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where « deénotes the volume of the unit sphere. Furthermore, if #(p)
= sup [k(y)l, v(o) is non increasing and )
lvl=e
(@) = IEL (@) < [ N (Foy o— k() dy < [ N (Fyyz—y)p(ly))dy

0

= [ vl@dv(e,2) = — [v(e, 0)dy(0) < —h(®) [ we"dp(o)

=nh@)o [ ¢ ple)de < nh(z),
0

and, according to Lemma 7,
N(G,z) = M{g, %) = M(Ef,, #) < ch*(a)

where ¢ is independent of K. Thus

sup M (Kf,, ®) < ch*(x)
K

where nh*ﬂp < ¢elhll, < ¢V (Fy, @)ll,. From here on the proof proceeds as
that of Theorem 1.
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Abstract. A Banach space X is isomorphic to a Hilbert space if and only if one
of the following conditions holds for all sequences () in X

(a) if 3 lwalP< + oo, then
n=0
om

[ =+
0 k

be

(3 sinki+ mppcoskt) |2t < + oo,

il
-

2= o0 o0
(b) if [ llwg+ 3 (#op—15inkt+ zopcoski)|fdi< + oo, then S lznlPdt < + oo,
0 k=1 n=0
- oo 1 el
(c) logl? < + oo if and only if [|| I apra()ifdi< + oo.
=1 0 mn=1
Here (rp) denotes the Rademacher system of functions.

1. Introduction. In the present paper we prove the following

TarorEM 1.1. A 7eal or complex Banach space X is isomorphic fo
a Hilbert space if and only if one of the following conditions holds for all
sequences (2,) in X

(a‘) ’Lf 2 ”‘”n“2< +007 then

o

oo
12
ot ) (B sinki+aycoskt) [ di < + oo,
k=1 :

27 ]
) if [ @+ 3 (@ ,sinkt+zyco8kt)|Pdl < + oo,
[} k=1

then >z, B < + o0,
n=0
oo 1 o .
(€) D lz,l? < oo if and only if fj lenvn(tmzdt< +oo.
n=1 0 n=

Here (r,) denotes the Rademacher system defined by
. (f) = signsin®®mt  for te[0,1] (B =1,2,..).
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TLet us obgerve that the validity of () for all sequences (,,) in a Banach
space X is equivalent to the following “two sided Xhinchin inequality”.

(*) There exists > 1 such that for any sequence (z;) in X,

(1) 0*15] uwjnz<j1]|f,’w,-r,~(t) Pa<oYime @=1,2,...
j=1 0 j=1 j=1

Furthermore note that

I RS T

where > is extended over all sequences ()7, With &; = £1 (j=1,2, ..., a).
£(n) .
Thus for ¢ = 1 the condition (*) becomes the equality

®) 2" % | 3 ea

i=1

2
’

=Dl (2 =1,2,..)

which for # = 2 is the parallelogram identity and for n > 2 can be easily
deduced by induction from the parallelogram identity.

Next observe that the validity of (b) for all square summable se-
quences (#,) in a Banach space X is equivalent to the following “Bessel
type inequality”

(**) there exists ¢ > 0 such that for any sequence (;) in X

2n n n
cf “mo-I—szjhlsinjt+wzjcosjt”2 at> Z g2 (n =1,2,..).
0 j=1 j=0

Similarly the condition (a) yields “the reverse Bessel type inequality”.
For complex Banach spaces the validity of (a) for all sequences (%;) in
X is equivalent to the boundedness of the Fourier transform in the space
I2(X) of all strongly measurable square integrable (in the sense of
Bochner) X-valued functions on the veal line (cf. Proposition 4.2). This
enables us to substantiate a conjecture of Peetre 5], p. 20.

2. A corollary to the central limit theorem. Let (2, M, P) denote
an atomless probability space. If £ is a random variable on {, then

BE = [ E(w)dP(w).
2

By (;) we shall denote a sequence of independent Gaussian random
variables on 2 each distributed by the rule
‘ g2

- e
Ply<t) = fe Pds (—co<t< +o0).

Vor
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By (4;) we shall denote a sequence of independent random variables
on Q each distributed by the rule

(4) P{o;=1) =P(; = —1) =1}.

Let us fix a positive integer # and put

m—1
6?=_L(Zaini+k) for 7::1!27"")“; m=1,2,”.
m e

. By Fhe Moivre-Laplace Theorem ([6], Chapt. VIII), the common
distribution of (&%, 67, ..., 6™ converges to the common distribution of

(71, 72 -+-y ¥n) @8 M — oo equivalently (by the Lebesgue convergence
theorem)

lim BR (87, 67, ..., o) = Bh(yy, ys, oo Va)
m—oQ

for. any bounded continuous funetion A: R® — R. (Here B denotes the
real line).

We shall need the following well known strenthening of this fact
Lewvwa 2.1. If h: B" — R is a continuous function such thai

n
- 38l n
() Bl sy ns)e T 50 as Y g oo,
s |

then
lim BR (8T, 67, ..., 0 = Eh(y1y Va3 <3 Vn)-
M0

Proof. Let us consider the Banach space B of all continnous function
k: B* - R satisfying (5) under the norm
n
- Z st
) = sup (815 85y 000y 8,) |6 &2,
(5189, w28
Let us set

P, (h) = BR(s7, o2, ..., 6% for heB(m =1,2,..),
F(h) = Bh(yyy .., py)

1 +o teo _
=m_f —f h(8y1y..ny8,)e °

It follows from (5) that the above formulas well define linear func-
tionals on B. Moreover by the Moivre-Laplace Theorem quoted above
lim7,,(h) = F(k) for any bounded continuous k. Sinee the set of such

m=oa

tunctions % is dense in B to complete the proof it is enough to show that
sup ||F, || < +oco. In fact using the stochastic independence of the se-
m

Il v 3
o] B

1% ds,...ds, for heB.
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quence (d;) we have
IF,]| < Bexp 2 1571)

< (Bexp 87+ Hexp(— &))" ,

51 " ( 51 ))m)n
_ —_— Fexp| ——=
= ((Eexp ]/m) +( D Vo

=" (—;T(exp 71; +exp (— 71;'_—7—) ))”m <2(2Ve).

3. Two sided estimations characterizing Hilbert spaces. We begin
with the following
PROPOSITION 3.1. For amy real or complex Banach space X the
Following condition are equivalent '
(i) X s isomorphic to a Hilbert space,
(ii) there emisis a constant C = 1 such that for any positive integer n and
ARY Byy Doy ooy By 0 X

(»"lznf,llwin2 <5 Zn: s, ) < 021’ 2,
i=1" i=1 i=

(ili) there exisis a constant O = 1 such that for any positive integer n and

aNY By, Loy oeny &y, 1 X
& " n
o ; lleal* < E(Hé’” f<o ;: o,

(iv) there exists & constant C > 1. such that for any positive integer n and
for any n X n scalar valued matric (a,-,i) if

©  3[Desl<

E exp l am )n

|8 |2 for all n-tuples
j=1 i=1
(811 82y -+.5 8,) Of scalars then fm ANY SEQUENCE Ly, Loy ...y By b X,'
M V}' ay; 02 eyl
g=1

Proof. (i) = (ii) The Rademacher functions are an example of a se-
quence of independent random variables distributed by the rule (4).
Hence, by (2), (3) and the remark after (3), it follows that in any Hilbert
space the mequality appearing in (ii) holds with ¢ = 1. Thus if X is
isomorphic. to a Hilbert space, then (i) is satisfied with ¢ = inf|TJ

where inf is extended on all isomorphisms T from X into a Hilbert space
such that |} = 7]~

icm
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(i) = (iii). Fix T1y Tay ey @, In X and put

Timare =M P (0 =1,2,...,0; %k = 0,1, ceym=1; m =1,2,..).
Clearly we have

mn

St =St wa 5 Savaf) - 2| S

for m=1,2,...
Thus (ii) applied to the sequence (#)1<jcmn yields

0—12 gl < E(‘i; Zn'é:nxiﬂi) < Cﬁ liz 2.

Now (111) follows from Lemma 2.1 applied to the functmn h(s,, sz, eeey 8)

= Z‘ ;x| which satisfies (5) because 2 83| < |.s> i e )
=1
n
< max|jz] (Zfsi[)z.
I<isn =1
(i) = (iv). Assume first that (ay) is a real # X #» matrix satisfying (6).

Then (ay;) represents in the n-dimensional (real !) Euclidean space I3 a linear
operator of norm < 1. It is well known that the extreme points of the
unit ball of the #% dimensional space of linear operators on Iy are exactly
linear isometries. Hence, by the Krein—-Milman and the Caratheodory
theorems, any # X # real matrix satisfying (6) is a convex combination
of at most n2-+1 maitrices of isometries. Hence to establish that (iii) = (iv)
it is enough to show that (7) holds for any real nxn matnx (@) ‘which

represents an isometry. Then we have 2(28 agf =
e

Zs; for any
is1
reals §;, 8,, -

ey 8y and. [Deti(a;)] = 1. Thus using (iii) and the change
of variables = 23 0y for j =1,2,.

215’1“\

.., % we get

13

¢ = R e -3 38
f f }ysiyaﬁ.wjﬂe i=1'ds, ... ds,
(1/2“, s e T~ i

(V?rt f f '! Zt el
-y (}[27,90,”2) < 022 e
j=1 I=1

Yo 20 Det(ay)dt, ... i,
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" Now if (ay) is a complex n X n matrix satisfying (6), then (Rea,)
and (Imay;) are real n X n matrices satisfying (6) for real sy, 8,,...,s,.
Thus from what was just established we get

ﬁ‘”j’aﬁw,”z <2 (j’”i’(Re ay) w,-”2+ 2“ j (Imaij)ij’) < 2025’”%“2‘
i (iv) = (i). Let (a;) be a scalar valued n X % matrix satlsfymg (6).

Fix #y, &g, ..., @, 0 X and pubt y; = Za,,m, for 2 =1,2,
Then, by (6), we geb

n

®) PSS Zlm ()]

q=1 j=1

for any o*e X*.

Conversely assume that sequences (x;)j.; and (¥;);, in X satisfy (8).
Let F be a subspace of 7; consisting of all sequences (f)7.; such that
t = o*(x;) for ¢ =1,2,...,n and for some 2™e X*. Tet us set

Al@) = (#" () for (&) = (" (x)}.

It follows from (8) that the above formula define a linear operator from
F into I with J4|| < 1. Tet 4~
projection. from I} onto F. Let (a;) be ’nhe 7 X n matrix representing

(Za@]tj ) for (¢)j,ely then the
HA ll

A in the unit vector basis ie. A((f)) =

maitrix (a;) satisfies (6) because |4| =

1, and for any #*¢ X* we
have )

(5'«‘t (i’li))?:x

— (@) = Sewe" @]

n
Hence w"(yi) = w*(Za,-jwj) for i =1,2,...
Za.,,m, for i"= 1 2,

,n and 2*¢ X equivalently

Thus (iv) is eqmvalent to the following condition

(v) There exists ¢ > 0 such that for any positive integer #n and any

sequences (z,)f; and (y,)7_; in X the condition (8) implies (7).
"~ By [2], Theorem 7.3, the conditions (v) and (i) are equivalent. This

completes the proof.

CoroLLARY 3.2. A Banach space X is isomorphic to a Hilbert space
if and only if X satisfies the two sided Khinchine inequality (*).

Proof. Use the fact that Rademacher functions are independent
random variables distributed by (4).

Next we shall show that in the statement of Corollary 3.2 one can
replace the (non complete!) Rademacher system by an arbitrary complete

= AP: " - I where P is the orthogonal

icm
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orthonormal system in I*; here by L®* we denote the space of all square

Lebesgue infegrable scalar valued functions on [0;1]. We shall write
(g,h) = fg(t ‘R(t)dt  for g, heI?.

LeMMA 3.3. Let (f;) be an orthonormal complete sysiem in I* and let

X be a real or complex Bamach space. If for some C >0 and for any

@iy By oeey Bpe X and for n =1,2,... we have
(9 f | pNAC afar < 0211:: P resp. >),
i=1
then for the same C > 0 and for any @;,...,z, and for n = 1,2, ... we
also have
1 n 1a n
(10) [ Y rwafa<o Yzt (resp.>).
0 = = .

Proof. By the standard gliding hump procedure one can find for
a given ¢ > 0 increasing sequences of indices (%;) and (m;) and an ortho-
normal sequence (h;) such that
jp1—1

b= D

k:k;-

hss fe)frs
! &
of hy(t) ~tm, (WP < o5 for G =1,2,...
Now for a fixed positive integer # and fixed a,, %5, ..., #, in X we have

fl Hé’rj(t)wjuz at = ofl ”é;rmj(t)mj”zdt = B3+ v+ 0,7, ]R).

Furthemore, by the triangle inequality

]/f HZ; (t)m} Vf“;n;(rmi(t)'hj(t))mjl’idt+VlfHéjhj(t)mjﬂgdt

7

< V;VZ ”37]112 +Vf]ij]bj(t)mi1lzdt
=1 ¢ =1

because, by the Schwartz inequality,
1 n 1 n n
T 3 trmy )=y < [ 3 by (01Tt 3, i
0 j=1 0 j=1 r=1
-39 Iij(t)—h,-(t)l“dt'ézﬂw,llg <s E B, 2.

j=10
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. g1
On the other hand, by (9), remembering that 1 = II2 = 3 |(h;, f,)2
we get =k
}‘, n n 7‘1-}—1“1 o
| Y f |23 s siife)af e
1] Jj=1 .
n "]-{-1*‘1 n
<O DN by FllslE = 0 3 Lyl
i=1 k=k; J=1
Thus ‘

f”i’%(t)ﬂ%ffz < (ﬂ+V5)2$’y|;uj|\z.

Let ¢ tend to zero, and we have (10). The proof for the reverse inequality
is analogous.

COROLLARY 3.4. Let (f;) be an orthonormal complete system in I? and
let X be a real or complex Bamach space. Then X is isomorphic to a Hilbert
space if and only if there exists C > 0 such that for any positive integer n and
NY Byy By «eey Tny

1

0t St < [ Swalfie<c 3.
= LRt =1

Remark. Corollary 3.4 is clearly not true for an arbitrary infinite
orthonormal sequence of functions in I2 Indeed let f, = 2 %y, where
#: denotes the characteristic function of the interval (277 27%Y) for
©=1,2,... Then for any Banach space X and any @, ®,, ..., &, X

(n=1,2,...) we have
I n
dfd = D lle
i=1

Ji émnw

4. Characterizations of a Hilbert space by the existence of the Fourier
transform and Bessel type inequalities. Let X be a complex Banach space.
Denote by Ig(X) the normed linear space of all simple functions fi BR=>X

under the norm |f]

= (fIF(®)IFdt)"”. Here by a simple function we mean

n
any function of the form _\_',’ZJ x; where z;¢X; 4; are mutually disjoint
J=

measurable subsets of R of flmte Lebesgue measure and %4, denotes the
characteristic function of A4, H{i=1,2,...,n;n — any posmve integer).

The completion of Lz( ) in ‘the norm | | will be denoted by L*(X). The
Fourier Transform &: I2(X) - I? (X) is defined by

+o0

f e (5)ds

F(H)

Voo for ieR; fe L}(X)

icm
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Similarly we define the inverse Fourier Transform: # ™ : I3(X) - L*(X) by
+oo

- 1 .
FNHH === [ s

Von

for teR; fe L3(X).

Clearly & and #~ are linear operators in general unbounded. Our next
lemma seems to be known. The proof repeats the classical argument used
in the Poisson summation formula

Levwma 4.1, Let

o
Ty

(11) 7= Alkas(k+1)a)?
—

h =

where a >0, z,e X (k =0, 41, +2,.

Then
M
D w1 (B

fke=—M

o M), M—any positive inieger.

1

f‘l 2 g~ Ty, ]dt.

k=—M

|3F =

Proof. The computation of the norm [A] is trivial. To establish the
second formula we compute first directly & (h). We have

1 J-c0 M 1 M (k+1)a

L —ist —ist
F(h t=——:f —— (8) 6 Fds =—=— mf e ds
e Vor % k:—u‘/a’ A i, (e1a) V2na Phagny 7 k,m

at
sm— jat M
I/ (e ) Zxka Fati,
27 at =
o

Hence, ehanging the variable, u = at/2, we get

tm
sin%umw | ity |
3 e xR dy
U f | Z’ aye |
pl +M ‘
- ST S
H=—00 ¥ i =M !
- fz sotun_| Vﬂc el gy,
[m(u-+») ] “ = i
sin%ru
Since Z = %; = =1 for all real u, we geb

2 M ”
—arkui
= || g .6 du.
of <, I
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PRroPOSITION 4.1. For any complew Banach space X the following
conditions are equivalent

(v) X is isomorphic to a Hilbert space,

(vi) there exists C > 0 such that for any positive integer n and any
Loy By Bogyoery By By 0 X :

[ 3 emafaco 3w,
¢ k=—n k=—n

(vii) there ewists C > 0 such that for any positive integer n and any
Loy Tyy Logy oony Ty Ty

(viii) The Fourier Transform F: Lj(X) - L*(X) is bounded.

Proof. The direet computation shows that if X is isometrically
isomorphic to a Hilbert space, then for any orthonormal functions
Jisfay ooy fn in I and any @y, @, ..., 2, in X

flnjfj(t)mjlf = Zn’ lel? (v =1,2,...).
0 j=1 iz

Hence (v) = (vi) and (v) = (vii).
Next we shall show the equivalence (vi) < (viii). Assume first (vi).
It follows from Lemma 4.1 that for any function % of form (11) we have

1 M 1M
I#®)E = f” 2 e—iniktwkuzdt _ f” 2’ eznktiw_knzdt
[ Ny 7 L ey 7

M
<C D lmlf = O[np.
ey 74
This proves the boundedness of & because the functions of form (11)
are dense in L}(X). Hence (vi) = (viii). Conversely assuming (viii) we
get (vi). '

Next we show that (viti) = (vii). Obviously (viii) implies that the
inverse Fourier Transform &~ is also bounded. Hence both & and &~ have
the- unique extensions to the bounded operators from I*(X) into I*(X)
which we shall denote by the same symbols & and &~ respectively. We
have g
(12) FFN) =2(F () =f
Indeed we check (12) directly for f
<b< +oo. Sinee the functions z-
the linearity and boundedness of &

for  feI*(X).

=% Ygp)y 0T 2eX and —co<a
Aoy are linearly dense in I*(X),
and #~ imply (12) in full generality.

icm°®
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It follows from (12) that there exists a constant €, > 0 such that
17 (Hl= Cilfl for any fe I?(X). Hence again using Lemma 4.1 we get
(vii).
From what we just showed it follows that (vi) = (viii) = (vii). By
Corollary 3.4, the conjuction (vi) and (vii) implies (v). Thus the conditions
(v), (vi) and (viil) are equiqalent for any Banach space X.
Finally to prove that (vii) implies (v) we apply the following:
Levua 4.3. If for some Banach space X and for some complete ortho-
normal system (f,) in I? there ewists C> 0 such that

f“ Enmkfk(t) uzdt >0 5: loel®  for amy @iy ..., 2, 0 X (n
0 k=1 " k=1

=1,2,..))
then
’ 1 n \ .
Hl Zwak(t)” a< ot 2”5";”2
] k=1 P
f0r ONY Dy .eny By U x* n = 1,2, ...

Proof. The completness of the system (f,) implies that the linear
combinations of the f,s are dense in I®. Hence the set B of all vector
valued functions of the form

@ =2fk(-)wk (e X; %k =1,2,...,n; 0 =1,2,...)
k=1

is dense in the space L? ([0, 1), X} of all strongly measurable Bochner
square integrable functions from [0, 1) into X. Now it follows from a stand-

ard duality argument that for any fixed linear combination ¢* =k21w;:fk
m 1 =
and any &> 0 there exists ¢ = } #,f, ¢ B with ||| = ([lp@)Fd)** =1
k=1 0
such that
1 n 1 min(m,n)
([ X anof af <[l nela+e = 3 w@i+e
0 k=1 0 k=1
- *0\¥ “ i, _}_ . i,
<( ) lel?) (k;: lodle) o< o= (kg; a2} -+

which yields the desired conclusion.

It follows from (vii) and Lemma 4.3 that the dual space X* of X
satisfies (vi). Hence, by the equivalence of (vi) and (v) for any Banach
space, we conclude that X* is isomorphic to a Hilbert space. Hence X
has the same property. Thus (vii) = (v) and this eompletes the proof of
the Proposition.
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Proof of Theorem L.1. The equivalence of (¢) and the condition
(i) of Proposition 3.1 follows from Corollary 3.2. Clearly (i) implies (a)
and (b). To prove that (a) implies (i) consider first the case where X is
a complex Banach space. Clearly (a) implies that there is a constant
(¢'> 0 such that

2

HmDJr p (902,6_1sinkt—}-acycc,oskzz)H2 @< C 2’ llz 12
. =

‘ i

7]

S
[{]:

i
-

for e X (£ =0,1,...,205m =1,2,..))
thus using the Euler formula ¢* = cost+isint for any 9,6 X (j =0,
1,0, +n; n=1,2,...) we obtain

f H Zﬂ e
¢ k="n

b

2 1
Q= —— f
(2m)y
n

¢
<[+ X =yl + ety

=1

0 n
< ey Z 741

k=—n

Yot ) W=y Sm+ ity cosk | @
k=—n

'

Hence (a) implies the condition (vi) of Proposition 4.2 and therefore (a)
implies (i). Now, if X is a real Banach space satisfying (a), then the com-
plexification X of X also satisfies (a). Thus, from what was just proved,
it follows that X is isomorphic to a complex Hilbert space equivalently
X is isomorphic to a real Hilbert space.

Finally using Lemma 4.3 we deduce the implication (b) = (i) from

the implication (a) = (i).

We end this section by the following conjecture

ConyecrURE. Leét (f,) be a complete orthonormal system in I:. Then
& Banach space X is isomorphic to o Hilbert space if and only if
(12)

1 n n . :
oﬂigfk(tmuz B<C Yl (@ X, b =1,2,.0m5 0 =1,2,..),
= =] L B

where C is an universal constant.

Remark 1. (due to A. Pelezyiski) The above Conjecture reduces
to the case of the Haar orthonormal system because any complete ortho-
normal system contains a block sequence which is distributed by the
same rule as the Haar functions (cf. [4] and [3], proof of Theorem 4.1).

Remark 2. The Conjecture is true for the Walsh orthonormal system
{wy) (ef. [1], Chapt. IV, § 6 for definition). This follows from the formula
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M1

a1

|2 il 2

wk(t).’}}'kix’ dt :2 ' a](;cl)xk”
i=g

v

for any @y, @y, ...y Zu_y 0 X (n = 1,2, ...) where (851, k=0,1,... m_y 15 @D
orthogonal matrix of an involution.

This fact enables to deduce from the inequality (12) the reverse
inequality and then to apply Corollary 3.4.

Remark 3. (due to A. Pelezyniski) Proposition 3.1. may be strength-
ened as follows: Banach space X is isomorphic to a Hilbert space if
for some 0 < p,q < +oo there exists a constant ¢ > 0 such that for
each @y, %y, .., 2, in X

S el Sl (S et < ofa]

n " 1
Zmi?i?f )q-

i=1

The same is true for the sequence (§;). This follows from the result of
L. Shepp, J. Landau [7] which implies that for each 0 < p,q< +oo

n 1 " 1
(E”Zm,-y,-”p)p is equivalent to (2] ¥z, )2
i=1 =1
The author is deeply indebted to Professor A. Pelezyriski whom
the paper ows its existence.
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