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Structure of Blaschke coeycles
by

HENRY HELSOX (Berkeler, Calif.}

Abstract. Analytie coeyeles have been shown to play the same role on a group
K dual to a subgroup of the discrete real line as innerfunctions on the circle group.
In a previous paper, an arbitrary analytie cocyele was shown to be the produet of
a Blaschke and a singular coeyele {unless already of one of these types). Now a necessary
and sufficient condition is given for a subset of B K (R* is the set of positive real
numbers) to be the “zero set” of a Blaschke coeyele. The main diffieulty is measure-
theoretie; it arises in constructing a coeyele having a given zero get, The result is
used to prove that every (non-constant) analytic coeyele is the produet of two other.

1. Let I' be a countable subgroup of R, the discrete real line, and K
the separable compact group dual to J. We shall assume that I" is not
eyclie, so K is not a circle. Harmonic analysis on K has been studied in
several previous papers [3]. [4], [6], particularly the aspect related to
the order defined in I'. The basic problem is to deseribe certain functions
defined on B > A (R is the real line) called analytic coeycles. Each analytic
cocycle is the product of a Blaschke and a singular cocyele. The purpose
of this paper is to show that an arbitrary Borel set subject to some obvious
necessary conditions is the zero set for a Blaschke cocyele. Thus Blaschke
cocycles are parametrized by their zero sets almost as effectively as
ordinary Blaschke products. Although no similar analysis of singular
cocycles has been made (), the method of proof ean be used to show that
all analytic cocycles can he properly factored. This means that H*(K)
has no maximal invariant subspaces except the trivial one Hj(H). (The
relation of cocyeles to harmonic analysis is explained in [3]; but here
we shall discuss the cocyeles themselves. An easy result from [4] will
be required later. However Theorem 1 below implies the main result of
[4] and the proof will be independent.)

The elements of K are &, ¥, ...; those of I' are 3, %, .... K contains
a distinguished subgroup K, consisting of all characters on I" of the form
€(4) = é™, where ¢ is a real number. The mapping of R into K that
carries ¢ to ¢ is one-one and continuous, and K, is dense in K.

(1) The author stated in [5] that all singular cocyles are trivial. That assertion
is hereby retracted.
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A coeycle on K is a Borel function A(¢, ) on Rx K such that for
all real ¢, » and » in K we have

ol @ e) =1, A@-+u,z)

(The definition in this form, without reference to exceptional null sets,
was given by Gamelin [2]. Once certain measure-theoretic difficulties
have been met it works more smoothly than older definitions [3], [6].)

‘A eocycle is called analytic if for almost every z the function 4 (t, »)
defined on R is the boundary function of A(z, x) analytic and bounded
in the upper half-plane, but not constant in ». That is, 4 (z, z) is an inner
function. If this inner function is a Blaschke product for almost all #
the cocyele is a Blasehke cocycle; if it is a singular inner function for almost
all x, the cocycle is called singular. In [4] it was shown that every analytic
cocycle is the product of a Blaschke and a singular cocycle, unless it is
already of one type.

With these definitions we can go on to our problem.

2. Let 4 be a Blaschke cocycle on XK, and F, the set of zeros of
A(z, ) in the upper half-plane. For the null set of » on which A (2, )
is not an inner function ¥, is not yet defined. In order to obtain a definite
Borel set for every « we can define 4 (z, 4) by the Poisson integral of the
bounded function 4 (¢, z), obtaining an inner function for almost all =
but a harmonic function everywhere. Let E, be the zeros of this function.

The sets E, are related by the functional equation of a cocycle.
The complex version of (1)

=A(t,2)A(u, z+e).

(2) Atz 8) =A@, x)A(z, 5+ ¢)

shows that E,, = B,—1 for all ¢ and «. Let B be the subset of B x K
(R™ is the set of positive real numbers) consisting of all (u, z) such that
iu is a zero of A (2, »). Then F describes the zeros of the cocycle completely:
A{t+iu, x) = 0 just if (u,2-+¢) is in E. And E is a Borel set.

For (u,z) in E let g(u, ») be the multiplicity of the zero of A(z, z)
at @ = iu. For & in the Borel null set where A (2, #) is not inner we set
¢ = 0. Then ¢ is a Borel function on E. For the derivative of 4 (z, x)
with respect to z is a Borel function whose zeros have the same translation
property as those of 4, and the zeros of the derivative are associated
with the points of E where ¢ > 2. Similarly the points where ¢ > n form
2 Borel subset of F for each integer m, so ¢ is a Borel function.

Let X =+ K, the coset of K, containing z. Denote by Ex the
set of all (u,y) in B such that y is in X. We can visualize a half-plane
erected over the line X ; Ex is the set of points in ¥ lying in this half-plane.
But it is important to note that this half-plane has no natural horizontal
coordinate, because X has no origin.

icm
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For any choice of origin in X, E is (for almost all r) the set of zeros
of a bounded amalytic fonetion, and therefore satisfies the Blaschke
condition. Each point of Ey is to be repeated, of course, according to
its multiplicity.

Our main theorem now asserts that any set E in RTw K
with multiplicity funetion ¢ having all these properties arises from
a Blaschke cocycle.

3. TEEOREM 1. Let E be a Borel set in R7 > K and ¢ a Borel function
on B taking positive integral values. Suppose that g, inderpreted as a mulli-
plicity function, satisfies the Blaschke condition on Ey for each X = x+ K,
except possibly in a null set of x. Assume that Ex is not empty for almost
all @. Then there is a Blaschke cocycle whose zero set matches Ex, and whose
multiplicity function matches q, for almost oll x.

A set EF such that FEy is empty for almost every x will be called
negligible. A union of countably many negligible sets is negligible. Two
cocycles are customarily identified if they differ only on a null set of
(f, ). Then it is obvious, if we grant the theorem, that two Borel
sets arigse from the same coeyele if and only if they differ by a negli-
gible set.

If E is not negligible, then Ey is infinite for almost every x [4]. Thus
there is no analogue for cocycles of finite Blaschke products.

The main difficulty in the proof, met in the following lemma, is
measure-theoretic. This is not surprising, because on each coset X there
is a Blaschke inner function having the right zeros, and the problem is
to fit them together measurably to form a cocycle. We shall need some
theorems about Borel structures, now accessible in a new expository
paper by Arveson [1].

Lexva. The function

3) = 2, (1)

where the summation extends over the elemenis (i, z-+6;,
is absolutely measurable on K.

In words: we sum the Poisson kernel over the points of E in the
half-plane over X, with # chosen as origin. The result should depend
measurably on . (A function is called absolutely measurable if is measurable
for every Borel measure.)

Choose and fix a positive integer 7. We construet the Polish space
D = K (Rt x K)', whose elements are sequences (&, Uy, &y;---; %y &)
where each z is in K and each » in R*. Denote by F the subset of points
such that eaeh z; belongs to -+ K,. These are the sequences

)of Bxy, X = &+ K,

(4) (@ Upy T4 €5 00ns Upy r+e)
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for arbitrary real #;, ..., 1. F is a Borel subset of D. Indeed the set 7,
of points in F such that || < & (each j) is closed, and F' is the countable
union of FY.

The subset of F' consisting of points (4) such that some two pairs
{u;, t;) are identical is relatively closed in F. Hence the set @ of all points
in F such that all these pairs are distinct is a Borel subset of D.

Let f; be the function defined on F' by

(5) Z?uj(u?-&f;"-)‘l

j=1
at each point (4) belonging to F, and equal to 0 at other points of 7.
This function is continuous on F,, and therefore is a Borel function on 7.
Hence f = limf;, defined by (5) for all points of .11‘, is & Borel function.

Denote by H the subset of G consisting of those points (4) in & such
that (u;, £ —-¢,) is in E for each j. H is another Borel subset of D, and f
restricted to H is a Borel function.

For any real k let H; be the subset of H on which f > %. Let P be
the function that carries each element of D to its first component 2. P is
continuous and H, is a Borel subset of D; therefore the image P(H,)
is an analytic set in K. But this image is just the set of » such that some »
terms in (3) have sum exceeding k. The set where (3) itself is greater
than % is the unionfor v = 1, 2, ... of analytic sets P(H,,). Since analytie sets
are absolutely measurable the set where m(r) > % is absolutely measur-
able for every k. Hence i is absolutely measurable.

The lemma remains true if we incorporate the multiplicity function
g in {3):

(6) m(z) = E‘Zundn(ui +6H)7h
where d, = g(uw,xﬁje,n)5 is still absolutely measurable. For the subset

of E on which ¢ has a given value is a Borel set to which the lemma is
applicable, and (6) is & weighted sum of these functions.

The sum (6) is finite for almost every » because Hy (with ¢) saﬁisﬁes‘

the Blaschke condition. In.order to make m smooth on cosets of K, we
assume for the moment that all the points ( u, z) of B satisfy 4> 6 > 0.
A straightforward argument shows in this case that m(x--e) is contin-
uous as a function of ¢ for almost every . We set

1
if m(z+eg)ds
0

(M) A, 2) =e s

a formula used previously to produce cocyeles [3]. Then identically in ¢
1d

(8) T logd(t, 2) = m(z+e).
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By definition

(M m(e+-e) =2211,1(1,1(11,2,~—(f“~1)ﬁ}". Wy =gy ) in E.
The Blaschke product on zeros f,--{w, with multiplicity 4,
(10) B(t) = Hsn\j{ - (171+ 'i"n”d"(t"_ un "' 7‘“3.‘“—&7”? \gni = 1#

has the same logarithmic derivative (9). Therefore 4 (t,r) i3 a constant
multiple of B(t), where the constant depends of course on ». If At x)
is a Borel function, it is a Blaschke cocyele with exactly the right zeros.

Now m(r) was shown to be absolutely measurable. It is possible to
change its values on a Haar null set so as o be a Borel function. Then
A(t, r) is a Borel function, and for almost all » differs from the old function.
only on a null set of ¢. This completes the proof of the theorem under
the special hypothesis on E.

In the general case let ¥, be the set of (u,x) in E such that u > 8.
For each positive § we obtain a cocyele .4, with zeros on E; of the proper
multiplicity. It is unfortunately not possible to conclude that A, tends
to a limiting cocycle with zeros on E as & decreases to 0; for Blaschke
products converge when they are normalized to be positive at a fixed
point of the upper half-plane, whereas a cocyele eguals 1 at the origin.
We are forced to a less direct argument.

Let Aj(z, x) be 4,(z, r) multiplied by a constant of modulus 1 so
that it or its first non-vanishing derivative is positive at z = i. We may
set A;(2, ) = 1 for those r in a fixed Borel null set, invariant under
translations from K, where 4 (2, r) is not an inner funetion. Then A4;(z, )
is a Borel function of (2, x). The limit

(11) Bz, xr) = limA;(z, )
) 8—0

exists for all z in the upper half-plane and all », and is a Blaschke product
with zeros of the proper multiplicity on E for almost all «. B is not a
cocycle, but its zeros have the translation property of coeycles. Since
a Blaschke product is determined by its zeros up to a multiplicative
constant,

(12) B(l‘—f—-;,.l') =L(f,.Z‘)B(25;1‘{—€‘)
for some number L depending on ¢ and «. It is easy to verify that L is
a cocycle.

Since B is inner for fixed «, B(t+1iu, «) has a limit B(f, «) for almost
all ¢ as u decreases to 0. The exceptional set of ¢ depends on #, but there
is one t at least, by the Fubini theorem, such that the limit exists for
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almost every «. For this { and any positive numbers u, v we have

(13) f]B(t+iu,m)—B(t+i'v,m)l“’dm =f[B('iu,w+65)~B(i'v,w+e,,)[2dw
=f|B(¢u,w)—B(m, @) de.

irst i 1 tends to 0 as « and v decrease independently to 0. Hence
?(fuﬁla.cs)thl;bzg{h?nit in the norm of I*(K) s:s u tends to 0. Thelsa;m%zr\g-ggziﬁz
show’s that B(i+iu, ) converges in L (K) for every real 1.
this limit by B, defined only modulo null sets of :I:.W Sbiain

In (12) replace = by and let u decrease to 0. We
(14) B; = Ly T, By,
an equality in I*(X), where T} is trapsla.tion: Tfz)=f (a% + et)f £L02r( lazﬂ)ly (J:f
Choose 2 definite Borel representative for the_s element B, 10fun tio ],l o
modulus 1 everywhere. The right side of (14) is now a .Bore t?r ot
(t, z). Thus B; can be chosen so as to make the equation true1 (_)L oy
9,1;1(1 . Dividing by B, exhibits B;/B, as a product of the cocyele L
a coboundary. Hence 4; = B;/B, is a cocycle. For almost every «, . f,( ,.m)
is the limit of B (i--iu, z)/B(0, z) for almost every ?, because 2 1]:);111 m-sz
limit must agree with the Lebesgue limit almost everywheret ﬁirim]i 4
is a Blaschke cocycle with the desired zeros, and the proof is shed.

4. An ordinary inner function can be factored as th{a I?roduct.a of
inner functions, unless it is a simple Blaschke fafztor. This 1s.obv1_0us
it the inmer funetion is not a pure Blaschke or singular function. F(;Ij
Blaschke products it is proved by detaching one factor from the pi'och;leiz ;
a singular inner funetion is the square of ifs square root. A Blasc 46
cocycle has infinitely many zeros above almost every coset of K? [4],
so there is no trivially excluded case, and we ask whether analytic co-
cycles_can always be factored.

TuEoREM 2. Bvery analytic cocycle is the product of two others.

Let A be an analytic cocycle. If it is not of Blaschke or singular
type, then it is the product of two pure cocycles [4]. Thus we only have
to study cocycles of pure type. ) )

First suppose A is a Blaschke cocyele. It suffices to express its zero
set B (which is non-negligible by definition of an analytic cocycle) as
the disjoint union of two non-negligible Borel subsets. Then Theorem 1
provides Blaschke cocycles B and ¢ whose zeros together match the
zeros of A. It follows that A = BC.

Such 2 decomposition is immediate exeept in the ease that # has the
same value for every (u, o) in Z, except for a negligible subset of Z.
Thus we may suppress u and consider F as a subset of K.
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For any positive element y of I' let @, be the closed subgroup of K
consisting of all # such that x(y) = 1. Every zin K can be written uniquely
in the form ¥, + ¢, where Y, isin G, and 0 <t < 2w/y. The natural cor-
respondence between K and G, %[0, 2n/y) preserves Borel sets ; without
changing notation we view F as a subset of the product space.

Let B; be the set of elements (¥, u) of F with % < {. Denote by %,
the upper bound of ¢ such that K is negligible. (If ¥; is non-negligible
for each positive t, set ¢{, — 0.) Then E,, itself is negligible, which implies
that ¢, < 2n/y. Similarly let ¢, be the lower bound of ¢ such that the set
of (y, u) in B with u > ¢ is negligible, or #, = 2% [y if this set is non-negli-
gible for every smaller . If #, < t,, and if t is any number between them,
then F; and its complement in E are both non-negligible, and the sepa-
ration has been accomplished.

Otherwise t, = ¢,, and this number may be 0 but cannot be 2x/y.
The value of (y, u) as a character on v is ™. Now u < t, only on a negli-
gible subset of E; and « >, on another negligible subset. Hence for all
in ¥ except a negligible subset we have z(y) = ¢,

The theorem is proved if ¢, turns out less than t, for any positive
y in I Otherwise the elements of # have the same value as characters
on y except in a negligible subset of F; and this is true for every positive ;.
The exceptional set depends on y, but since I' is countable the statement
holds for all  at once except on a grand negligible set. Since an element
of K is determined by its values as a character on the positive elements
of I, E can have only one element outgide the negligible set. This is absurd,
and the proof for Blaschke cocycles is finished.

Let 4 be a singular cocycle. Define A'(2,2) to be A(z, x) multiplied
by a constant of modulus 1 so that A'(i,2) > 0. On the Borel null set
of &, invariant under translations from K,, on which 4 (2, #) fails to be
a singular inner function, let A'(2, ) = 1. Then 4’ is a Borel function
in (2, ). Set Bz, 4) = A'(z, 2)'?, choosing the square Toot so ag to be
Positive at # = i. Then B is a Borel function. Indeed the values of 4 and
its derivatives at ¢ are Borel functions of x, in terms of which we can
compute B(z, z) for s —i| < 1. Hence B is a Borel function on the product
of this circle with K. If B is redefined to be 0 for z outside this circle,
we have a Borel function on the whole product space. By analytic contin--
uation we obtain a sequence of Borel functions whose limit is the original
function B(z, z). .

B will not be a cocycle, but its modulus satisfies

(15) [B(t+2, z)l = |B(z, 5+ )|

because B* has the same modulus as 4. Hence (12) holds for a function
L(t, ) that is again a cocycle. The argument goes on through (13) and
(14) to show that C;, = B,/B, is a cocycle. Now B(t, x) is the boundary
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function of B{z, &) whose square is 4 (z; 2), agide from a constant factor
{depending on z). Hence ¢ is a singular cocycle whose square is a function
of z times A. This implies ¢* = 4, and the theorem is proved.

5. The restriction to countable I'" and separable K is not essential.
Without any restrietion, a coeycle A (3, %) is continuous .aJs 2 mapping
from R to L*K) ([2], p. 186). Hence 4, takes its values in a separable
subspace of I*(K), so the non-null Fourier coefficients of all the functions 4,
lie in a eountable subgroup of I™ Thus 4 can be studied on a separable

quotient group of K.
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Weak integrals defined on Euclidean n-space
by
JAMES K. BROOXKS (Gainesville, Fla.) and JAN MIKUSINSKI (Zabrze)

Abstract. The following representation for Bauach-vahxed meagurable weakly

integrable functions on Euclidean n-space is established: f = \ 61y, where the z;

i=1
a.le elements of the given Banach space and the & §1; are characteristie functions of
intervals Il, the convergenee is absolute a.e. The weak integral of f is given by the

equality J fai = Y‘ @;4(I;), where the convergence is unconditional. This approach

avoids entirely the use of functionals.

1. Introduetion. In this paper we establish a representation theorem
(Theorem 1) for Banach-valued measurable weakly integrable functions
defined on Euclidean n-space, where the underlying measure is Lebesgue
measure. The representation is given in terms of intervals and uncondi-
tionally convergent series. As a result, our approach avoids the use of
the conjugate space and the theory of Lebesgue measure, except for
the concept of almost everywhere convergence.

We also present a construction of Lebesgue measurable sets which
seems to be an effective tool for examining meagurable sets in terms of
intervals (Theorem 2).

2. Deﬁmuons. X is 2 Banaeh space over the complex numbers with
conjugate space X*. || is the norm of an element ze X. (R*, &, 1) denotes
the measure space consisting of the Lebesgue measurable subsets of R,
with #-dimensional Lebesgue measure 1. [g or [gdA denotes f garf: R*—>%

is said to be Gelfand-Pettis integrable [6], or weakly mtegra.ble with
respect to A if:
) @*f is A-integrable for every a*eX*;
(2) For every Fe.% there exigts an element zze X such that o*(zg)
= [a*fd; for every z*e X"
* In this case we define x5 to be the weak integral of f over E; in
symbols: sz = [f dl. f is measurable if it is the almost everywhere (a.e.)
b
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