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ON SOME CHARACTERIZATIONS OF THE COMPLEX NUMBER
FIELD
BY

W. WIESLAW (WROCLAW)

1. In this note we shall give some characterizations of the complex
number field. Recall some definitions. A field topology Z is said to be
locally bounded provided there exists a bounded neighbourhood A of
zero, i. e. for every neighbourhood U of zero there exists another one V
such that AV < U. For any topological field ¥ we write G(F) for the
group of its all continuous automorphisms.

It is well known that the complex number field C has only two con-
tinuous automorphisms: 2 — 2 and z—z (all other automorphisms of C
are non-measurable). Moreover, C is complete in the usual product topo-
logy induced from R and is algebraically closed. It turns out that C is
determined by these properties. In Theorem 1 which puts together various
known and gives also some new results, we show that if F is a locally
bounded topological field which is algebraically closed and complete
and group G(E) is torsion, then £ = C. This result seems to be new al-
though we use in the proof some rather known facts. Mutylin [11] proved
in 1968 that if F is a topological, locally bounded, complete and connected
field, then £ = R or E = C. We present here another proof of this theorem
(see Theorem 2). Our next result shows that an algebraically closed field
E of cardinality at least continuum has so many automorphisms as subsets.
This generalizes a result of Soundararajan [12]. Finally, we give an example
to show that the assumption “@ is torsion” is essential.

I am very grateful to W. Narkiewicz for his encouragement and
guidance in the preparation of this paper.

2. We start with the following

THEOREM 1. Let E be a topological field provided with a non-discrete
topology. Then the following conditions are equivalent:

(1) E s topologically isomorphic to the complexr number field C,

(2) E is a proper, locally bounded extension of the real number field R,

(3) E s locally bounded, complete and algebraically closed with G(E)
finite and non-trivial,
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(4) E s locally bounded, complete and algebraically closed with G(E)
torsion and mon-trivial,

(5) E 18 locally bounded, complete and conmnected with a non-trivial
automorphism,

(6) E satisfies the first axiom of countability (i. e., E is metrizable)
and E is of inductive dimension 2.

Proof. Equivalence of (1) and (2) was proved in [10], equivalence
(1) <> (6) was shown in [1] and implication (1) = (3) is obvious.

(3) = (1). Let E be an algebraically closed field complete in a locally
bounded field topology 7. Then ([8], Section 6).7 cannot be non-trivially
weakened (i. e.,.7 is an atom in the lattice of all topologies on E). Let
F be the fixed field of G (E). The Galois theory implies that [E : F'] = order
G(E) < oo.

Recall now a classical result (see, e. g., [6], Theorem 17, p. 318):

LEMMA 1. Let L be an algebraically closed field and K < L its subfield.
If [L: K] is finite, then K is really closed and L = K (i), 12 = —1.

From Lemma 1 it follows that F = F (i), where F is really closed.
The next lemma shows that F is closed in F and so it has to be complete
in the topology J, =7 | F.

LEMMA 2. Let E be a complete topological field such that G = G(E)
18 finite. If F is the field of invariants of G, then F is closed and the topolo-
gy I in E is induced by the product topology F.

Proof. Let G = {p,, 92y ...y ¥o}. We have to show that for every
net z, in B, z, = P w, +2Pw,+ ... +aPw, > 0 implies z{ = 0 for all
j=1,2,...,n (where w,, w,, ..., w, denotes a fixed basis of ¥ over F).
From the definition of G and from the continuity of ¢, ..., ¢, it follows

that g;(2,) = #P¢;(wy) + ... +20¢;(w,) > 0.
First we will show that
() det (g;(w;)) # 0.

In fact, if det (g;(w;)) = 0, then one of the rows of the matrix (p;(w;))
is a linear combination of all others. This gives

(i) or(w) = D) &;(w,)
i2k
for some 1< k<n and all s =1,2,...,n, where d,,d;, ..., d, belong

to E and do not all vanish. Since every element x ¢ F has the form x,w, +
+z,wy + ... +2,w,, where x,, @,, ..., 2, F', we obtain from (ii)

(i) (@) = D dg;(@)

i#k

for every we E, contradicting the linear independence of automorphisms
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(see [6], Chapter I, Theorem 3). Hence (i) is true. From the Cramer formulae
we obtain

(iv) 2 = 9,(2,) + ... + i ,(2,)

for j =1,2,...,n. By the continuity of ¢; it follows that «{® — 0
U=12...,m).

Therefore F is closed in E:if z,w, = ac¢B, a=a,w,+ ...+ a,w,,
then #, — a,, @, = 0 for k # 1. Completeness of F is now obvious.

In order to prove our theorem, we will need yet the following lemma
proved by Kowalsky and Diirbaum [9]:

LeMMA 3. Every locally bounded full topology (i. e., topology of a field
which cannot be non-trivially weakened) in the field Q of rational mumbers
is equivalent to a topology induced by a valuation.

By the theorem of Ostrowski and by Lemma 3 our topology J is
determined on @ by a real absolute value or by a p-adic valuation. Thus ¥
must contain topologically either R or @,. The last case is impossible,
since it would imply that @, is formally-real, and this is not true, because
every form o+ 5+ ... +} has a non-trivial zero in @, for every r>5
(see [2], Theorem 5, p. 74). Therefore, F' contains topologically R. Since
the order in R is unique, the order in F restricted to R coincides with
the usual ordering of R. Observe that F has no non-trivial continuous
automorphisms. Consequently, R = F, as the only proper locally bounded
extension of R is C (see [10]). It follows now from Lemma 1 that F is
topologically isomorphic to C, and so the implication (3) = (1) follows.

Obviously (3) implies (4). To prove the converse implication assume
that (4) holds. Let H be a finite cyclic group generated by a suitably
chosen non-trivial continuous automorphism of E. Now we can repeat
the arguments we used proving (3) = (1), taking for F the field of inva-
riants of H to get (3). It gives equivalence of (4) and (1).

Equivalence of (1) and (5) was originally proved by Mutylin [11];
we will present here another proof. It will follow from a more general
theorem. (For a further generalization, see [15].)

THEOREM 2. Let E be a field provided with a locally bounded topology.
If E is connected and complete in this topology, then it is topologically iso-
morphic either to the real number field R or to the complex number field C.

Proof of this theorem will be based on three lemmas.

LEMMA 4. Let E be a locally bounded topological field, connected in

this topology. Then E has a mon-zero topological nilpotent (i. e., an element
x # 0 such that 2" 0).

Proof. We use the well-known fact that if ¢ is a connected group,
then an arbitrary neighbourhood of the unit element generates G.
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Let -U be an arbitrary, symmetrical neighbourhood of zero in E.
Put
noU =U+U+ ... +U (n times).
Obviously,
E =) noU.
n=1

Since topology in F is locally bounded, there is a non-zero element
z in E such that 2U+2U < U or 20U < 7' T.

By a simple induction we obtain 2¥oU < 7 *U for all k =1, 2, 3, ...
Since noU = moU for n < m, we have

E= 20 = 27*U.
k=0 k=0

We will show that x is a topological nilpotent. This is equivalent
to
M 2" U = {0}.
n=1
Indeed, for otherwise there would be in ¥ an x, #* 0 such that
xoex" U for n =1,2,3,... and this would imply  "ex,' U, i. e.,

E =z "U=u;'U% E =T

n=0

which is impossible for sufficiently small U.

LEMMA 5. Let E be a field provided with a locally bounded topology.
If the set T of all topological milpotents contains a non-zero element, then
it is open.

Proof. Let 0 ## xeT and let W denote a bounded neighbourhood
of zero in E. First, we will prove that there is a neighbourhood U of zero
such that for every meighbourhood V there is an n, such that U < V
for all n > n,.

Let U be any neighbourhood satisfying WU < W and let V be an
arbitrary neighbourhood of zero in E. Then «"W < V for all n > n,.

Moreover, V > "W =" Y(aW)> 2" ' UW = 2" 2(aW)U > 2" 2U?
>....> U" for all n > n,. ’

Thus we have found an open set U such that
(a) if xeT, then, for some N > 1, VU,

(b) UcT.
Observe that if, for some #, " eU, then xeT. Indeed, in view of
(b), the sequence zV, #*V, 2*", ... tends to zero, and — by the continuity

of multiplication — each of the sequences #*V*/ = o7&V (k =1,2,3,...;
j=1,2,..., N—1) also tends to zero, thus xeT as asserted.



Concluding, we get

T = O{w N U}

N=1
and, since # — & is continuous, and U is open, we get the openess of 7.

LEMMA 6 (see [13]). Let E be a topological field. Then the topology in-E
can be normed (induced by a real valuation) if and only if the set T of topo-
logical nilpotents in E is open and (E\T)™' is bounded.

Proof of Theorem 2. F is locally bounded, complete and connected.
Lemma 4 implies existence of topological nilpotents in it. By Lemma 5
the set T is open. But our topology is full and locally bounded, because E
is complete in a locally bounded topology, and so (E\T)™! is bounded.
From Lemma 6 it follows that F is a field with a real valuation. We
observe now that F is of characteristics 0, since otherwise the valuation
would be a non-archimedean which contradicts connectedness of E (see
[5]). Hence F is an archimedean complete field, and so ¥ = R or E = C.
Theorem 2 is proved. (This theorem generalizes a well-known theorem
of Pontrjagin on connected locally compact fields.)

From Theorem 2 it follows that (1) is equivalent to (5).

The proof of Theorem 1 is complete.

3. In connection with Theorem 2 let us recall that Dieudonné [3]
has given an example of a connected subfield of C different from R and
C and Kapuano [7] has shown the existence of a one-dimensional subfield
L of C, L # R. This furnishes a counter-example to a conjecture of Baer
and Hasse [1] that R is the only one-dimensional subfield of C. From
Theorem 2 it follows that the only locally bounded complete, connected
and one-dimensional field is the real number field R.

CoNJECTURE. R is the only one-dimensional complete and connected
topological field. (P 762)

In connection with Theorem 1 let us notice th t non-discreteness
of topology is essential. In fact, every (discrete) algebraically closed field
has a large number of automorphisms as shown in the following

THEOREM 3. Ewvery algebraically closed field of cardinality |E|>
has 2'%' automorphisms.

Proof. In order to prove the theorem it is sufficient to show that ¥
has at least 2'¥' automorphisms. Let P be the prime field of F and let B
denote the transcendental basis of E over P. Then E is an algebraic exten-
sion of P(B). Let [E| = |B| = a and let ¢ be an arbitrarily chosen per-
mutation of B. We extend ¢ in an obvious way to an automorphism ¢
of P(B): let a = f(b;, b5, ...,b,)e P(B), where f is a rational function
with coefficients in P.

-
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Put
E(f(bl’ bay ..., bn)) =f(‘P(b1); @(ba)y «.-y ‘P(bn))- ’

Now take f(x)e K [x], where K = P(B), and assume that f(x) is
irreducible over K. Then f(z) = ¢(f()) is again irreducible over K.
Let &,,..., &, be all roots of f in E and similarly denote by #,,...,7,
all roots of f. Hence the mapping ¢, defined by ¢,(&,) = n, (k = 1,2, ..., n)
can be extended to the isomorphism ¢, of splitting fields of f and f over
K, respectively. Let now {f,} be the well ordered set of all irreducible
polynomials over K. Denote by K, the composite of all splitting fields
of the polynomials f; for f < a and suppose that the isomorphism
¢.: K,—~ K, has been established. As before extend it to the isomorphism
oo : K, (f.) —~ K,(f,), where K,(f,) is the splitting field of f, over K,. By
the Kuratowski-Zorn lemma, isomorphism ¢, can be extended to an
automorphism ¢ of E. Now it remains to note that two different permu-
tations ¢ # y give different automorphisms of E, ¢ # . This proves
the theorem.

4. Let us remark that assumption (4) in Theorem 1 that the group
G(E) of all continuous automorphisms of ¥ is torsion, is essential. In fact,
let F be a non-archimedean ordered field, complete in the topoolgy induced
by that order. Then F = K(B), where K is the maximal archimedean
ordered subfield of F and B is the set of transcendental elements over
K (see [4], Theorem 4). We can take B to be the transcendental base of
extension F' over K. Let B = {b,}. Obviously, since the order is non-
archimedean and b, ¢ K, we have b, > ¢q for every ge¢Q and b, > k for all
a and for every ke K.

We put F, = K(b), where b is any arbitrarily fixed element of B.
The mapping b —>b-+1 can be extended to an automorphism ¢, of F,
by putting

g1l g =idg and  @y(f(b)/g(b)) = f(b+1)/g(b+1),

where f and g are polynomials over K.
Moreover, let us note that the inequality

n
a"bm+ e Tl >0 for a;,¢ecK,
L N ) .
holds if and only if a,c,, > 0.

Using the Kuratowski-Zorn lemma, we can extend ¢; to an automor-
phism ¢ of F. Since ¢, preserves the order, it is continuous. Hence ¢ is
continuous. We extend ¢ to a continuous automorphism ¢ of E = F ()
by the formula

7(a+bi) = p(a)+iph), a,bel.
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Hence ¢ is a continuous automorphism of F = F(i), ? = —1.
Obviously, ¢ has infinite order in the group G(E).

On the other hand, the local boundedness in Theorem 1 ((3) and (4))
of the field topology seems to be a technical condition and I believe that
the theorem remains true without that assumption. (P 763)
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