1972

FASC. 2

SOME ORDER THEORETIC CHARACTERIZATIONS OF THE 3-CELL

 \mathbf{BY}

E. D. TYMCHATYN (SASKATOON, SASKATCHEWAN)

We use* the work of Dyer and Hamstrom [5] on completely regular mappings to show that if a compact 3-manifold (resp. metric space) admits a certain type of partial order, then it is a 3-cell. In Section 3 we obtain some similar results using convex metrics. In the last two sections, we prove a fixed point theorem for partially ordered spaces and give a sufficient condition for a partially ordered space to be the product of an arc and a compact set.

1. Introduction. A partially ordered space is a compact, metric space X with a partial order \leq such that \leq is a closed subset of $X \times X$. In other words, if the sequences x_i and y_i converge in X to x and y, respectively, and $x_i \leq y_i$ for each i, then $x \leq y$.

For $x \in X$ we let

$$L(x) = \{y \in X | y \leqslant x\}$$
 and $M(x) = \{y \in X | x \leqslant y\}.$

For $A \subset X$ we let

$$L(A) = \bigcup \{L(x) | x \in A\}$$
 and $M(A) = \bigcup \{M(x) | x \in A\}.$

A chain is a totally ordered set. An order arc is a compact and connected chain. A separable and non-degenerate order arc is homeomorphic under an order preserving map to the unit interval [0, 1] (where [0, 1] has its usual order).

We let

$$\operatorname{Max}(X) = \{ y \in X \mid M(y) = \{y\} \}$$

and

$$\min(X) = \{y \in X \mid L(y) = \{y\}\}.$$

It is known [8] that each chain in X is contained in a maximal chain. Each maximal chain is closed and meets both Min(X) and Max(X).

^{*} This paper was supported in part by a grant from the National Research Council.

A metric ϱ for X is radially convex if a < b < c implies $\varrho(a, c) = \varrho(a, b) + \varrho(b, c)$. The following theorem about radially convex metrics is due to Carruth [4]:

THEOREM 1 (Carruth). Every compact, metric, partially ordered space admits a radially convex metric.

Definition. A mapping f of a metric space X onto a metric space Y is said to be a 0-regular mapping provided f is open and if $y \, \epsilon \, Y$, $p \, \epsilon \, f^{-1}(y)$ and U is a neighbourhood of p, then there exists a neighbourhood N of p such that if $x \, \epsilon \, Y$ and $a, b \, \epsilon \, f^{-1}(x) \cap N$, then there is an arc from a to b in $f^{-1}(x) \cap U$.

We shall need the following special case of a theorem of Dyer and Hamstrom [5]:

THEOREM 2 (Dyer and Hamstrom). Let F be a 0-regular mapping of a complete metric space X onto [0,1] such that, for each $y \in [0,1]$, $F^{-1}(y)$ is homeomorphic to the point set K, where K is an i-cell or i-sphere $(i \leq 2)$. Then there is a homeomorphism h of X onto the direct product $[0,1] \times K$ such that the diagram

$$X \xrightarrow{h} [0,1] \times K$$

$$[0,1]$$

commutes (where φ is the natural projection).

Most of the notation that we have not specifically defined is taken from Wilder [12].

2. Characterizations of the 3-cell.

THEOREM 3. Let X be a compact 3-manifold with boundary S^2 and let $\theta \in X \setminus S^2$. If X admits a closed partial order such that $\max(X) = S^2$, $\min(X) = \{\theta\}$ and such that L(x) is an order arc for each $x \in X$, then X is a 3-cell.

Proof. Let Y be the quotient space obtained from X by collapsing Max(X) to a point and let π be the natural projection of X onto Y. Define a partial order $\leq *$ on Y by letting $a \leq *$ b in Y if and only if there exist $a' \in \pi^{-1}(a)$ and $b' \in \pi^{-1}(b)$ with $a' \leq b'$. Then Y is a partially ordered space.

By Theorem 1 there is a radially convex metric ϱ for Y such that

$$\varrho(\pi(\theta), \pi(\operatorname{Max}(X))) = 1.$$

Define a continuous function F from X onto [0, 1] by letting

$$F(x) = \varrho(\pi(\theta), \pi(x))$$

for each $x \in X$. For each $a \in [0, 1]$

$$F^{-1}(a) = \{x \in X \mid \varrho(\pi(\theta), \pi(x)) = a\}.$$

For each $m \in \text{Max}(X)$, $F^{-1}(a)$ meets L(m) in exactly one point.

If $a \leq b$ in [0, 1], define a function g from $F^{-1}(b)$ onto $F^{-1}(a)$ by letting g(x) be the unique point in $F^{-1}(a) \cap L(x)$ for each $x \in F^{-1}(b)$.

(*) Since $F^{-1}(a)$ is compact and the partial order on X is closed, g is continuous.

Define a function $k: X \times [0, 1] \rightarrow X$ by letting

$$k(x, a) \in L(x) \cap F^{-1}(\min\{a, F(x)\})$$

for each $(x, a) \in X \times [0, 1]$. Then k is clearly a contraction of X onto $\{\theta\}$.

If $a \in]0, 1[$, then $F^{-1}(a)$ is the common boundary of its complementary domains $F^{-1}([0, a[) \text{ and } F^{-1}(] a, 1])$. Since $F^{-1}(a)$ is nowhere dense, $F^{-1}(a)$ is not 3-dimensional. Since $F^{-1}(a)$ is the image of a 2-sphere under the map g, $F^{-1}(a)$ is a continuum. It is clear that $F^{-1}(a)$ is non-degenerate. If $g \in F^{-1}([0, a])$, then the restriction of the map g to

$$(F^{-1}([0, a[) \cup \{y\}) \times [0, 1]$$

is a contraction of $F^{-1}([0, a[) \cup \{y\}])$ in $F^{-1}([0, a[) \cup \{y\}])$ onto $\{\theta\}$. Thus $F^{-1}(a)$ is r-accessible from $F^{-1}([0, a[)])$ for r = 0, 1 and 2. By Theorem V. 19. 5 in Wilder [12], $F^{-1}([0, a[)])$ is semi-1-connected. By Theorem XII. 3. 9 in Wilder [12], $F^{-1}(a)$ is a 2-sphere.

We must prove that F is a 0-regular map. Since F is a homeomorphism when restricted to $\{s\} \times [0, 1]$, where $s \in \text{Max}(X)$, F is an open map.

Let $p \in F^{-1}(a)$ for some $a \in]0,1]$ and let U be an open neighbourhood of p. To prove that F is 0-regular it will suffice to prove that there exists a compact neighbourhood N of p with $N \subset U$ such that if $x \in [0,1]$ and $F^{-1}(x) \cap N$ is non-void, then $F^{-1}(x) \cap N$ is connected.

Since $M(p) \cap \text{Max}(X)$ is a compact set in the 2-sphere Max(X), there exist connected open subsets V_1, \ldots, V_n of Max(X) such that

$$M(p)\cap \operatorname{Max}(X)\subset V_1\cup \cdots \cup V_n.$$

For each $i=1,\ldots,n$ let W_i denote the closure of V_i . Since the partial order on X is closed, we may pick V_1,\ldots,V_n , so that $L(W_i)\cap F^{-1}(a)\subset U$ for each i. We may also suppose that, for each i, $V_i\cap M(p)$ is non-void and the sets V_i are pairwise disjoint.

If n=1, then $V=W_1$ is a continuum which contains $M(p)\cap F^{-1}(1)$ and $L(V)\cap F^{-1}(a)\subset U$. Suppose that n>1. Then a<1. Let $x_1\epsilon V_1\cap M(p)$ and let $x_2\epsilon V_2\cap M(p)$. For each i=1,2 let $y_{i,j}$ be a sequence in $L(x_i)\cap (M(p)\setminus \{p\})$ which converges to p. By Theorem X. 3. 2 in Wilder [12], $F^{-1}(]a,1]$) is 0-ulc since it is a complementary domain of the 2-sphere $F^{-1}(a)$. Hence for some sufficiently large j there exists an arc A in $F^{-1}(]a,1]$) with endpoints $y_{1,j}$ and $y_{2,j}$ such that $L(A)\cap F^{-1}(a)\subset U$. Since A is compact and $F(A)\subset]a,1]$, there exists $b\in]a,1]$ such that

 $A \subset F^{-1}(\{b,1\})$. By (*), $L(A) \cap F^{-1}(b)$ is a continuum which meets both $L(V_1) \cap F^{-1}(b)$ and $L(V_2) \cap F^{-1}(b)$. By induction there exists $c \in]a,1]$ and a continuum V in $F^{-1}(c)$ such that $L(V) \cap F^{-1}(a) \subset U$ and

$$(L(W_1) \cup \ldots \cup L(W_n)) \cap F^{-1}(c) \subset V.$$

Let p_i be a sequence in X which converges to p. Eventually,

$$M(p_i) \cap \operatorname{Max}(X) \subset V_1 \cup \ldots \cup V_n$$

since $V_1 \cup \ldots \cup V_n$ is a neighbourhood (in $\operatorname{Max}(X)$) of $M(p) \cap \operatorname{Max}(X)$ and the partial order on X is closed. For each i let $q_i \in M(p_i) \cap \operatorname{Max}(X)$ and let $r_i \in L(q_i) \cap V$. Eventually, $p_i \in L(r_i) \cup M(r_i)$ since $L(q_i)$ is an order arc. If eventually $p_i \in M(r_i)$, then $p \in M(V)$ and a = 1. Thus, p_i is eventually in $M(V) = V \subset L(V)$. If $p_i \in L(r_i)$, then $p_i \in L(V)$. Hence L(V) is a neighbourhood of p.

Let a_i be a sequence in [0,1] which converges to a. For each i let $x_i \in L(V) \cap F^{-1}(a_i)$ and let x be a cluster point of the sequence x_i . Then $x \in L(V)$ since V is compact and the partial order on X is closed. Since F is continuous, $x \in F^{-1}(a)$. It follows from the argument above and the fact that the closed set $L(V) \cap F^{-1}(a)$ is contained in the open set U that there exist $a_1, a_2 \in [0, 1]$ such that

$$N = L(V) \cap F^{-1}([a_1, a_2])$$

is a neighbourhood of p which is contained in U. If $x \in [0, 1]$ such that $N \cap F^{-1}(x)$ is non-void, then $N \cap F^{-1}(x)$ is a continuum by (*).

By Theorem 2 there exists for each $\partial \epsilon = 0, 1$ a homeomorphism h of $X \setminus F^{-1}([0, \partial])$ onto $S^2 \times [\partial, 1]$ such that the diagram

$$X \setminus F^{-1}([0, \partial [) \xrightarrow{h} S^2 \times [\partial, 1])$$

$$[\partial, 1]$$

commutes.

Let Q be an open 3-cell neighbourhood of θ such that the closure of Q is a closed 3-cell. There exists $\varepsilon > 0$ such that $F^{-1}([0, \varepsilon]) \subset Q$. By the argument above, $F^{-1}(\varepsilon)$ is a bicollared 2-sphere (see Brown [2]) in Q. By a theorem of Brown [2], $F^{-1}(\varepsilon)$ is flat and so $F^{-1}([0, \varepsilon])$ is a closed 3-cell. Hence

$$X\,=\,F^{-1}([\hskip.03in 0\hskip.03in,\varepsilon\hskip.03in])\,{\cup}\,F^{-1}([\hskip.03in \varepsilon\hskip.03in,1\hskip.03in])$$

is a closed 3-cell.

A crumpled cube is the closure of the bounded complementary domain of a 2-sphere in E^3 . The proof of Theorem 3 can be used to prove the following

THEOREM 4. Let X be a crumpled cube with boundary S^2 and let $\theta \in X \setminus S^2$. Then X is a 3-cell if and only if X admits a closed partial order

such that $Min(X) = \{\theta\}$, $Max(X) = S^2$ and, for each $x \in X$, L(x) is an order arc.

By placing strong conditions on the partial order, we can drop the hypothesis in Theorem 3 that X is a manifold.

If X is a compact metric space, we let 2^X denote the space of compact subsets of X with the Hausdorff metric.

Theorem 5. Let X be a partially ordered space. If X contains a family $\mathscr C$ of maximal chains of X such that

- (i) each member of & is a non-degenerate order arc,
- (ii) & is homeomorphic to the closed unit disk in the plane, and
- (iii) for each $x \in X$, $\{C \in \mathcal{C} \mid x \in C\}$ is a continuum which does not separate \mathcal{C} and which does not contain the boundary of \mathcal{C} , then X is a 3-cell.

Proof. By [10], Min(X) and Max(X) are compact since \mathscr{C} is a compact family of maximal chains which covers X.

By the proof of Theorem 3 there exists a continuous function F from X onto [0,1] such that $F^{-1}(0) = \min(X)$, $F^{-1}(1) = \max(X)$ and, for each $a \in [0,1]$, $F^{-1}(a)$ meets each member of \mathscr{C} in precisely one point.

Define $g: \mathscr{C} \times [0, 1] \to X$ by letting

$$g(C, a) \in C \cap F^{-1}(a)$$

for each $(C, a) \in \mathcal{C} \times [0, 1]$. Then g is a continuous mapping of the 3-cell $\mathcal{C} \times [0, 1]$ onto the Hausdorff space X. For each $x \in X$, $g^{-1}(x)$ lies in the 2-cell $\mathcal{C} \times \{F(x)\}$ of $\mathcal{C} \times [0, 1]$ and

$$g^{-1}(x) = \{(C, F(x)) \mid x \in C\}.$$

Hence $g^{-1}(x)$ is a continuum which does not separate $\mathscr{C} \times \{F(x)\}$ and which does not contain the boundary of $\mathscr{C} \times \{F(x)\}$. It follows by a theorem of R. L. Moore (Whyburn [11], p. 173) that $F^{-1}(a) = g(\mathscr{C} \times \{a\})$ is a closed 2-cell for each $a \in [0, 1]$. By the proof of Theorem 8 in [5], F is 0-regular. Hence X is a 3-cell by Theorem 2.

THEOREM 6. Let X be a partially ordered space such that

- (i) Max(X) is a closed 2-cell and Min(X) is compact,
- (ii) for each $x \in X$, L(x) is a non-degenerate order arc, and
- (iii) for each $x \in X$, $M(x) \cap \text{Max}(X)$ is a continuum which does not separate Max(X) and which does not contain the boundary of Max(X).

Then X is a 3-cell.

Proof. By Theorem 5 we need only to show that the function $f: \operatorname{Max}(X) \to 2^X$, defined by letting f(x) = L(x) for each $x \in \operatorname{Max}(X)$, is continuous.

Let x_i be a sequence in Max(X) which converges to x in Max(X). Since 2^X is compact, the sequence $L(x_i)$ has a cluster point A in 2^X . Since the partial order on X is closed, $A \subset L(x)$. For each i, $L(x_i)$ meets Min(X). Since Min(X) is closed, A meets Min(X). Finally, since each $L(x_i)$ is connected, A is connected. Now, A is a connected set in L(x) which meets both Min(X) and Max(X). Since L(x) is an irreducible arc between Min(X) and Max(X), A = L(x). Hence f is continuous.

3. Convex metrics. We can restate the results of Section 2 as theorems about spaces which admit certain kinds of metrics.

By Carruth's theorem a partially ordered space X admits a metric ϱ such that every chain in X is isometric to a chain in [0, 1]. The following result provides a converse to this theorem.

PROPOSITION 7. Let ϱ be a metric for the compact, metric space X and let $\theta \in X$. Define a relation \leqslant on $X \times X$ be letting $(x, y) \in \leqslant$ if and only if x = y or $\varrho(x, \theta) < \varrho(y, \theta)$ and $\varrho(\theta, x) + \varrho(x, y) = (\theta, y)$. Then \leqslant is a closed partial order on X.

The proof is straightforward.

Let ϱ be a metric for the compact metric space X. An arc A in X will be called a *line segment* if A is isometric to an arc in [0, 1].

Let Y be a closed subset of X and let $\theta \in Y \setminus X$. The metric ϱ will be called θ -Y convex if for each $x \in X$ there is a line segment which contains θ and x and if each line segment which is maximal among the line segments with endpoint θ meets Y in precisely one point. The θ -Y convex metric ϱ will be called strongly θ -Y convex if for each $y \in Y$ there is exactly one line segment from θ to y.

PROPOSITION 8. Let Y be a closed subset of the compact metric space X and let $\theta \in X \setminus Y$. Then X admits a θ -Y convex metric ϱ if and only if X admits a closed partial order such that $\min(X) = \{\theta\}$, $\max(X) = Y$ and, for each $x \in X$, $L(x) \cup M(x)$ is connected.

Proof (\Rightarrow). Suppose ϱ is a θ -Y convex metric for X. Let \leqslant be the partial order defined in Proposition 7. Let $x \leqslant^* y$ if $x \leqslant y$ and x and y lie in a line segment from θ to Y. Then \leqslant^* is the required partial order.

(\Leftarrow) Suppose X admits a closed partial order such that $\operatorname{Min}(X) = \{\theta\}$, $\operatorname{Max}(X) = Y$ and, for each $x \in X$, $L(x) \cup M(x)$ is connected. By a theorem of R. J. Koch (see Ward [9]), each point of X lies in an order arc which runs from $\operatorname{Min}(X)$ to $\operatorname{Max}(X)$. One can check that if ϱ is a radially convex metric for X which is defined by the proof of Carruth's theorem and x, y and z are distinct points in X, then

$$\varrho(x,z) = \varrho(x,y) + \varrho(y,z)$$

if and only if either x < y < z or z < y < x. Then ϱ is a θ -Y convex metric for X.

From Proposition 8 and Theorem 3 we get

THEOREM 9. Let X be a compact 3-manifold with boundary S^2 . Then X is a 3-cell if and only if X admits a strongly θ - S^2 convex metric.

THEOREM 10. If X is a compact n-manifold with connected boundary B, then X admits a θ -B convex metric for some $\theta \in X \setminus B$.

Proof. By [3] there exists a map φ from $B \times [0, 1]$ onto X such that $\varphi(b, 1) = b$ for each $b \in B$, restriction $\varphi|_{B \times [0, 1]}$ is a homeomorphism and $\varphi^{-1}(\varphi(B \times \{0\})) = B \times \{0\}.$

By [1], there exists a convex metric ϱ (i. e. every pair of points is joined by a line segment) for the Peano continuum $\varphi(B \times \{0\})$. Let $\theta \in \varphi(B \times \{0\})$ and set $x \leq y$ in $\varphi(B \times \{0\})$ if and only if x = y or $\varrho(\theta, x) < \varrho(\theta, y)$ and x lies on a line segment with endpoints θ and y. Then < y is a closed partial order on $\varphi(B \times \{0\})$.

Define $\leq *$ on $X \times X$ by letting $\varphi(r, a) \leq * \varphi(s, b)$ if $a \leq b$ and r = s or if a = 0 and $\varphi(r, 0) \leq ' \varphi(s, 0)$. Then $\leq *$ is a closed partial order for X such that $Min(X) = \{\theta\}$, Max(X) = B and, for each $x \in X$, $L(x) \cup M(x)$ is connected. The theorem follows by Proposition 8.

Remarks. 1. Let X be a homotopy 3-cell with boundary S^2 . If the map φ in the proof of Theorem 10 is monotone, then $\varphi(S^2 \times \{0\})$ is a tree and the metric on X given by Theorem 10 is strongly θ - S^2 convex. Hence X is a 3-cell by Proposition 9.

- 2. Let X be a homotopy 3-cell with boundary S^2 . The map φ in the proof of Theorem 10 can be taken to be a piecewise linear map. In this case $T = \varphi(S^2 \times \{0\})$ will be a contractible 2-complex. One can prove by the methods used in this paper that T admits a closed partial order with a unique minimal element such that L(t) is for each $t \in T$ an order arc if and only if T is collapsible. Thus, the method of Theorem 10 is of little use in getting a strongly θ - S^2 convex metric for X. It is not difficult to construct a closed partial order on X such that
 - (i) $Min(X) = \{\theta\}$ and $Max(X) = S^2$,
 - (ii) for each $x \in X$, L(x) is connected,
- (iii) there exist $x_1, \ldots, x_n \in T$ such that if $x \neq x_i$, then $L(x) \cap U$ is an order arc for some neighbourhood U of x.

Let $F: X \to [0, 1]$ be defined as in Theorem 3. If $a \in [0, 1]$ and $a \neq F(x_i)$, then $F^{-1}(a)$ is an orientable 2-manifold and $F^{-1}(F(x_i))$ may be taken to be a 2-manifold with precisely one singular point.

4. A product theorem. We turn our attention to more general spaces.

THEOREM 11. Let X be a compact metric partially ordered space such that Min(X) and Max(X) are closed. If, for each $x \in X$, $L(x) \cup M(x)$ is a non-degenerate order arc, then X is homeomorphic to $Max(X) \times [0, 1]$.

Proof. By the proof of Theorem 3 there exists a continuous function F from X onto [0,1] such that $F^{-1}(0) = \text{Min}(X), F^{-1}(1) = \text{Max}(X)$

and, for each $a \in [0, 1]$, $F^{-1}(a)$ meets L(m) in precisely one point for each $m \in \text{Max}(X)$.

Define $g: \operatorname{Max}(X) \times [0, 1] \to X$ by letting $g(m, a) \in L(m) \cap F^{-1}(a)$ for each $(m, a) \in \operatorname{Max}(X) \times [0, 1]$. Then g is clearly a one-one function onto X. Since the partial order on X is closed and F is continuous, it follows that g is continuous. Thus, g is the required homeomorphism.

THEOREM 12. Let M be a compact metric space. If f is a continuous function from $M \times [0,1]$ onto a Hausdorff space Y such that, for each $m \in M$, $f|_{\{m\} \times [0,1]}$ is a non-trivial monotone map and $f^{-1}(f(\{m\} \times [0,1])) = \{m\} \times [0,1]$, then Y is homeomorphic to $M \times [0,1]$.

Proof. Set $x \leq *y$ in Y if and only if there exist $(m, a) \in f^{-1}(x)$ and $(m, b) \in f^{-1}(y)$ with $a \leq b$ in [0, 1]. Then $\leq *$ is a closed partial order on Y and Y with this partial order satisfies the hypothesis of Theorem 11.

5. A fixed point theorem. We say that a set is acyclic if it has the homology of a point.

We shall need the following theorem from [6]:

THEOREM 13 (Eilenberg and Montgomery). Let M be an acyclic absolute neighbourhood retract and let $T: M \to M$ be an upper semi-continuous multi-valued function such that, for each $x \in M$, T(x) is acyclic. Then T has a fixed point.

We can now prove our final result:

Theorem 14. Let X be a compact metric partially ordered space such that

- (i) Max(X) is an absolute retract and Min(X) is compact,
- (ii) for each $x \in \text{Max}(X)$, L(x) is a non-degenerate order arc, and
- (iii) for each $x \in X$, $Max(X) \cap M(x)$ is acyclic.

Then X has the fixed point property.

Proof. By the proof of Theorem 5 there exists a map

$$g: \operatorname{Max}(X) \times [0, 1] \to X$$

such that, for each $m \in \text{Max}(X)$, g(m, 1) = m and g maps $\{m\} \times [0, 1]$ homeomorphically onto L(m). For each $x \in X$, $g^{-1}(x)$ is homeomorphic to $\text{Max}(X) \cap M(x)$.

Let $f: X \to X$ be a map. Then $g^{-1} \circ f \circ g$ is an upper semi-continuous multi-valued function of the absolute retract $\operatorname{Max}(X) \times [0, 1]$ into itself. For each $(T, a) \in \operatorname{Max}(X) \times [0, 1]$, $g^{-1} \circ f \circ g(T, a)$ is homeomorphic to $\operatorname{Max}(X) \cap M(f \circ g(T, a))$. Hence, the point images of $g^{-1} \circ f \circ g$ are acyclic and $g^{-1} \circ f \circ g$ has a fixed point (S, b), by Theorem 13. Thus, $(S, b) \in g^{-1} \circ f \circ g(S, b)$ and $g(S, b) = f \circ g(S, b)$. Hence g(S, b) is a fixed point of f, g. e. d.

I wish to thank Garth Thomas and John Hunt for hours of patient listening.

REFERENCES

- [1] R. H. Bing, Partitioning a set, Bulletin of the American Mathematical Society 55 (1949), p. 1101-1110.
- [2] M. Brown, Locally flat imbeddings of topological manifolds, Topology of 3-manifolds and Related Topics (1962), p. 73-91.
- [3] A mapping theorem for untriangulated manifolds, ibidem, p. 92-94.
- [4] J. H. Carruth, A note on partially ordered compacta, Pacific Journal of Mathematics 24 (1968), p. 229-231.
- [5] E. Dyer and M. E. Hamstrom, Completely regular mappings, Fundamenta Mathematicae 45 (1958), p. 103-118.
- [6] S. Eilenberg and D. Montgomery, Fixed point theorems for multi-valued transformations, American Journal of Mathematics 68 (1946), p. 214-222.
- [7] D. Rolfsen, Strongly convex metrics in cells, Bulletin of the American Mathematical Society 74 (1968), p. 171-176.
- [8] L. E. Ward, Jr., Partially ordered topological spaces, Proceedings of the American Mathematical Society 5 (1954), p. 144-161.
- [9] Concerning Koch's theorem on the existence of arcs, Pacific Journal of Mathematics 15 (1965), p. 347-356.
- [10] and E. D. Tymchatyn, On three problems of Franklin and Wallace concerning partially ordered spaces, Colloquium Mathematicum 20 (1969), p. 229-236.
- [11] G. T. Whyburn, Analytic topology, American Mathematical Society Colloquium Publications 28 (1942).
- [12] R. L. Wilder, Topology of manifolds, ibidem 32 (1949).

UNIVERSITY OF SASKATCHEWAN SASKATOON, CANADA

Reçu par la Rédaction le 14.11.1969