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Received February 6, 1971 (297) Abstract. A cardinal series K is constructed with coefficients taken as the values
of a singular integral kernel K, (of the Calderén-Zygrmund type) at the non-zero
lattice points of Eunclidean space. It is shown that K is the kernel of an operator from
I? into L?, and that when K is subjected to similarity transformations, the resulting
operator K; approaches X, in a weak sense. Special formulas are derived for the case
when K, is the Weierstrass kernel, ‘and from this pointwise convergence follows.

1. Introduction. In the approach of E.C. Titchmarsh [4] to the
M. Riesz theory of the Hilbert transform, the theory is formulated first
for discrete transforms and then extended by a limiting process to the Hil-
bert: transform. Implicit in this work is the use of cardinal series.

In the present paper, we take a similar approach to the theory of
singular integrals due to Calderén and Zygmund [1]. Our aim is more
modest than that of [4] in that we shall accept their whole theory and not
attempt to create an entirely new approach to singular integrals. In
particular, we shall use their extension of the theory to discrete transforms
(cf. [1]). From the discrete transform, a cardinal series is constructed as
the kernel of a translation-invariant operator on L”(R,) into itself. The
operator is then subjected to similarity-transformations, which, in a weak
limit sense, reproduces the original singular integral operator.

In the last section, the operator associated with the Weierstrass kernel
is treated in some detail. In particular, a rather explicit formula for-the
associated cardinal series is obtained. From this, it is shown that pointwise
convergence of the cardinal series to the original kernel follows.

2. Preliminaries. Let K, be a Calderén—Zygimmd kernel on Ry
(cf. [1]); L.e., Ko(2) = Q&) ]|w/Y with o’ the radial projection of » onto
the unit sphere about the origin, where the integral of £ over the unit
sphere is 0, and 2 is continuous with modulus of continuity o such that
1 .
f m dr < co. The singular convolution integral operator T, with

o r

* The work of this paper was supported by National Science Foundation grant
GP 9053.



GUEST


40 * R.P. Gosselin

kernel K, then maps L” into I?, 1 < p < co. Furthermore, as shown

in [1], T, maps I into I in the following sense. Let {,} be a multisequence
in [P with index n ranging over the lattice points of Ey. Let

Yo = D Ko(m—n)2y.
MFEN
Then {y,} also belongs to 1> with norm not exceeding a constant multiple
of that of {,}. From the values of K, at the non-zero lattice points, we
form a cardinal series; i.e., let -

KW(‘”) =KW(§1: 52, ceey EN) — sinmé, sinmé,

néy né,

The Fourier transform of Ky is the characteristic function of 8, the
hyper-rectangle of side 2n symmetric about the origin and with sides
parallel to the coordinate axes. Let

K@) = Y Eo(m) Kyy(w+m)

where the prime indicates the term corresponding to the zero lattice point
is omitted. The series is sometimes known as a Whittaker cardinal series
(ef. [2] for the general theory). The function K is entire of exponential
~ type, and the series interpolates K at the non-zero lattice points;ie.,
K(m) = Ky(m), m # 0. Now we form the convolution operator I with
kernel K. Thus v )

sinméy

néy

(Ty) (@) = [E(y—a)p(y)dy.

T also maps LP into itself as can be seen from the following argument.
First, Tp = T(Ky *¢) since both K and f(W have support in 8, where
Ky has the value one. Since the Fourier transform of Ky *¢ also has
suppqrt in 8, | Ky *gll, £ Cllpll,- Thus, it may be assumed that Ky *g = .
In this cage, the L? norm of ¢ is equivalent to the I? norm of {¢(n)}. The
same is true of K *p, and for smooth ¢

(K *g) () = D'E (m—n)gp(m) = 3 Kqy(m—n)g(m).
For the first equality, we are using the fact that the function
b, (z) = ZK(m—ﬂ +a)p (m+ )

is periodic of period one in each variable, and that the series converges
uniformly to b,. The Fourier coefficiepts can be computed directly to
show that b, is the constant function (K *¢) (n) (cf. [2, p. 576] for a similar
argument). Hence by the result of [1] cited above,

DE =) m)” < 0 Y lpm)P.

icm
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Trom the equivalence of the L” and I* norms of the functions and sequences
involved, it follows, as stated, that

|E =¢ll, £ Cliplp-

Now we propose to subject the translation-invariant operator I' to
similarity transformations in the following way. For 2 >0 and for ¢ in
the Schwartz space &, let ¢,(z) = Wo(iz). Let K, be defined similarly.
As a tempered distribution, K, may be defined by the relation K,(p)
= VK (¢,). K, is the kernel of an operator T, which maps L into itself
and with the same operator norm as that of T. Explicitly

(1 (T;9) (@) = [E:(y—2)o () dy-

Translation-invariant operators mapping I* into itself form 2 Banach
space I (under the operator norm) which has a weakly closed unit ball
(cf. [3]). For us, this means that, if for each ¢ of &, limK,(¢) exists, then
there is a distribution J such that e

Psz(‘P) =J(p)

and such that J is the kernel of a translation-invariant operator T in I}
with operator norm not exceeding that of 7. It will be shown that J
exists, and in fact that T'; is, apart from a constant multiple of the iden-
tity, the original operator T,. This exception is explained in the next
section.

Tt is possible that one can show, independently of the theory of
Calderén and Zygmund, that the kernel K, evaluated at the non-zero
lattice points defines a discrete operator bounded from I” into itself.
Hence, by the procedure outlined above, one would obtain an independent
approach to singular integrals. However, this does not now seem like a reas-
onable way to treat singular integrals.

3. The principal theorem. It is known [1] that, if K,is a Calderén-
Zygmund kernel, the spherical patrial sums

2) : Z Kq(m)

o<iml<r .
will converge as r goes to co. Very often the limit iy zero, as is clearly the
case if K, is an odd function. However this is not always so, and we denote
the limiting value of (2) by I'(K,). With I'(K,) thus defined, we are pre-
pared to state our principal theorem. '

TgporEM 1. Let T, be a Calderén-Zygmund singular integral operalor
with kernel K,. Then T, defined by (1), converges weakly, as A goes to oo,
to the operator

T(E)I+T,.
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As explained above, it is enough to show that, for each ¢ of &7,

(3 EJ;KMJ) =I'(Ko)p(0) +Kolp)

where both K; and K, are considered as distributions. First, let ¢ be of ‘

exponential type; i.e., let supp ¢ be compact. Then
Hylp) = A [E(a)p(@)dw = Y Eyo(m){A¥ [ Ky (Jo—m)p (@) da).

Since @ is of exponential type, the term in brackets on the right is @ (m/A
for ) sufficiently large, and '

Eilp) = Y Eo(mp(mfi) = 3 Ko(m[W)g(m/a) i~

The second equali.ty follows from the homogeneity of K,. If ¢(0) =0

T,he sum on the right is a Riemann sum for the absolutely convergené

?ﬁegml f Kq(@)p(w)de. I ¢(0) 5 0, choose d small but temporarily fixed.
en

(4) K(p) = + DV Eo(mlptm)2)a.

0<|m|<ad wglmy
The ,seegnd term on the right is a Riemann sum for the absolutely con-
vergent integral \ <f[I]KO(m)¢(w)dm, and for small 4, this is close to K, (p).

For the first term, write p(m /1) =
= @(0)+y(m/2) where =
= 0(9). Thus the first sum in (4) is w Pl = Omin

g(0) D Eym+ Y Emp(mii).
0<]in| <As 0<|m|<is
aTh‘oia lil(nii;lc))f thoe first term above is I'(K,)@(0). Since Ey(m) = O(lm]n'N)
nd y(m/l) = O(|m|/2), the second term above is O(8). Thi ifi
for ¢ of exponential type. (9) "This verifies )
For general ¢, write ¢ = ¢, -+, where 3, has compact support and w‘z

has small ' norm. This can be accompli iplyi
m . ; ished b ; P
Iocahzmg funetion. Then P Y miplyiag ¢ by & Sm‘oom

Ki(p) = Ky () + Ky (y).

Since K; is a function bounded uniformly in 1, the second term is small

for all 2. Slnce Y1 18 of exp 1d P
1 18 onential bV e he limit of th erm. 18
1 (.‘Kl)) 1 (0) KO(V’L) which eq nals , ° "

F(Ko)?’w)‘i'Ko(?’) - {P(Kn)@z(o) ‘f‘Ko(‘h)}"

Since y, has small I' norm and K, i . )
5 nd K, is bound r i
small, and the theorem follows. ’ *h fhe bradeted tem
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4. The Weierstrass kernel. If, for N =2, K(z,y) is taken to be
(#+4y)"% the Weierstrass kernel, an especially important singular integral
is obtained (cf. [1, p. 2697). In this case, an explicit expression for K can
be obtained, from which the pointwise convergence of K, to K, will follow.
Because of the evenness of K,

K(z,y) = Zs(o, ?/)Zl(m+‘i‘n)_26—i('"x+"”)-
Let D be the differential operator — 0%0a* — 206 |00y + 0°[0y*. For ¢
in &%
(DE) () = E(Dg) = (202 3 (m+in)65,(Dp)

where 6, ,(Dg) denotes the Fourier coefficient of index (m,n) of the
function De. The restriction of Dy to 8 does not Tead to a smooth function
on the torus, but it is, at least, in I? and the above series converges.

Since we shall separate terms later, we introduce a summability
method (double Cesaro sums) so that

(@r)"*(DK) (g) = lim > o(m, n; R) (m+in) 7 on,0(Dp)
R-x00 :
where o(m,n; R) = (1—|m|/R) (L —|n|/R) for O = im|, [n| < R. Integra-
tion by parts leads to the formula
Cm,n (D‘P) = (’m’ + i’n’)z [Gm,n((p) + f’m, n (gp)]

where in;,;l is a distribution with support on the boundary of S. Thus
(2r)* (DE) (g) = Tim D atm, 3 B)em,n(e) + lim 3 o(m, n; B) Ly ()
Since ¢ is smooth near the origin, its Fourier geries is thus summable to
®(0,0), and

(27)2(DE) (g) = p(0, 0)— ty,0(9) + 27 L ()
where j(go) indicates the second limit above so that L is a distribution
with support on the boundary of 8. Hence

DE = @n)8—Zg+L

where & is the characteristic funetion of 8. Taking inverse Fourier trans-
forms gives
(5) K (2,y) = Ko, 9) [1— Ky (@, y)+ Lz, 9]
By examining in detail the structure of I, we may prove our final theorem.

TerorEM 2. Let K be defined by (5) with Ky(z,y) = (+iy)~% For
% #0, and y # 0, K(z,y) converges 10 Koz, ).
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Sinee (K,); = K,, it is enotigh to show that [K,(Kyy— L)1, converges
to 0. Now ’
(B K@, y) = Ko, y) K (A, 2)
which clearly converges to 0 as A goes to oo.
For similar reasons, it suffices to show that L(iz, y) converges to
zero. By direct computation we may show that L is composed of several
terms of which there are three typical types. The first is

{p(m, m)—@(—m, n)—@(m, —T) +o(—, ’“7‘:)} X
x lim > o(m,n; B) (=1 Ko (m, ).

Write .
m?—n? mn
Ky(m,n) = — — 24 = U+ e
) [m+©”[4, |m+1/m4 My m,n
8inee @y, , = — 0y, and since b, ,, = —by, _n, we have, by the symmetry

of ¢(m, n; R), that this term ig zero.
To estimate other terms in L, we introduce the following:

%, (R) = > o(m, n; R)(—1)"(m+ 2in) Ko(m, n);

BulB) = X6 (m,n; B) (—1)"Kq(m, n).
m
By elementary means, it is possible to show that a,(R) = 0(1/|n|) and
B.(R) = O(L/n®) uniformly in R. These sequences converge, as R goes
to oo, in the P sense to sequences, a, and B,, respectively, satistying the

same order condition. Let a, and B, be the sequences of Fourier coeffi- -

cients of the functions § and A, respectively.
A term of the second type in L arises as

R = T .l r
T May(R) [p(m, )™y =2n Y0y = [g(9)§w)dy.
— T
The corresponding function in L is thus é™ ¢(y). Since g is in L% and § has

compact support, then g(y) goes to 0 at oo ag desired.
A term of the thud type in L is

i S [ 2w, ey

By an argument similar to the preceding but involyving the order cbndition

gnoﬁn(R), it may be shown that the corresponding term of L also goes
0 0 at co.
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The hypothesis that both ¢ % 0 and y # 0 is essential. For example,
it K,(z,0) = 22K (), 0) were bounded for any = # 0, then as a function
of one variable, K (x, 0) would be in I'. But it is easily verified that its
Fourier transform is not continuous.
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