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1.1. DErFINITIONS. Let Y'a, be a given infinite series with the sequence
of partial sums {s,}. Let {p,} be a sequence of constants, real or complex,
and let us write

P, =py, +p,+ps+ ... +0,; P ,=p.,=0.

The sequence-to-sequence transformation

(L1.1) ty = (Pu)™" Y Puys, (P #0)

v=0
defines the sequence {¢,} of Nérlund means ([14], [19]) of the sequence
{s,}, generated by the sequence of coefficients {p,}.
The series }'a, is said to be absolutely summable (N, p,), or summable
|V, pal, if
Dty —ty_il < o0, [13].

n

In the special case in which

(L.1.2) p = art - Lta)

T r@rmry 7Y

the Noérlund mean reduces to the familiar (C, a)-mean, ([7], § 5.13). The
summapbility |N, p,|, with p, defined by (1.1.2), is thus the same as sum-
mability |C, a|, ([6], [10]). Similarly, in the ease in which

pnzll(n+1) ('"’=071’27-“)7

(1.1.3) p L 1 I
€, = —i—%-}—..—l—mf\' ogn, as " — oo,
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the Norlund mean reduces to ‘harmonic mean’ [7], and the summability
|N, p,| is then the same as ‘absolute harmonic summability’. It is well
known that |N, (n+1)7'| < |0, a| for every positive a, [12].

1.2. 1f
(1.2.1) ‘L’ 8, = O(n),
=1

as m — oo, the series Ya, is said to be strongly bounded by Cesaro means
of order 1, or bounded [C,1]. 1f

n
(L.2.2) -]ﬁl— = O(logn),
14

y=1

as m > oo, the series Ya, is said to be strongly bounded by ‘logarithmic
means’ with index 1, or bounded [R, logn, 1], [15].

Let o, and 7, denote the nth (C, 1)-means of the sequences {s,} and

{na,} respectively, viz.,
n n
1 o 1
(9 B & " M
In 71%_1 ry
=1

T, — vd,.

w41 —t

Then, since by an identity of Kogbetliantz [10], » (¢, —0,_,) = 1,, the
nth lotal variation of the sequence {c¢,} is given by

n

. O sl
(1.2.3) Z 6, — 0, | = Z iy
r=1 ' v

r=1

1.3. Let f(t) be a periodic function, with period 2=, integrable in
the sense of Lebesgue over ( —m, =), and let

00

(L.3.1) bag+ Y (a,cosnt-+b,sinnt) = Ja,+ D 4,(1)
n=1 n=1

denote the Fourier series of the function f(t).

1.4. For any sequence {f,}, we write

(]..-L.l) Aofn ='fn’ /]fn - Alfu :fn ~.f-u.-{-l?
and
(1.4.2) A, = D AT

y=0

provided this series is convergent.
If h and k are positive integers, we have

(1.4.3) AP AR, = AMES,
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A sequence {4,} is said to be convexr ([20], p. 93) if 4%4,> 0, for
n=012,...

If {4,} is a convex sequence such that the series )'n~'2, is convergent,
then it is known that

(i) logn 4, = o0(1), as » — oo ([H], Lemma IV);
(1.4.4) (ii) Yn 422, < oo ([5], Lemma IV);
(iii) D'n (logn) 424, ([16], Lemma 5).
We write
Pn,u = Pn,pn v —.P,L,,,])n,
forv>=1, n>1.

2.1. Introduction. It was proved by McFadden ({12], Theorem 2.28),
that, if (i) p, is non-negative and non-increasing, with p, >0, and (ii)
Pni1/Pn is non-decreasing, then .IN, p,| < |C, 1].

We raise the question as to what type of sequences of factors {e,}
can be chosen so that the series Ye,a, may be summable |N, p, |, with p,,
more general than that characterized above, whenever the series a,
is not summable |C, 1|, but the total variation of the (C, 1)-mean of }a,
is of a certain order y,, say, where {u,} is a positive non-decreasing se-
quence.

As an answer to this question we establish, in Theorem 1, a resut!
on the absolute Nérlund summability factors for general infinite series,
which, in view of (1.4.4), includes the following results as special cases:

THEOREM A. If }'a, is bounded [R,logn,1] and 1, is a convex se-
quence such that Z’%'llﬂ < oo, then

(i) da,2, is summable |C, 1|, ([15], Theorem 1);

THEOREM B. If Ya, is summable |C, 1|, then

(i) E’n"(logn-—l-l)lnan is summable |N, (n+ 1), [18];

(i) Dn"'P,2,a, is summable |N,p,|, [9].

Our main object in the present paper is to establish, with the help
of our Theorem 1, some general theorems (Theorems 2, 3, 4 and 5) on the
absolute Norlund summability factors of power series and Fourier series.
It is interesting to note that, in view of (1.4.4), our theorems contain,
as special cases, the following known results in this line.

TuroreM C. If f(2) = De,2" is a power serics of the complex class L,

such that
i

(2.1.1) . [ 1£(e")1d0 = o),

0

as t —> +0, and {,} is a convexr sequence such that dn ', < oo, then
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(i) Y Anc, is summable |C,1] ([17], Theorem I);

(ii) dn~'(logn +1)A,c, i¢ summable |N, (n+1)"" ([11], Theorem 1).

THEOREM D. If {1,} is a convex sequence such that dn~'2, < oo,
then _

(i) the series DA, A, (x) is summable |C, 1| for almost all values of =,
(51];

(i) the series dn~'(logm+1)4,A4,(x) is summable [N, (n+1)"'| for
almost all values of x ([11], Theorem 3).

THEOREM E ([17], Theorem II). If F(x)is even, F(x)e L*(—m, ),
t
(2.1.2) [1F(@)dz = 0(t),
0

as t > +0, and if {A,} 18 a convex sequence such that d'n~'1, < oo, then

the sequence {A,} of Fourier coefficients of F(x) has the propery that
D A, is summable |C, 1|.

THEOREM F ([17], Theorem III). If F(x) is even, F(z)e L(— =, w),
(2.1.3) f |F(z)|do = O(t),
0

as t > +0, and if {1,} is @ convex sequence such that dn~'1, < oo, then

the sequence {A,} of Fourier coefficients of F(x) has the property that
Dogn+1)""?2, A4, is summable |C, 1|.

2.2. We establish the following theorems:
THEOREM 1. Let po >0, p, =0 (n =1,2,...), and let {p,} be non-

increasing. If
2" I7,]
=0 (ﬂn) ]
»

re=1

where {u,} 18 a posilive non-decreasing sequence, and if the sequence {e,}
18 such that _
(1) enpn = O(1), ndu, = O(u,),
(ii) Dnu,|d%e,| < oo,
then the series > (n+1)"'P,e,a, is summable |N, p,|.
THEOREM 2. Let p, be the same as in Theorem 1. If {¢,} ©8 such that
(i) logn ¢, = O(1),
(ii) d'mlogn|A,| < oo,

then the series D (n--1)"'P,e, A,(x) is summable |N, p,| for almost all
values of x.
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THEOREM 3. Let p, be the same as in Theorem 1. If F(zx)is even, F(x)
€ I‘ﬁ( —m, ),

¢
(2.2.1) [ [F@)dz = 0(1),
0

as t — +0, and if {,} satisfies the same condilions as in Theorem 2, then
the sequence {A,} of Fourier coefficients of F(x) has the properly that
Y(n+1)"'P,e, A, is summable |N,p,|.

THEOREM 4. Let p, be the same as in Theorem 1. If F(z) is even,

F(x)e L(— =, nt),

g
(2.2.2) [ IF@)\dz = 0),

0
as t — +0, and if {e,} satisfies the same conditions as in Theorem 2, then
the sequence {A,} of Fourier coefficients of F(x) has the property that
(n+1)"'(logn) " P,e, A, is summable |N,p,|.

THEOREM 5. If f(2) = D¢,2" is a power series of the complex class L,
such that

¢
(2.2.3) [17(e*)1a6 = o),

as t -~ +0, and if {c,} satisfies the same conditions as in Theorem 2, then
>(n+1)"'P,e,e, is summable [N, p,|.
2.3. We use the following lemmas in the sequel.

LemMA 1 [1]). Let py >0, p, =0 (n =1,2,...), and let {p,} be non-
increasing. Then, for v > 1,

P K
a E e Pps <— (1);
( ) n=' Pn_Pn_l pn » ’

2‘” Pn
b P,—P, )< K;
( ) - PnPn__l ( n 3
N Poy =Pa) _ po

c <
( ) n:=' _Pn_l ’

3 |A,p,,) E K
(d) | vp'n | + _,

(') Throughout, K denotes an absolute constant, not necessarily the same at
each occurrence.
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LemmA 2. If p, satisfies the same conditions as in Lemma 1, themn,
for »>=1,

o
(a) N <,

P,
Pn‘Pn»l
IAu-Pn,v
Pn Pn<

~

(h)

< .
. P

Proof. Since

00 o0 o0

-P'n v R p‘n. (pn—v _pn)
I N P p _p ,2_ ___________
PP, < pp, I 2 T

n=v n n-l =1 -

(a) follows from Lemma 1(b) and (c).
Again, since

/lva.,v = ~Pn' Arpn—r —Pn-2Puy
we have

+4--—  (by Lemma 1(a) and (d))

v+1 1 P, K _K
y P, v»+1 P, P’

N

by hypothesis, since P, /(» 4+ 1) is non-increasing.
This completes the proof of the lemma.
LeMmA 3 ([4], Lemma 1; see also [2], [3]). If &, = O(1), then

AHe, = M AT A,
r=n

for a=0, = -1, a+p>0. If ¢, = 0(1), the last condition may be re-
placed by a+f = 0.

LemMMmA 4. Let {u,} be a positive non-decreasing sequence such that
ndu, = 0(u,), as n — oco. If the sequence {e,} is such thai

(1) pnen = 0(1)7 as n — oo,

(i) Y, |4, < oo,
then

(a) Yunlde,| < oo,
and

(b) nyu, e, = 0(1), a8 n - oo.
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Proof. (a) Since, by hypothesis (i),
we have

e, = 0(1), applying Lemma 3,

Ag, = 2‘”: Ale,,

V=3
and hence,

00 ')
Z_,;“’nlAanl - 2/"12]2 42 l<2ﬂ112l'428'
n=1 r=mn n=1

20

= 2.0 |A23vl Zv/"n <2vﬂr|428"| ’
- n=1 ve=1

< K < oo,

by hypothesis.
(b) We see that

o0

DA (g Aeg)| < 3 gy | A8, 1 Y Aoyl 4 ) (4 1) Ay | Ay
n=1

n=1 n=1

S K+ K ) p,lde, | < K < oo,

n=1

n=1

by hypothesis and (a). This means that {nu, 4¢,} is a sequence of bounded
variation, which implies that it is bounded, that is,

nu, de, = 0(1), as n — oo.
LEMMA 5. If ¢, =

(n+1)"'P,e,, then under the hypotheses of Theorem 1
.ol
i Y<K,
v=1] v

(i) ) [e,iln,l < K
r=1

Proof. (i) We have, as m — oo,

m

=03t

= 0(2;»,1As,.1)+0uemmm) - o),
ve=1
by hypotheses and Lemma 4 (a)

(il) Since

- P, Posa P Epg
Ae, = - ey — ———Ep -t SR
n—+1 n—+1 n+2 n+1
we have

|Aey| = o(m £l _r;) 0(""’;:1‘)
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Hence, as m — oo,

Emm 1%, —O(ZP e, )+0(Z| ,m——)
= 0(2 %ldﬂs,l) 1-0(; ,u,l[ls,_l,ll) +

v—=

+ O (Mppy, | Agy|) + O(I-‘m+113m+1|)
= 0(1)7
by hypotheses and Lemma 4(a) and (b).
This completes the proof of the lemma.

LeEMMA 6 [17]. If f(2) = }e,2" is a power series of complex class I,
such that

t
[ 1£(e™)1do = o)),

[
as t — -0, then D¢, is bounded [R,logn, 1] (?).
LEMMA 7 ([15], p. 294). If Da, is bounded [R,logn, 1], then
|z, ]
—— = O(logn),
y=1 v
as n — oo.
LemMMA 8. If Ya, is bounded [C,1], then it is bounded [R,logn, 1].
The proof is easy.
LeMMA 9. ([6], Lemma 2). Let

1
‘rn(m) = m 'VA,(.’D).

y=1

Then

[\A:

In(@)] = o(n),

B
[
-

for almost all values of x.
LeMmA 10. If 7,(x) is defined as in Lemma 9, then

D=9 otogm),
vy

as n — oo, for almost all values of x.

(*) This is the ‘O’ version of a previous result of Hardy and Littlewood [8].
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Proof. By Abel’s transformation and Lemma 9, we have

n

Oln@l 0 1% 1\
Z__ — _%y_(”l) ;m,(m)w%ﬁglrﬂw)l

v=1

= o(logn)+o0(1) = o(logn),

as n — oo, for almost all values of x.

LEMMA 11 ([17], Lemma 4). Let F(x) be even, F(x)e L*(—m=,n),
and let 8, denote the nth partial sum of its Fourier series at the origin. Then, if

6.
[ 1F@)rdz = 0(0),
0
as 0 -+ 0, {8S,} will be summble [C, 1]. :
LevMMA 12 [17]. Let P(x) be even, F(x)e L(—m, =), and let S, denote
the nth partial sum of its Fourier series at the origin. Then, if
[}
[ 1F(@)dz = 0(0),
0
as 0 — +0, then

D18, = O{n(logn)"}.

2.4. Proof of Theorem 1. Let ¢, = (n+1)"'P,¢,, and let ¢, denote
the nth Norlund mean of the series )'¢, a,. Then, by definition, we have

n v n
1 - 1 -
t: = __P: Po-» 2 .0, = ?n' 2P1L—1'£val
=0 u=0 =0
and
1 - -
t*—t* Bl — P p _,.—<P”_u n vaﬂ
n n—1 PnPn_l ;( nPn —vP )8
1 S
puny - Z‘Pn,vs a,
PnP”'_l r=1
L - € 1 C
O 3 3 =
= e .P v i’ ¥y _— anAv v|—
PP, "y PP, Ly T
- _ 1
+ 1—--ZA”an8,+]t,=———(21+22’+£3),
PP, & ' PP,
say.
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Therefore, in order that > |t —t,_,| < K, it is sufficient to show
n

that

1
—_— 12 < = .
nE' PP ZI<K (r=1,2,3)

Now, first, we have

|7,
ZPP | 'l\ZPP ZP""'”_’

n—1

by hypotheses and Lemma 5(i).
Next, we have

> 1
Sl < ZP,.»A
;an_ |z, prnl 145, |z,|
—ZME“TIZPP

=1

< KZME”‘ [t,] (by Lemma 2 (a))

v=1]

< K,

by hypotheses and Lemma 5 (ii).
Finally, we have

00 00 n
1 1 -
S 51 Y o YL el 1)
Z PnPn—l ? n=1 PnPn—l y—=1 " *

n=1

< KZ {s;;“.'. Izl (by Lemma 2 (b))

<K,

=

by hypotheses and Lemma 5(i).
This terminates the proof of Theorem 1.
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2.5. Proof of Theorems 2,3,4 and 5. We obtain Theorem 2
from Theorem 1, with u, = logn, by an appeal to Lemma 10.

Theorem 3 can easily be obtained from Theorem 1, with u, = logn,
by successive applications of Lemmas 11, 8 and 7.

We get Theorem 4 from Theorem 1 with u, = (logn)*?, and with

e,/(logn)"* in place of ¢,, by an appeal to Lemma 12 and by using the
fact that

D'i8,1 = 0{n(logn)*"}

y=1
implies

I:" = 0{(logn)**}.

n
v=1

Finally, we obtain Theorem 5 from Theorem 1 with u, = logn, by
appealing to Lemmas 6 and 7.

I take this opportunity to express my sincere thanks to Professor
T. Pati for his kind encouragement and to the Council of Scientific and
Industrial Research for their financial support during the preparation
of this paper.
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