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SOME ORDER THEORETIC CHARACTERIZATIONS OF THE
3-CELL
BY

E. D. TYMCHATYN (SASKATOON, SASKATCHEWAN)

We use* the work of Dyer and Hamstrom [5] on completely regular
mappings to show that if a compact 3-manifold (resp. metric space) admits
a certain type of partial order, then it is a 3-cell. In Section 3 we obtain
some similar results using convex metrics. In the last two sections, we
prove a fixed point theorem for partially ordered spaces and give a suffi-
cient condition for a partially ordered space to be the product of an arc
and a compact set.

1. Introduction. A partially ordered space is a compact, metric space
X with a partial order < such that < is a closed subset of X X X. In other
words, if the sequences x; and y; converge in X to x and vy, respectively,
and z; < y,; for each ¢, then = < y.

For xeX we let

Lz) ={ye X|ly<a} and M(z)={yeX|z<y}.
For A =« X we let
L(A) = U{L(@)|xe A} and M(A) = U{M(x)|zeA}.

A chain is a totally ordered set. An order arc is a compact and con-
nected chain. A separable and non-degenerate order arc is homeomorphic
under an order preserving map to the unit interval [0,1] (where [0, 1]
has its usual order).

We let

Max(X) = {ye X| M(y) = {y}}
Min (X) = {ye X | L(y) = {y}}.

It is known [8] that each chain in X is contained in a maximal chain.
Each maximal chain is closed and meets both Min(X) and Max(X).

and

* This paper was supported in part by a grant from the National Research
Council.
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A metric o for X is radially conver if a < b< ¢ implies ¢(a, c)
= g(a, b)+ o(b, ¢). The following theorem about radially convex metrics
is due to Carruth [4]:

THEOREM 1 (Carruth). Every compact, metric, partially ordered space
admits a radially convex metric.

Definition. A mapping f of a metric space X onto a metric space Y
is said to be a 0-regular mapping provided f is open and if y<¥, pef~'(y)
and U is a neighbourhood of p, then there exists a neighbourhood N of
p such that if <Y and a, be f~'(x)N N, then there is an arc from a to b
in f'(2)n T.

We shall need the following special case of a theorem of Dyer and
Hamstrom [5]:

THEOREM 2 (Dyer and Hamstrom). Let F be a 0-reqular mapping of
a complete metric space X onto [0,1] such that, for each ye[0,1], F~'(y)
18 homeomorphic to the point set K, where K is an i-cell or i-sphere (1 < 2).
Then there is a homeomorphism h of X onto the direct product [0,1]1X K
such that the diagram

X %00,1]x K
\{“ {/p

[0, 1]

commutes (where ¢ is the natural projection).

Most of the notation that we have not specifically defined is taken
from Wilder [12].

2. Characterizations of the 3-cell.

THEOREM 3. Let X be a compact 3-manifold with boundary S* and let
6 X\ 8% If X admits a closed partial order such that Max (X) = 8%, Min(X)
= {0} and such that L(x) is an order arc for each xe X, then X 18 a 3-cell.

Proof. Let Y be the quotient space obtained from X by collapsing
Max (X) to a point and let = be the natural projection of X onto Y. Define
a partial order <* on Y by letting a <*b in Y if and only if there exist
a’'en—1(a) and b’ en-1(b) with a’ < b’. Then Y is a partially ordered space.

By Theorem 1 there is a radially convex metric ¢ for Y such that

o(w(0), = (Max(X))) = 1.
Define a continuous function F from X onto [0, 1] by letting
F(x) = o(n(0), n())
for each re X. For each ae [0, 1]
F'(a) = {xze X|0(n(0), n(2)) = a}.
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For each me Max(X), F~!(a) meets L(m) in exactly one point.

If a<b in [0,1], define a function g from F~'(b) onto F~'(a) by
letting g(x) be the unique point in F~'(a)nL(x) for each ze¢ F~'(b).

(*) Since F~'(a) is compact and the partial order on X is closed,
g is continuous.

Define a function k: X x [0,1] - X by letting

k(x, a)e L(z)NF~ ' (min{a, F(z)})

for each (7, a)e X X [0,1]. Then k is clearly a contraction of X onto {6}.

If ac] 0,1 [, then F'(a) is the common boundary of its complemen-
tary domains F~'([0, a[) and F~'(} a, 1]). Since F~!(a) is nowhere dense,
F~!(a) is not 3-dimensional. Since F~!(a) is the image of a 2-sphere under
the map g, F~'(a) is a continuum. It is clear that F~'(a) is non-degenerate.
If ye F71([0, a]), then the restriction of the map k to

(F=1([0, @ [)U{y}) x [0, 1]

is a contraction of F~'([0, a[)U{y} in F~'([0,a[)U{y} onto {6}. Thus
F~1(a) is r-accessible from F~'([0, a[) for r = 0,1 and 2. By Theorem
V. 19. 5 in Wilder [12], F~!([0, a[) is semi-1-connected. By Theorem
X1I. 3. 9 in Wilder [12], F~!(a) is a 2-sphere.

We must prove that F is a 0-regular map. Since ¥ is a homeomorphism
when restricted to {s} X [0, 1], where se¢ Max(X), F is an open map.

Let pe F~'(a) for some a¢]0,1] and let U be an open neighbourhood
of p. To prove that F is 0-regular it will suffice to prove that there exists
a compact neighbourhood N of p with N = U such that if x¢[0,1] and
F~!'(2)NN is non-void, then F~!(x)N N is connected.

Since M (p)N Max(X) is a compact set in the 2-sphere Max (X),
there exist connected open subsets Vi, ..., V, of Max(X) such that

M(p)n Max(X) < V,uU... UV,.

For each 2 =1,...,n let W, denote the closure of V,. Since the
partial order on X is closed, we may pick V,,..., V,, so that L(W,)n
NF~'(a) = U for eachi. We may also suppose that, for each ¢, V,n M (p)
i1s non-void and the sets V; are pairwise disjoint.

-If » = 1, then V = W, is a continuum which contains M (p)nF~*(1)
and L(V)NnF '(a) c U. Suppose that » > 1. Then a< 1. Let z,eV,Nn
N M(p) and let 2,¢V,n M(p). For each i = 1,2 let y,, be a sequence
in L(z;)N (M (p)\{p}) which converges to p. By Theorem X. 3. 2 in Wilder
[12], F~'(]a, 1]) is 0-ulc since it is a complementary domain of the 2-sphere
F~'(a). Hence for some sufficiently large j there exists an arc A in
F~'(]a,1]) with endpoints y, ; and ¥,; such that L(A)nF '(a)c U.
Since A is compact and F(A) < ]a, 1], there exists be]a, 1] such that
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A = F7'({b,1]). By (*), L(A)nF~'(d) is a continuum which meets both
L(V)nF'(b) and L(V,)NnF~'(b). By induction there exists ce]a, 1]
and a continuum V in F~!(¢) such that L(V)nF~*(a) c U and

(L(W)U ... UL(W,))NF ' e) = V.
Let p; be a sequence in X which converges to p. Eventually,
M(p)NnMax(X)c V,U...UT,

since V,u ... vV, is a neighbourhood (in Max (X)) of M(p)n Max(X)
and the partial order on X is closed. For each ¢ let ¢;¢ M (p,) N Max (X)
and let r,e L(q;)NV. Eventually, p,e L(r;)U M(r;) since L(q;) is an order
arc. If eventually p;eM (r;), then peM (V) and a = 1. Thus, p; is even-
tually in M(V) =V < L(V). If p,eL(r;), then p,eL(V). Hence L(V)is
a neighbourhood of p.

Let a; be a sequence in [0, 1] which converges to a. For each ¢ let
2, L(V)NF~'(a;) and let « be a cluster point of the sequence x;. Then
xe L(V) since V is compact and the partial order on X is closed. Since
F is continuous, xeF'(a). It follows from the argument above and the
fact that the closed set L(V)NF'(a) is contained in the open set U
that there exist a,, a,¢[0, 1] such that

N = L(V)nF~([ay, a,])

is a neighbourhood of p» which is contained in U. If x¢[0, 1] such that
NnF(x) is non-void, then NNF~!(x) is a continuum by (*).

By Theorem 2 there exists for each d¢]0,1] a homeomorphism h
of X\F~'([0, 0[) onto 8% x [d, 1] such that the diagram

X\F([0,0[) "> 82 x[0, 1]
\5 /4
[0,1]
commutes.

Let @ be an open 3-cell neighbourhood of 6 such that the closure
of Q is a closed 3-cell. There exists & > 0 such that F~!([0, ¢]) = Q. By
the argument above, F~!(¢) is a bicollared 2-sphere (see Brown [2]) in Q.
By a theorem of Brown [2], F~'(¢) is flat and so F~!([0, ¢]) is a closed
3-cell. Hence

X = FY([0, e) UF([¢, 1))
is a closed 3-cell.

A crumpled cube is the closure of the bounded complementary domain
of a 2-sphere in E*. The proof of Theorem 3 can be used to prove the
following

THEOREM 4. Let X be a crumpled cube with boundary S* and let
0 X\ 8% Then X is a 3-cell if and only if X admits a closed partial order
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such that Min(X) = {0}, Max(X) = §* and, for each ze X, L(x) is an
order arc.

By placing strong conditions on the partial order, we can drop the
hypothesis in Theorem 3 that X is a manifold.

If X is a compact metric space, we let 2% denote the space of compact
subsets of X with the Hausdorff metriec.

Theorem 5. Let X be a partially ordered space. If X contains a family
€ of maximal chains of X such that
(1) each member of € is a non-degenerate order arc,
(i) € is homeomorphic to the closed unit disk in the plane, and
(iii) for each xe X, {Ce¥ | xe C} is a continuum which does not sepa-
rate € and which does mot contain the boundary of €,
then X is a 3-cell.

Proof. By [10], Min(X) and Max (X) are compact since ¥ is a compact
family of maximal chains which covers X.

By the proof of Theorem 3 there exists a continuous function F
from X onto [0,1] such that F~!'(0) = Min(X), F~'(1) = Max(X) and,
for each ae[0,1], F~'(a) meets each member of € in precisely one point.

Define g: ¥ x [0,1]— X by letting

g(C,a)e CNF'(a)

for each (C, a)e € X [0,1]. Then g is a continuous mapping of the 3-cell
% X [0,1] onto the Hausdorff space X. For each ze¢ X, g~*(x) lies in the
2-cell € x {F(x)} of €x[0,1] and

g =) ={(C, F(»)) | #C}.

Hence g-'(x) is a continuum which does not separate ¥ x {F(x)}
and which does not contain the boundary of € x {F(x)}. It follows by
a theorem of R. L. Moore (Whyburn [11], p. 173) that F~'(a) = g(¥ X {a})
is a closed 2-cell for each a¢[0,1]. By the proof of Theorem 8 in [5], F is
0-regular. Hence X is a 3-cell by Theorem 2.

THEOREM 6. Let X be a partially ordered space such that
(1) Max(X) is a closed 2-cell and Min(X) is compact,
(i) for each xe¢ X, L(x) is a non-degenerate order arc, and
(iii) for each xe X, M(x)N Max(X) is a continuum which does not
separate Max (X) and which does mot contain the boundary of Max (X).
Then X is a 3-cell.

Proof. By Theorem 5 we need only to show that the function
f: Max (X) — 2%, defined by letting f(x) = L(x) for each xe¢ Max(X), is
continuous.

Let x; be a sequence in Max(X) which converges to x in Max(X).
Since 2% is compact, the sequence L(x;) has a cluster point 4 in 2%. Since
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the partial order on X is closed, 4 = L(z). For each ¢, L(x;) meets Min(X).
Since Min(X) is closed, A meets Min(X). Finally, since each L(x;) is
connected, A is connected. Now, 4 is a connected set in L(x) which meets
both Min(X) and Max (X). Since L (x) is an irreducible arc between Min (X)
and Max(X), A = L(»). Hence f is continuous.

3. Convex metrics. We can restate the results of Section 2 as theorems
about spaces which admit certain kinds of metries.

By Carruth’s theorem a partially ordered space X admits a metric
o such that every chain in X is isometric to a chain in [0, 1]. The following
result provides a converse to this theorem.

ProprosITION 7. Let o be a metric for the compact, metric space X and
let 0 X. Define a relation < on X X X be letting (x, y)e < if and only if
x =1y or o(x, 0) < o(y, 0) and o(0.2)+o(x,y) = (0,y. Then < i8 a closed
partial order on X.

The proof is straightforward.

Let ¢ be a metric for the compact metric space X. An arc 4 in X will
be called a line segment if A is isometric to an arc in [0, 1].

Let Y be a closed subset of X and let e Y \ X. The metric o will
be called 0-Y convex if for each xe X thereis a line segment which contains
0 and x and if each line segment which is maximal among the line segments
with endpoint 8 meets Y in precisely one point. The 6-Y convex metric g
will be called strongly 0-Y convex if for each yeY there is exactly one
line segment from 6 to y.

PRrOPOSITION 8. Let Y be a closed subset of the compact metric space X
and let 6eX\Y. Then X admits a 6-Y convex meiric o if and only if X
admits a closed partial order such that Min(X) = {6}, Max(X) = Y and,
for each xe X, L(x)U M (x) 18 connected. '

Proof (=). Suppose g is a 6-Y convex metric for X. Let < be the
partial order defined in' Proposition 7. Let # <*y if x <y and « and y
lie in a line segment from 6 to Y. Then <*is the required partial order.

(<= ) Suppose X admits a closed partial order such that Min(X) = {0},
Max(X) = Y and, for each xeX, L(x)U M (x) is connected. By a theorem
of R. J. Koch (see Ward [9]), each point of X lies in an order arc which
runs from Min(X) to Max (X). One can check that if g is a radially convex
metric for X which is defined by the proof of Carruth’s theorem and x,y
and z are distinct points in X, then

oz, 2) = o(z,9)+e(y, ?)
if and only if either r<y<zorz<y<a. Then pis a 6-Y convex
metric for X.
From Proposition 8 and Theorem 3 we get
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THEOREM 9. Let X be a compact 3-manifold with boundary S*. Then
X is a 3-cell if and only if X admits a strongly 6-8* convex metric.

THEOREM 10. If X i8 a compact n-manifold with connected boundary B,
then X admits a 0- B convex metric for some 9 X\ B.

Proof. By [3] there exists a map ¢ from B X [0, 1] onto X such that
¢(b,1) = b for each be B, restriction ¢ | Bx]0,1] is a homeomorphism and
¢~ (¢(B x {0})) = Bx{0}.

By [1], there exists a convex metric ¢ (i. e. every pair of points is
joined by a line segment) for the Peano continuum ¢(B X {0}). Let
Oep(Bx {0}) and set x <’y in ¢(BXx {0}) if and only if x =y or ¢(0, »)
< 0(0,9y) and x lies on a line segment with endpoints 6 and y. Then <’
is a closed partial order on ¢(B x {0}). '

Define <<* on X X X by letting ¢(r, a) <*¢(s,b) if a<<b and r = s
or if a = 0 and ¢(r, 0) <’ ¢(s, 0). Then <* is a closed partial order for X
such that Min(X) = {6}, Max(X) = B and, for each ze¢ X, L(2)U M (x)
is connected. The theorem follows by Proposition 8.

Remarks. 1. Let X be a homotopy 3-cell with boundary 8% If the
map ¢ in the proof of Theorem 10 is monotone, then ¢ (8% x {0}) is a tree
and the metric on X given by Theorem 10 is strongly 6-8® convex.
Hence X is a 3-cell by Proposition 9.

2. Let X be a homotopy 3-cell with boundary S%. The map ¢ in the
proof of Theorem 10 can be taken to be a piecewise linear map. In this
case T = ¢(8?x {0}) will be a contractible 2-complex. One can prove
by the methods used in this paper that T admits a closed partial order
with a unique minimal element such that L(t) is for each te T an order
arc if and only if T is collapsible. Thus, the method of Theorem 10 is of
little use in getting a strongly 6-8* convex metric for X. It is not difficult
to construct a closed partial order on X such that

(i) Min(X) = {6} and Max(X) = &,

(i1) for each zeX, L(x) is connected,

(iii) there exist z,,...,x,e T such that if x # x;, then L(x)NT is
an order arc¢ for some neighbourhood U of «.

Let F: X —[0,1] be defined as in Theorem 3. If ae¢]0,1[ and
a # F(x;), then F~'(a) is an orientable 2-manifold and F~'(F(z;)) may
be taken to be a 2-manifold with precisely one singular point.

4. A product theorem. We turn our attention to more general spaces.

THEOREM 11. Let X be a compact metric partially ordered space such
that Min(X) and Max (X) are closed. If, for each xe X, L(x)V M (x) i$ a non-
degenerate order arc, then X is homeomorphic to Max(X) X [0, 1].

Proof. By the proof of Theorem 3 there exists a continuous function
F from X onto [0,1] such that F~!(0) = Min(X), F~!(1) = Max(X)
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and, for each ae[0,1], F~'(a) meets L(m) in precisely one point for each
meMax (X).

Define g: Max (X)X [0,1]—~ X by letting g(m, a)e L(m)NF~*(a) for
each (m, a)e Max(X) X [0, 1]. Then g is clearly a one-one function onto X.
Since the partial order on X is closed and F is continuous, it follows that
g is continuous. Thus, g is the required homeomorphism.

THEOREM 12. Let M be a compact metric space. If f is a continuous
function from M X [0,1] onto a Hausdorff space Y such that, for each
MmeM, f lmyxpo, 98 @ non-trivial monotone map and f~*(f({m}x [0, 1]))
= {m} x [0, 1], then Y is homeomorphic to M x [0,1].

Proof. Set x<*y in Y if and onlyif there exist (m, a)e f~'(x) and
(m, b)ef~!(y)with a < b in [0,1]. Then <* is a closed partial order on Y
and Y with this partial order satisfies the hypothesis of Theorem 11.

5. A fixed point theorem. We say that a set is acyclic if it has the
homology of a point.

We shall need the following theorem from [6]:

THEOREM 13 (Eilenberg and Montgomery). Let M be an acyclic absolute
neighbourhood retract and let T : M — M be an upper semi-continuous
multi-valued function such that, for each xeM, T (x) is acyclic. Then T has
a fixed point.

We can now prove our final result:

THEOREM 14. Let X be a compact metric partially ordered space such
that

(i) Max(X) s an absolute retract and Min (X) is compact,

(ii) for each xeMax(X), L(x) i a non-degenerate order arc, and

(iii) for each xe X, Max(X)Nn M (x) is acyclic.

Then X has the fized point property.

"Proof. By the proof of Theorem 5 there exists a map

g:Max(X)x[0,1]> X

such that, for each me Max(X), g(m,1) =m and g maps {m} X [0,1]
homeomorphically onto L(m). For each ze X, g~!(x) is homeomorphic
to Max(X)n M (x).

Let f: X - X be a map. Then g-'ofog is an upper semi-continuous
multi-valued function of the absolute retract Max(X) x [0, 1] into itself.
For each (T,a)eMax(X)X[0,1], g-lofog(T,a) is homeomorphic to
Max(X)n M ( fog(T, a)). Hence, the point images of g-lofog are acyclic
and g-'ofog has a fixed point (8, b), by Theorem 13. Thus, (8, b)eg—1ofog
(8, b) and ¢(8, b) = fog(8, b). Hence ¢(8, b) is a fixed point of f, q. e. d.

I wish to thank Garth Thomas. and John Hunt for hours of patient
listening.
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