FASC. 2

## ON MONOTONE MAPPINGS OF CONTINUA

 $\mathbf{R}\mathbf{V}$ 

WILLIAM J. GRAY (UNIVERSITY, ALABAMA)

A continuum is a compact connected space. Let X be a Hausdorff continuum. We write

$$X \setminus z = U \mid V$$

if U and V are disjoint non-empty open sets whose union is  $X \setminus z$ . In any such separation, the set  $A = \overline{U} = U \cup z$  is a nodal set. A nodal set meets any subcontinuum of X in a continuum. A mapping  $f: X \to X$  is totally monotone if  $f^{-1}C$  is a continuum for each subcontinuum C of X.

Ward [3] has shown that if  $f: X \to X$  is a continuous monotone surjection, then X contains a subcontinuum which is invariant under f and contains no cutpoints. Ward pointed out that this theorem fails if f is not surjective. Nevertheless, it appears that in most applications involving non-surjective monotone f, it is enough to know that there is a subcontinuum  $K \subset X$  which satisfies  $fK \subset K$  and contains no cutpoints. Thus our purpose here is to prove the following

THEOREM. Let Y be a Hausdorff continuum and  $f: Y \to Y$  be totally monotone. Then there is a subcontinuum  $X \subset Y$  which is minimal with respect to being a non-empty subcontinuum of Y for which

- (a)  $fX \subset X$ ,
- (b)  $f \downarrow X$  is totally monotone.

Furthermore, X contains no cutpoints of itself.

LEMMA 1. Let X be a Hausdorff continuum and  $f: X \to X$  be a totally monotone function. Let A be a nodal set of X and

$$L = \bigcap \{f^{-k}A \colon k = 0, 1, 2, \ldots\}.$$

Then

- (a) L is a continuum,
- (b) L is the largest subset of A which is mapped into itself by f.

Proof. (a) is proved by induction using the fact that A is a nodal set and f is totally monotone. (b) follows from the fact that  $fL \subset L$  and every subset of A which is mapped into itself by f is contained in L.

LEMMA 2. Let X be a Hausdorff continuum and  $f: X \to X$  be a totally monotone function and suppose that

$$X \setminus z = U \mid V$$
.

Let 
$$A = \overline{U}$$
, and  $B = \overline{V}$ . If  $f^{-1}B \cap B = \emptyset$ , then 
$$L = \bigcap \{f^{-k}A \colon k = 0, 1, 2, \ldots\}$$

is a non-empty continuum.

Proof. By Lemma 1, L is a continuum. We assume that  $L = \emptyset$  so that no non-empty subset of A is mapped into itself by f.

Suppose that there exists a least integer  $k \ge 1$  for which  $f^{-k}B = \emptyset$ . Then for  $j \ge k$  we get  $f^{-j}B = \emptyset$  so that  $f^jA \subset A, j \ge k$ . Then  $\bigcup \{f^jA: j \ge k\}$  is a non-empty subset of A which is mapped into itself by f and so  $L \ne \emptyset$ . This contradiction shows that  $f^{-k}B \ne \emptyset, k \ge 1$ .

Now  $f^{-1}B \cap B = \emptyset$  implies that  $f^{-1}B \subset A$  and so we have  $f^{-k}A \neq \emptyset$  for every  $k \geqslant 1$ . Since X is connected, it follows that  $f^{-k}z \neq \emptyset$ ,  $k \geqslant 1$ . We further observe that  $f^{-(k+1)}z \subset f^{-(k+1)}B \subset f^{-k}A$  so that

$$(1) f^{-k}A \cap f^{-(k+1)}A \neq \emptyset, \quad k \geqslant 0.$$

If  $f^{-k}B \cap B = \emptyset$  for every  $k \geqslant 1$ , then

$$L' = \bigcup \{f^{-k}B \colon k \geqslant 1\} \subset A$$

satisfies  $f^{-1}L' \subset L'$  and so L' contains a non-empty subset which is mapped into itself by f. Thus, since  $L = \emptyset$ , there exists a least integer k for which  $f^{-k}B \cap B \neq \emptyset$ . Then k > 1 and

$$f^{-1}B \cup \dots \cup f^{-(k-1)}B \subset A, \quad B \cup f^{-1}B \cup \dots \cup f^{-k}B \subset f^{-1}A,$$
$$f^{-(j-1)}B \cup f^{-(j+1)}B \cup \dots \cup f^{-(k+j-1)}B \subset f^{-j}A,$$

the last inclusion holding for  $j \ge 2$ .

These inclusions imply

$$(2) f^{-k}B \subset f^{-1}A \cap \ldots \cap f^{-(k-1)}A$$

and

$$(3_0) f^{-(k-2)}B \subset A \cap f^{-2}A \cap f^{-4}A \cap \ldots \cap f^{-(k-1)}A,$$

$$(4_0) f^{-(k-1)}B \subset A \cap f^{-1}A \cap f^{-3}A \cap \dots \cap f^{-(k-2)}A$$

if k is odd and

$$(3_{e}) f^{-(k-1)}B \subset A \cap f^{-2}A \cap f^{-4}A \cap \dots \cap f^{-(k-2)}A,$$

$$(4_e) f^{-(k-2)}B \subset A \cap f^{-1}A \cap f^{-3}A \cap \dots \cap f^{-(k-1)}A$$

if k is even. If k is odd, from (2)

$$C = (f^{-2}A \cup \ldots \cup f^{-(k-1)}A) \cup (f^{-1}A \cap \ldots \cap f^{-(k-2)}A)$$

is a continuum. Since A is a nodal set,  $A \cap C$  is also a continuum. Then  $(3_0)$  and  $(4_0)$  imply that

$$M = A \cap f^{-1}A \cap \ldots \cap f^{-(k-1)}A \neq \emptyset.$$

Likewise, if k is even, (5) holds. From the above inclusions we also get

$$\emptyset \neq f^{-(k-1)}B \subset f^{-1}A \cap f^{-k}A$$

if k > 2.

Suppose  $z \in f^{-k}z$ . Then of course  $f^kz = z$ , and if j = 1, ..., k-1, we deduce from  $B \cap f^j B = \emptyset$  that  $f^j z \in A$ . Hence  $L' = \{z, f'z, ..., f^{k-1}z\} \subset A$  and fL' = L' and this contradicts  $L = \emptyset$ . Therefore  $z \notin f^{-k}z$ .

Suppose  $z \in f^{-k}V$ . Then  $f^{-k}A$  is a continuum which does not contain z, and so  $f^{-k}A \subset U$  or  $f^{-k}A \subset V$ . We deal first with the case  $f^{-k}A \subset V$ . Assume there is a least integer m > k for which  $A \cap f^{-m}A \neq \emptyset$ . Then, by (6) and (1), we find that

$$D = f^{-1}A \cup f^{-k}A \cup f^{-(k+1)}A \cup \ldots \cup f^{-m}A$$

is a continuum. Furthermore

$$A \cap D = f^{-1}A \cap A \cup J f^{-m}A \cap A$$

is a continuum (since A is a nodal set) so that  $f^{-1}A \cap f^{-m}A = \emptyset$ . But then  $A \cap f^{-(m-1)}A = \emptyset$ , and this contradicts the choice of m. Hence if  $m \ge k, f^{-m}A \cap A = \emptyset$ . But then

$$L' = \bigcup \{f^{-m}A \colon m \geqslant k\} \subset B$$

satisfies  $f^{-1}L' \subset L'$  and this contradicts  $B \cap f^{-1}B = \emptyset$ . Therefore, we must conclude that  $f^{-k}A \subset U \subset A$ . By applying  $f^{-k}$  to both sides of inclusions (2), (3<sub>0</sub>), (4<sub>0</sub>), (3<sub>e</sub>) and (4<sub>e</sub>) and using the fact that A is a nodal set and  $f^k$  is monotone, we find that  $\emptyset \neq f^{-k}M \subset M$ . By induction we conclude that  $f^{-nk}M \neq \emptyset$ , n = 0, 1, 2, ... Since

(6) 
$$L = \bigcap \{f^{-nk}M: n = 0, 1, 2, \ldots\},\$$

we once again find  $L \neq \emptyset$  and deduce that  $z \notin f^{-k}V$ .

Our final alternative is  $z \in f^{-k}U$ . Then  $f^{-k}B$  is a continuum not containing z so that by choice of k,  $f^{-k}B \subset V$ . Then A does not meet  $f^{-k}z$  and since  $z \in A \cap f^{-k}U$ , we have  $A \subset f^{-k}A$ . Then M, as defined by (5), satisfies  $M \subset f^{-k}M$ . By (6),  $L \neq \emptyset$ , and this contradiction completes the proof.

Proof of the theorem. The existence of a subcontinuum X which is minimal with respect to (a) and (b) follows from Zorn's lemma. We prove that X has no cutpoints.

Assume z is a cutpoint of X and define U, V, A, B and L as in Lemma 2. Also let

$$M = \bigcap \{f^{-k}B: k = 0, 1, 2, \ldots\}.$$

Then  $fL \subset L$ ,  $fM \subset M$  and f|L, f|M are totally monotone: for example, if C is a subcontinuum of L, then  $L \cap f^{-1}C = A \cap f^{-1}C$ .

We may assume that  $z \neq fz$  by minimality of X; we may suppose that  $z \in f^{-1}U$ . We consider the possible cases.

Case I.  $f^{-k}B = \emptyset$  for some  $k \ge 1$ .

In this case, we may proceed as in the proof of Lemma 2 to show that  $L \neq \emptyset$ .

Case II.  $f^{-k}B \neq \emptyset$  for every  $k \geqslant 1$ .

Then  $f^{-1}B$  is a non-empty continuum not containing z so that  $f^{-1}B \subset U$  or  $f^{-1}B \subset V$ . If  $f^{-1}B \subset U$ , Lemma 2 tells us that  $L \neq \emptyset$ . If  $f^{-1}B \subset B$ , then  $M \neq \emptyset$ .

In any case, we have contradicted the minimality assumptions on X, and so X has no cutpoints. The proof is complete.

The theorem of this paper is a result of preliminary investigations of the following open

Problem. Let X be a Hausdorff continuum and S be an abelian semigroup of continuous monotone surjections of X onto X. Does there exist a subcontinuum K of X which satisfies SK = K and does not contain a cutpoint of itself? (P 770)

An affirmative answer to the above question would generalize a theorem of Wallace [2]; most likely it would also lead to the solution of Problem 2 of [1], p. 286.

## REFERENCES

- [1] William J. Gray, Fixed points in spaces with cutpoints, Archiv der Mathematik 20 (1969), p. 283-286.
- [2] A. D. Wallace, Group invariant continua, Fundamenta Mathematicae 36 (1949), p. 119-124.
- [3] L. E. Ward, Jr., Continua invariant under monotone transformations, The Journal of the London Mathematical Society 31 (1956), p. 114-119.

Recu par la Rédaction le 3.8.1970