)-set it is necessary and sufficient that

(a) P be a Sidon set and '

(b) there exists a real number » >1 such that either

(i) w'<max(f)<x for every feTp (@) satisfying min(f) = —1,

or (what is equivalent)
() —x<min(f)<< —x"" for every fe ITp (@) satisfying max(f) =1.

Proof. The equivalence of (i) and (ii) is trivial.
Suppose that (ii) holds, and let f be any nonzero polynomial in T ,.(G).
Sinceaf fdi = 0, we have § = max(f) > 0. For the function f/8, we have

by (ii) that min(f/f) > —x, hence min(f) > —=xpB; and so
fIflly = max [max(f), —min(f)]1< #f = »xmax(f).

If (a) also holds, we select a constant »' such that ||f” ||, < #'||f], and
find
I la < 22/ max (f)

for all feTp (@). That is, the property FZ(P,@) holds, by Theorem
8.15.

Conversely, suppose that P is an FZ (G)-sét. By 5.7, P is a Sidon
set. By 8.15, there is a positive constant » such that

Il < #max(f)
for all feTp ,(@). It is trivial that- Iflu < lIf (s, and so we have
(1) max [max (f), —min(f)] < »xmax(f)
for all feTp,(@). Similarly we have
(2) max[max(—f), —min(—f)] < xmax(—f),
and combining (1) and (2), we find
(8  max[max(f), —min(f)] < »min[max(f), —min(f)].

Agam note that if f 52 0, then both ¢ —= —min(f) and b = max(f) are
Ppositive numbers. We rewrite (3) as

Ha+b+la—b) < bx(a+b—|a—b]),

-

©
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or equivalently

(4) la—b] < 6(a+b),

where
—
B =
(B) Y so that 0 < 6 < 1.
The inequality (4) translates readily into
(6) a<xb if a>0b,
(7) b<<xa if a<<b.

Thus if @ has a fixed value, say 1, then (6) becomes

(6) b>2

?
and (7) becomes
(77) b x
That is, (i) holds. m

We next set down some matching properties enjoyed by ecertain
Sidon sets, which so far as we know are new.

8.17. THEOREM. Let P be a symmetric Sidon set containing no ele-
ments y such that y2 = 1. Let » be as in [8], Vol. II, (37.2.v). That s, we
have ||f |ly < #fllo for all fe Q2(@). Let B be any function in B,(P) such

if b1

that B(x) = —B(x~") for all ye P. Then there is a measure ue M, (G) such
that:
® el < #1lBllos

Tmp’(z) = B(z) for all zeP.

Proof. Let Sp(G) be the real linear space of real-valued functions
on @ spanned by all functions ¢(y— y ') for ze P. Plainly if fe Sp(G),
we have
) fe™) = —f(@)
and we say that f is an odd function. Asyociated with our function f§ is
a real linear functional M, on Sp(), defined by

(it)
for all @,

M) =5 D80S (-

%P

(2)

0
If f =4 Y ep(sp— xz") with real ¢, then we have
k=1

n n

D 2B

k=1

3) Mo(f) = > alBlu) —B(xi") =

k=1
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Since P is a Sidon set, we have
(4) [ Mo(F) < F elBlloo < 2 l1Bllce 1 1l
Thus the number
y = | Mol = sup{M,(f): feGp(P), Ifll <1}

is a nonnegative real number, equal to zero if and only if § is the zero
funection.

The function 1 is not in Gp(G). We extend M, to a functional M,
on {f+al: feSp(G), ae R} by the rule
(5) , M, (f+al) = Mo(f)+ay.

We compute the norm of M,. Suppose that |[f+ alfl, < 1, With feGp(G)
and ae K. Then we have

—l—a<f<<1—a.
Since f is an odd function, we must have —1< e <1, and also
—min{l—a,l+a} <f<min{l—a, L4 a}.
That is, we have ||f]l,<1—|a|, and so
1M (f+al)| < [Mo(f)l+al-y < y(L—lel) +]al-y = ».

This proves that [ M,|| =y = || M,|.

Now use the Hahn-Banach theorem to extend M, to a real linear
functional M on C,.(@) such that | M| = ||M,|| = p. Since M (1) = [|M],

M is a nonnegative linear functional (see e.g. [8], Vol. II, (34.48.b)).
Thus there is a measure y in M, (G) for which

[odu = M(g) for all pe G, (@).
q

Taking ¢ = i(y— %) with ye P, and using (3), we find

6) Mo(p) = B(x)—B(x™") = 2B(x)

and also ‘

(M Mo(g) = [@dp =il (1) —p" ()] = 2Imu’(x)-
[£3

Equalities (6) and (7) imply (ii). The inequality (i) follows from (4) and
the definition of y. m

8.18. COROLLARY. Lot P, be a Sidon set such that y e P implies 3~ ¢ P,.
Let B, be any bovAmded réal-valued function on Py. There is a measure y e M. (@)
such that Tmu” (y) = By(y) for all ye P,.

Pro.of. By Drury’s theorem [2], the set P = P,UP;! is a Sidon
set. Define f as §, on P, and as — g, on Pl and apply 8.17. =

©
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To conclude this section, we give an analogue of 8.10 for the full
FZ property; see 8.9 and 5.3.

8.19 THROREM. Let P be a countable symmetric subsei of X. Then P
has the full FZ property if and only if for every f e B, (P) and every compact
symmetric neighbourhood U of e, there ewist ue M, (U) and ge 82(G) such
that
(@) B=(u +g")P.

Proof. Supposing that (i) holds for all f<B,(P), consider a fixed
but, arbitrary feD,(P) and choose ue M, (U) and ge 2°(@) for which (i) °
holds. By the Riemann-Lebesgue lemma, g~ |P belongs to ¢,(P). Hence
for m large enough and ye P\P,, we have |g” ()| <1, so that

Bl —p" (0<%

for all ye P\P,. Thus 8.7. (iii) holds and so by Theorem 8.7, P is an
FZ(U)-set.
Now suppose that W is any set in £, and let % be a function in §,(P)
such that s,u(z) = 2; (%) x(x) is bounded above for all #» and for all
XE.

xe W. Let %, be in intn(W ) and U a compact symmetric neighbourhood
of ¢ such that Ue Jand 2,U < W. Then for all 1« U, we have

gj (1) 2 (@) 2(8) = sp0(a0t).
Since P is an FZ(U)-set, the function y — y(w,)u(y) is in I*(P) and so
therefore is w itself. That is, P is an FZ(W)-set for all We#, which is
to say, P has the full F'Z property. )
The converse is simple. If P has the full FZ property, we merely
cite 8.5 to see that the matching property (i) holds. =

§ 9. Drury’s theorem for FZ(G)-sets. Our aim here is to prove an
analogue of Drury’s theorem [2].

" 9.1. TumoreM. Let P, and P, be countably infinite (symmetric)
FZ(@)-sets in X. Then the union P,UP, is also an FZ(G)-set.

The proof is broken up into several parts. We follow Drury’s con-
struction, with some simplifications permitted by our current situation.
We will suppose throughout that 1 is in none of our sets P, P;, or P,.

9.2. DEFINITION. Let ¢ be a real number > 1, and let P be a sym-
metric countable subset of X not containing 1. Suppose that fmkr every
function f e D, (P) (see 8.6), there is a measure e M, (G)suchthat pu [P =B
and such that [|g| = s (1) < ¢. Then P is called an FZ-¢ set.

9.3. TuwormM. Hvery FZ(G)-set P not containing 1 is an FZ-¢ sel
for some ¢ = 1.
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Proof. We use Lemma 2.5, with B = M, (G), F = B,(P), and T (u)
defined as p"|P for all pe M,(G). Theorem 8.10 implies that T'(M. M, (&)
= B;(P). Defining 4, as the set {ue M (&): [lull < n} for ne {1,2,3,...},
we see that 2.5. (i) and 2.5. (ii) hold, Wlth Byn = Apyn- By Lemma 2.5,
there is a positive integer m such that for all Be%B,(P) with [, <1,
there is a pe M, (@) such that j|u| < m and x”|P = B. Thus we may take
6 = m. | ]

9.4. THEOREM. Let P be an FZ-¢ set such that either (a) x* = 1 for all
e Por (b) x* + 1 for all ye P. Let ¢ be a real number in 10, 1]. There is
& measure pe M (G) such that u” () = 1 for all ye P, lu” (x)] < & for all
e XN(PU{L}), end p” (1) <2%e™ in Case (a) and u” (1) < 4c*e™! in
Case (b).

The proof of 9.4 is hot really very complicated, but involves several
small computations. We first make a reduction.

9.5. If the condlusion of Theorem 9.4 holds for all finite FZ-c sets,
then it holds for all FZ-¢ sets..

Proof. Given a finite symmetric subset @ of P, let fho be such that
paly) =1 fOI' all ye @, |ug (1)) < & for ye X\( SU{L}) and gy (1) < Aote
Here 4 = 2 in Case (a) and A = 4 in Case (b). Under inclusion the family
{®} is a directed set. The set of measures {1o} lies in the weak-* compach
set {ve M, (@): || < Ac*e™'} and so the met {#o} admits a weak-* con-
vergent subnet with limit u. It is clear that u” (y) is a cluster point of

“the complex-valued net {us(z)} for all ye¢X, and so the conclugion of
Theorem 9.4 holds for P. m :

~ 9.6. Notation. For a fixed but arbitrary positive integer m, let 2
denote the multiplicative group [] {1, —1}p. For we2 and Fke{l,2,

.y m}, let w,, denote the kth coordmate of w. Let I' denote the character

group of 0. Note that all ye I' are real valued and that o — o= for all
we Q.

A subset P of X is called asymmetric it yeP, y leP imply 5 = 5
9.7. LmMMA. Let {y,..., 4} be an asymmetric set in X such that
P={py; s 2} O LTy ooy am} 48 an FZ-c set. For each we Q, thera
i8 a measure v, e M, (@) such that:
6] vy () = D,
(i)

for ke{1,2,...,m};
Pall = v, (1) < e

For ye X, let Iy, be the function on Q such that f,(w)

2 If <2

yel'

=, (%). Then we have

(i) Sor all ye X.

icm
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Proof. For we 2, let u, be a measure in M, (@) such that

(1) Bolan) = 0, for ke{1,2,...,m}
and
(2) el < €

For each we 2, define v, as
Vo = 2" Hoa=1% g« ‘
Plainly v, is in M, (&), and (ii) is immediate. To check (i), we write
Vo () = 2hmz#;a—1(lk),u; (1) = 2_“12(0’“—]%% = 2_m2wk = .
aefd el ., ae?
‘We now prove (iii). We have

fu(@) =g (z) —2""‘2/%—1 ) tha (%),

ael

and so for ye I

=27 Y f,(0)y(w

) = 2‘"‘2 [2f’”2ﬁb;a—1(x)ﬂ$(x)]y(w)

= 27" 317" Nl (1) e (2)y(wa) = [2-7”2 Ha (1)7(“’)]2'

wef ae2 . wed

This equality implies that
Ifs ) =[27 3 wa (y(@)][2™ X ne (07 (a)]
we el

=27 327" Yy (e (1) (wa)

we® aef2

and so

@) e =273 Sus(ad (1) ) v(ea).

yel we2 aef2 yel’

The final sum in (3) is equal to 2™ if » = o and is zero otherwise (see
e.g. [8], Vol. I, (23.19)). Thus from (3) we have

o =27 3 s (0P <27 Dl <

pel’ we2 wed
This is (iii). m
9.8. Proof of Theorem 9.4. As noted in 9.5, we may suppose that
our set P is finite, as in 9.7. Define ¢ by

2

1) o = tec”
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We construct the measure g actually as a trigonometric polynomial
times Haar measure on & To do this, define for every we 2 the Riesz

polynomial

n

@) Po = [] {1+ @go (it 7))
=1

Tt is trivial that p, > 0. Finally we define' p by

(3) P =27 Y Dk,

we2

where the measures », are as in Lemma 9.7. Plainly p is nonnegative and
real. We estimate the norm [|p|l; using 9.7. (ii):

@)l -—2""5’ f [ Doy 0)dry(@)dn =27 D) [ pa(t)dlva(6)

w2 G
<é f[Z“’”Zpa, ]dt

we

Write g (f) = o(x(t)+ ¥z (D). From (2), we see that the integrand in (4)
can be rewritten as

[] 3 +0:0)+1—g(0)] = 1.

k=1
Thus (4) implies that
(5) ol < ¢
We next compute p” (y), first using 9.7. (i) to write
(6) P (x0) =27 ) pa (ti)va (1) =27 ) oo (i)
e we2

‘We multiply out the product (2), oBtaining
(7 B NOEW § | I PACE 0N
§ S

the sum in (7) being over all of the 2™ subsets § of {1,2, ..., m}, and the

void product being taken as 1. Multiplying out the products in (7), we
have

) 22 [ (oo HT(wwM),

T jer

t]ie inner sum in (8) being on all subsets T of 8. The Fourier transform »
Po (%) is the coefficient of 4, in the polynomial (8). That is, we have

) Po(m) = ) (@O [ o,
. jeS

(T,8)

©

lm Lacunarity for compact groups, III ’ 471

tlie sum in (9) being over all pairs (7, 8) such that 7' < 8§ < {1, 2, ..., m}
and
(10) . - u [l v =n

Gl jeSNT .
We know no one of the numbers p, (x;), but we can nonetheless evaluate
2" (x). By.(6) and (9), we have

(11) P () = ) (@2 3w, [ ;.
(7,8) wed jeS
Suppose that a given § contains an element j, k. Then the mapping
o — w || w; I8 a character of Q that is not identically 1 and so we have
JeS

27" M w wy =
Il
The only pairs (T, §) that can make nonzero confributions to the sum
(11) are therefore (@, @), (@, {k}), and ({k}, {k}). The corresponding charae-
ters on the left side of (10) are 1, x;', and g, respectively. Since 1¢ {y,,
-y Zm}, the pair (@, @) cannot yield y,. If y, has order different from 2,
then' y;' 5 gy, the pair (@, {k}) contributes nothing, and only the pair
({%}, {k}) contributes to (11). If y, has order 2, then both (&, {k}) and
({¥}, {k}) contribute to (11). Thus we have:

(12) P () =02 Dot =0 it g #L
wel2
(12,) pA(xk)=d—i—o‘=40' if gk =1."
We now estimate |p”~(y)| for ¢ PU{l}, beginning with the obvious
equality
(13) : P () =27 Y pa(@va ()

wel2

We use the polynomial f, on @ that was introduced in 9.7 . We write f,
in its own Fourier expansmn

=fylo) = }jf, )y ().

yel’
Substituting this value in (13) and citing 9.7. (iii), we find
(14) ol =] 32 D il m(wl
yel' we2
< QN Spire
yel we

< [max|‘) " y? ( )HeZ

we!?
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We now estimate the quantity [...] in (14). Every ye I has the form
y(w) = [] w;, where S is a subset of {1,2,... ,m}, or equivalently,
jes

m
y(w) = [] gk, where {¢;};-, is a sequence consisting of 0°s and 1’s. Again
k=1

write g, = o(x,-+2%'). Then by (2) we have

15) 27 Moo (ny@) =27 3 [ [T{1+ogut) 0 des- ]’1 ft
I=1

weR weR G k=1
= [lo 3 ([ ] (of+ o g.0))| s as.
(2] we? k=1 N

By Fubini’s theorem for £ = {—1,1}™, the expression [...] in the last
line of (15) is equal to
m

[13+ 0@+ ((—0%+ (=1 %g, ()] = [ 9 = [ [ o{(®) + 25 ).

k=1 keS keS
Hence the last line of (15) is equal to
(16) T olut® + 2z )] ) -

G keSS

For 8 =.@, (16) is zero because y = 1. For § = {I} for somele {1, 2, ..., m},
(16).aga,m vanishes because y # yx; and y # 4% If card(8) > 2, then
the integrand in (16) has absolute value < 402, and §o we see that for all
ye I, the inequality
2 Sps () (o) < to2

obtains. Going back to (14), we infer that
an Ip” (1)] < 4c2o?
for all ¢ PU{1}.

At this point we distinguish between Cases (a) and (b) in the proof
of 9.4. If x* =1 for all y¢ P, then we define x as the absolutely contin-

. 1
uous nonnegative measure E;pl. It is clear from (1) and (B) that

(18) flell = & (1) < 26*s72,
from (12,) that
(19) p{y) =1 for yeP,

and from (17) that
(20) o (0l <4e  for ye X\ (PU{1}).

. 1
In Case (b), we define » as —p2 and obtain the desired results, using

(12) instead of (12,) and getting ‘= instead of }¢ in (20). m

©
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9.9. Proof of 9.1. Let P and P* be any countable (symmetrie)
FZ(@)-sets in X not containing 1. Write X for P and T for P*\P. Now
write X for {ye2: y* 71}, and 2, for {yc Z: g2 = 1}; define T, and T,
analogously. Plainly X, Z,, T, and T, are pairwise disjoint FZ(@)-sets,
and Z,UX,UT,UT, = PUP* Now let # be any function in B,(PUP*).
By Theorem 8.10, there are measures uy, us, vy, v, in M, (G) such that

1) pi 1Zy = B1Z, o 1Ty =BT (e{1,2)).
Select ¢ in 10, 1] so that

(2) m‘a’x{“"”/"'l’"lm EHI‘;HW 5”"’;”u7 8“"’5“1;} <t

By-9.3, there is a real number ¢>1 such that %, Z,, T, and T, are
FZ-¢ sets. By 9.4, there are measures gy, oy, 07, and o, in M, (¢) such
that

3) th |25 =1, Wﬂ |(X\(25U{1}))

<
o 1Ty =1, o | |[XN(T;0{1}) <.

&

Tt u be the measure g, % g, + pg* g2+ 1% 01+ 9% 0p. Plainly g is in M, (@),
and for yeX,, for example, we have from (1); (2), and (3) that

B =" (O] =l () es ()71 (1)1 ()42 (D) ()]
< elllps ot 1 el 1) << £

Similar estimates apply to Z,, T;, and T,, and so we have
1Bx)—p (I <§ forall xe PUP".

By 8.7, PUP* is an FZ(G)-set. =

§10. Some sufficient conditions for property FZ (P, @. It is a curious
fact all that symmetric Sidon sets known to the writers are also FZ (G)-sets.
The following definitions are based on Steékin's work [15] as extended
to general compact Abelian groups by Rudin ([13], 5.7.5, pp. 124-126).
Some analogous notions appear in [4], §4.

10.1. DEFrNITION. Let X be an Abelian group, 4 any subset of X,
and ¢ a positive integer. The symbol & (4, t) denotes the set of all functions
a carrying 4 into {1, 0, —1} such that Yia(y)| =t For ye X, the symbol

zed

#(4,1,p) denotes the set of all ac¥(4,%) such that ]:[Ax“‘l) =
e

10.2. DEFINITION. Consider the following property (R) of 4 tc: X.

There exists a real number 4 >1 such that ca:rd(y (4,1, w)) < A* for
8

all pin X and integers ¢ > 2. If a subset 4 of X is a finite union, 4 = UlAj7
; iz

where each 4; has property (R), then A is called a Steckin set.
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10.3. Remarks. (a) For X = Z, Stetkin sets were introduced by
Stetkin [15], under the name “E, sets”. Stetkin proved that all Stedkin
subsets of Z are Sidon sets.

(b) The notion of Stetkin sets was extended to arbitrary Abellan
groups by Rudin [13], 5.7.5, pp. 124-126. Rudin proved, under some
mild restrictions, that Stetkin subsets of arbitrary Abelian groups are
Sidon sets. Rider [12] has extended Rudin’s result somewhat.

(e) The dissociate sets of Hewitt and Zuckerman (see e.g. [8], Vol.
II, (37.12)), are plainly special cases of Stefkin sets.

10.4. THEOREM. If 4 is a countably infinite Ste¢kin set, then AU A~}
is an FZ(G)-set. ‘

Proof. In view of 9.1, we may suppose that A has property (R),
Splitting 4 into the subset of elements of order 2 and elements not of
order 2, we may also suppose that

(1) all or none of the elements of A have order 2
We may also suppose that 1¢ 4 and that
(2)

Let § be an arbitrary function in ®,(4). According to Theorem 8.7, the
present theorem will be proved if we can find a measure »e M, (@) such
that

3) sup{IB (%) —»" (D)l

We enumerate 4 as a sequence (y,, %z, - -
we have

(4) ’ XH)Z;l""};

all characters appearing in (4) are distinet by (2). If all elements of 4
have order 2, then clearly we have

(42)

yed and 42 %1  imply y ¢ d.

gedud™<d<1.

.). If no element of 4 hasg order 2,

dud™ = {21, Zfly Koo Aoy eee

dua™t =4 ={111X27'~'7Xm--~}-

In either case, we define A, = {y1, xay..s Xnh e{1,2,8,...}.
‘We define certain Riesz polynomials. Let v be the number

1

(5) -
A(24+1)

where 4 is the constant in 10.2. For every positive integer n, define p,, 28

13

=[] +B0w) ra+ BT 17)-

=1

(6) Pu

e _®
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Tt is clear from (5) and the fact that |§| =1 that p,
out the product (6). We obtain

> 0. Now multiply

(M) Pa =1+ O [B(m kB a1+ D o, v)v,
T=1

yeX

where, for every we X, we have

o(m, p) = j[

1=2 aeV(An )

H B( )u(x)]

x€dy,

(8)

Since 4 hag property (R), the absolute value of each inner sum in (8)
iz majorised by

reard(y (A t, 1/))) (zAY,
and g0 we have
' i . 72 A2
(9) len, )< ) (#4) < T——

)

Since p, is real and nonnegative, we have

(10) lpal = f‘pnda =1+0(n,1).

By (10) and (9), the numbers |p,l; are bounded. Thus the set of measures
(oA}, in M (@) admits a weak-* cluster point, which we call u. Clearly p
belongs to M, (&), and .

2 42

flull < 1+ T4

For every w in X, it is clear that

(11) " () is a cluster point of {p, (¥)}a1-
From (7), it is clear that
(12) o (Y = B (xEH) +eln, o for m>1
for all 7 in Case (4) and thab
(12,) o () = 2oB(x) +o(n, ) for >l
for all I in Case (4,). From (9) and (12), we obtain

2 A2
(13) i () — BN <. for >t

in Case (4). Applying (11) and (13), we find

for all ye AU4™L

(14) ™ () — B <

5 — Studia Mathematica XLIV.5
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Note our choice of 7 in (5),k and infer from (14) that

(15)

lo” (1) = B(0)| < ¥ for all ye dua™,

in Case (4). In like fashion, (12,) leads to

(155)

11" () =278 (x)] < %7 for all ye AUA™Y,

in Case (4,). From (15) it is evident that the measure » = i,u satisfies (3)
T

with d = }. From (15,) it is evident that » = ——y satisties (3) with
d=% = ?7:

[1]
{21
31
[41

{51
(6]

71
8]
191
[10]
1]
r12]

[13]
[14]

[15]
[16]
nn
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A divergent multiple Fourier series
of power series type

by
J. MARSHALL ASH and LAWRENCE GLUCK (Chicago, IIl.)

We present this paper o honor a great mathe-
matician. The first co-author wishes io thank
Professor Zygmund for the personal interest he
has taken and the encouragementi he has given
over the pre- and post-doctoral years.

Abstract A continuous complex-valued function on the torus whose (double)
Tourier series diverges restrictedly rectangularly at every point has been constructed
by Charles Fefferman. The present paper presents a function Whi.(ﬂl has the above
properties and whose Fourier geries is of power series type (amp = 0if m<0orn < 0).

Charles Fefferman [2] has given an example of a continuous function
F(z, y) defined on the torus T% with the property that the double Fourier
series Za,,,exp(i(mz+ny)) of F is everywhere restrictedly rectangularly
divergent. This means that for each point (z, y) and E>1,

i(mz-tny)
S.MN(ws y) = 2 Ay € ¢
jmj< M
n|<N

fails to tend to 2 limit as M and N tend to infinity with B M|N < E.
In this paper we extend Fefferman’s result by proving the following.
TamorEM 1. There is @ continuous complex-valued function H(z,y)

on the torus whose double Fourier series is of power series type (Cp, = 0
if m<0 or n<0) and is restrictedly rectangularly divergent everywhere.

On [0, 2] X [0, 2] set go(® ¥) = 6o(@ Y5 4) = (@) p(y)e”™ where

. 1
@ is a C* function equal to 0 if 0 << 1/40 or if Zw—zz)—gtg?m and

to 1 4f 516 <t<on— % with 0 < ¢ <1 elsewhere on [0, 27]. The real

parameter 1 is greater then 1. Then clearly g, is & CO* function on the torus 7'*
obtained from [0, 2x] % [0, 2x] by identifications, and ||golle = SUp|go(®, ¥
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