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A continuum is a compact connected space. Let X be a Hausdorff
continuum. We write

XNz =U\|V

if U and V are disjoint non-empty open sets whose union is X \z. In any
such separation, the set A = U = UuUz is a nodal set. A nodal set meets
any subcontinuum of X in a continuum. A mapping f : X — X is totally mo-
notone if f~'C is a continuum for each subcontinuum C of X.

Ward [3] has shown that if f: X - X is a continuous monotone
surjection, then X contains a subcontinuum which is invariant under f
and contains no cutpoints. Ward pointed out that this theorem fails if f
is not surjective. Nevertheless, it appears that in most applications in-
volving non-surjective monotone f, it is enough to know that there is
a subcontinuum K < X which satisfies fK — K and contains no cutpoints.
Thus our purpose here is to prove the following

THEOREM. Let Y be a Hausdorff continuum and f: Y — Y be totally
monotone. Then there is a subcontinuum X < Y which is minimal with
respect to being a non-empty subcontinuum of Y for which

(a) f[X < X,

(b) flX s totally monotone.

Furthermore, X contains no cutpoints of itself.

LeEMMA 1. Let X be a Hausdorff continuum and f: X - X be a to-
tally monotone function. Let A be a nodal set of X and

L=N{f*4:k=0,1,2,...}.
Then
(a) L 8 a continuum,
(b) L s the largest subset of A which is mapped into itself by f.
Proof. (a) is proved by induction using the fact that A is a nodal
set and f is totally monotone. (b) follows from the fact that fL c L
and every subset of A which is mapped into itself by f is contained in L.
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LEMMA 2. Let X be a Hausdorff continuum and f: X - X be a to-
tally monotone function and suppose that

XNz =TU|V.
Let A =T, and B = V. If f'BNB = @, then
L=N{f*4: %=0,1,2,...}

is a mom-empty continuum.

Proof. By Lemma 1, L is a continuum. We assume that L = @ so
that no non-empty subset of A4 is mapped into itself by f.

Suppose that there exists a least integer k > 1 for which f~*B = @.
Then for j=>% we get f7B =@ so that ffAc 4,j>k Then (J{f/A:
j = k} is a non-empty subset of A which is mapped into itself by f and
so L # @. This contradiction shows that f*B %@, k> 1.

Now f*BNnB = @ implies that f'B c A and so we have f*4 # 0
for every k> 1. Since X is connected, it follows that f~%z =@, &> 1.
We further observe that f~**Vz c f~*+VB < f~* 4 so that

(1) FEANf %4 20, E>0.
If f*BNnB = O for every k> 1, then
I'= U{f*B: k>1)c 4

satisfies f~' L’ = L' and so L’ contains a non-empty subset which is mapped
into itself by f. Thus, since L =@, there exists a least integer %k for
which f~*BNnB # @. Then k> 1 and

f'Bu..uf~*VYBc A, BUf'BuU...uUf*Bcfl4,
—(i—1) - —(k+j— -
frO-VBUf-UVBy .., Uf-*H-UB < f-i4,

the last inclusion holding for j > 2.
These inclusions imply

(2) fEBcftAn...nf %Dy

and

(30) f~* DB <« AnfrANf*AN... nf-*D4,
(40) f* VB c AnflAnf 34 n... nf* D4
if k£ is odd and

(3¢) f~® VB c AnfPANfHA N ..Af- D4,
(4e) % DB c AnflANfPAN... af* D4

.if k is even. If k is odd, from (2)
C = (f_z.AU Uf_(k—l)A)U(f_l_An nf“"‘—?)A)
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is a continuum. Since A is a nodal set, ANC is also a continuum. Then
(3o) and (4,) imply that

(5) M =Anf'An...nf* V4 20,

Likewise, if ¥ is even, (5) holds. From the above inclusions we also
get
(6) @ #f* VB frAnf*A
if k> 2.

Suppose zef *2z. Then of course f¥z =2, and if j=1,...,k—1, we
deduce from BNf'B =@ that ffze A. Hence L' = {2, f' 2,...,f* 2} c A
and fI' = L’ and this contradicts L = @. Therefore z¢f *z.

Suppose zef *V.Then f~*4 is a continuum which does not contain z,
and so A< U or f 4 c V. We deal first with the case f*4 < V.
Assume there is a least integer m > k for which Anf~™A4 + @. Then,
by (6) and (1), we find that

D =fTltAuf*Auf-* VA0 ... uf ™4
is a continuum. Furthermore
ANnD =f1AnAUf "ANnA

is a continuum (since A4 is a nodal set) so that f*Anf ™4 =@. But
then ANf~™-V4A — @, and this contradicts the choice of m. Hence if
m=k,ff"ANA = @. But then

I' =U{f™4: m>%kcB

satisfies f~'L’ < L' and this contradiets BNf'B = @. Therefore, we
must conclude that f*4A <« U < A. By applying f7* to both sides of
inclusions (2), (3,), (40), (3,) and (4,) and using the fact that A is a nodal
set and f* is monotone, we find that @ # f*M < M. By induction we
conclude that f~"*M # @, n = 0,1, 2, ... Since

(6) L=N{f"™M:n=0,1,2..},

we once again find L # @ and deduce that z¢f *V.

Our final alternative is 2z¢f~*U. Then f~*B is a continuum not conta-
ining # so that by choice of k, f~*B c V. Then A does not meet f~*z and
since ze ANf~* U, we have A = f~*¥A. Then M, as defined by (5), satisfies
M < f*M. By (6), L # @, and this contradiction completes the proof.

Proof of the theorem. The existence of a subcontinuum X which
is minimal with respect to (a) and (b) follows from Zorn’s lemma. We
prove that X has no cutpoints.

Assume z is a cutpoint of X and define U, V, A, Band L as in Lemma 2.
Also let o

M=N{"*B:k=0,1,2,..}.
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Then fL< L,fM c M and f|L,f| M are totally monotone: for
example, if C is a subcontinuum of L, then LNf~'C = Anf'0C.

We may assume that z # fz by minimality of X; we may suppose
shat zef~'U. We consider the possible cases.

Case 1. f "B = @ for some %k > 1.

In this case, we may proceed as in the proof of Lemma 2 to show
that L # 9.

Case II. f*B + @ for every k> 1.

Then f~'B is a non-empty continuum not containing z so that
ff'BcUorf'BcV. If f'!Bc U, Lemma 2 tells us that L # @.
If f-'B < B, then M +# Q.

In any case, we have contradicted the minimality assumptions on X,
and so X has no cutpoints. The proof is complete.

The theorem of this paper is a result of preliminary investigations
of the following open

Problem. Let X be a Hausdorff continuum and S be an abelian
semigroup of continuous monotone surjections of X onto X. Does there
exist a subcontinuum K of X which satisfies SK = K and does not contain
a cutpoint of itself ? (P 770)

An affirmative answer to the above question would generalize a the-
orem of Wallace [2]; most likely it would also lead to the solution of
Problem 2 of [1], p. 286.
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