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The study of complex hypersurfaces was initiated by Smyth [9].
His first paper classified the Kihler-Einstein manifolds which occur as
hypersurfaces in complex space forms. The same classification was obtained
by Takahashi [11] and Nomizu and Smyth [5] under the weaker assump-
tion of parallel Riceci tensor.

In this paper*, we discuss the still weaker condition that each cur-
vature transformation commutes with the Ricci tensor. For notational reasons
which will become clear, we write this condition in the form RS = 0.
Our main theorem will be the following

THEOREM 1. The complete Kdihler manifolds with RS = 0 which occur
as hypersurfaces in complex space forms of holomorphic sectional curvature
¢ #0 are

(i) the complex projective space P"(c) and the complex quadric Q" in
P (c);

(ii) the disk D"(c) of holomorphic sectional curvature ¢ < 0 in D"*'(c).

Some questions still remain unanswered when ¢ = 0. However, we
show that C" is the only complex hypersurface in C**' which has RS = 0
and constant scalar curvature.

The real version of this theorem has been treated by Tanno [12]
and the author [8]. The latter makes use of results of the author [7]
concerning the related condition RR = 0.

All the concepts mentioned in this section are defined in the sequel
or can be found in Kobayashi and Nomizu [3].

1. Preliminaries. Let M be a Riemannian manifold of complex
dimension » with Riemannian metric g. The curvature tensor R of M
is a tensor field of type (1,3). For each pair of tangent vectors (X, Y)
at a point of M, R(X, Y) is a skew-symmetric endomorphism of the

* This work has been supported in part by the National Science Foundation
under Grant GP-7403.
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tangent space. We call R(X, Y) a curvature transformation. If X and Y
are vector fields, R(X, Y) may be extended uniquely to a derivation
of the algebra of tensor fields so as to commute with all contractions.
The resulting derivation, also denoted by R(X, Y), may be expressed
in terms of the Levi-Cevitd connection V by

where T is a tensor field of any type (7, s). We denote by RT the tensor
field of type (r, s+ 2) defined by

RT(XM X2’ sy XB’X’ Y) = (R(X’ Y)'T)(Xl’Xm --'7‘Xs)-

We will be concerned in this paper with only two cases, namely
when T is of type (1,3) (the curvature tensor) and when 7' is of type (1,1)
(the Ricci tensor).

In the (1,3) case, we verify that

(R(X, Y)-T)(U, V) = [R(X, Y), T(U, V)]-T(R(X, Y)U, V)—
—T(U,R(X_, Y) V).v
and, in the (1,1) case,
(R(X, Y)-T)Z = R(X, Y)(TZ)-T(R(X, Y)Z),

ie. R(X,Y)-T =[R(X,Y),T]. Here [,] denotes the commutator of
two linear transformations.
Thus, the condition RT = 0, can be written as

(2) [R(X,Y), T(U,V)]=T(R(X,Y)U, V)+T(U, R(X, Y)V)
or
(3) [R(X7 Y)aT]:O

for the cases in which we are interested.
The Ricci tensor of M is the tensor of type (1,1) defined by

(4) 8X = Y R(X, ¢)e;,

where e; is an orthonormal basis. It is also characterized by the fact that
9(8X, Y) is the trace of the linear mapping Z - R(Z, X)Y.

8 is a symmetric endomorphism of each tangent space. The smooth
function s = trace S is called the scalar curvature.

A Riemannian manifold is said to be FEinstein if S is a scalar mul-
tiple of the identity. If the (real) dimension of M is greater than 2, this
scalar multiple must be constant.
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A tensor field 7 is said to be parallel if VT = 0 for all vector fields X.
This is written VI = 0. Thus the Ricci tensor of an Einstein space is
parallel. If V8 = 0, we see that 8 must be constant since

Vx(trace8) = trace(VxS).
Furthermore, in view of (1), RT = 0 whenever VT = 0.

2. Complex hypersurfaces. Let M be a connected complex manifold
of dimension » holomorphically immersed in Kdhler manifold M of di-
mension n+1. We call M a complex hypersurface in M. The complex

structure J and the XKé&hler metric ¢ of M induce, respectively,
a complex structure and a Kéahler metric on M. We denote these induced
objects by the same letters.

We recall some basic ideas from [5] and [9]. For each z,eM , we
choose a smooth field of unit normals & defined in a neighborhood U

of x,. Denoting by V the Kiahlerian connection on M we have, for vector
fields tangent to M in U,

V¥ = VyY+g(4X,Y)é+g(JAX, Y)JE
and
Vxé = —AX +s8(X)JE,
where A is a symmetric tensor field of type (1,1) on U, called the second
fundamental form, and V is the induced Kiahler connection on M. It is
easy to show that
(5) AJ = —JA.

The curvature tensor R of M is expressed by the Gauss equation
6) . R(X,Y)=R(X, Y)+AXAAY +JAXAJAY,

where R is the curvature tensor of M. Although A depends on our choice
of &, it is not difficult to show that A? is independent of this choice and
so is defined on all of M as a tensor field of type (1,1).

A two-dimensional subspace = of the (real) tangent space is called
a holomorphic plane if there is a unit vector X such that X and JX span =.

A Kihler manifold M is said to have constant holomorphic sectional cur-
vature ¢ if the number

K(n) = g(R(X,JX)JX, X)

is equal to ¢ for every holomorphic plane = at every point of M. It is
well known that this is true if and only if

(7 R(X, Y) =-Z—(XA Y +JXAJY +2¢(X,JY)J)

12 — Colloquium Mathematicum XXVI
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holds for all tangent vectors X and Y. We are using the symbol A in
the following sense: uAv is the skew-symmetric linear transformation
defined by

(uAnv)w = g(v, w)u—g(u, w)v.

3. The standard examples. A complex space form is a complete,
simply-connected Kéahler manifold of constant holomorphic sectional
curvature. For each real number ¢, there is (up to holomorphic isometry)
exactly one complex space form in every dimension with curvature c.

The complex space forms of curvature ¢ are denoted by P"(¢), C* and
D"(c) depending on whether ¢ is positive, zero or negative. P"(1) is the
complex projective space endowed with the standard Fubini-Study metric.
C" is the complex Euclidean space. D"(—1) is the unit ball in C" with
the Bergman metric. P"*(¢) (respectively, D"(c)) is obtained by multiplying
the metric of P"(1) (respectively, D"(—1)) by a positive constant. Details
may be found in [3], p. 159-163.

P"(c), C" and D"(¢) occur naturally as totally geodesic complex
hypersurfaces in P"*!(¢), O"*' and D"*!(¢), respectively. In each case,
just set one coordinate equals 0. In the case of projective space, there
is another interesting complex hypersurface defined to be

{Z|Z3+Z1+...+2Z;,, =0} (Z; homogeneous coordinates).

This space is called the compler quadric Q".

In each of the standard examples, the second fundamental form A4
is very simple. It is identically zero in the totally geodesic cases and for
the quadric A® = c¢I/4, where I is the identity.

4. The curvature operators. Let M be a complex hypersurface in

a Kéahler manifold M. For any xe M, the tangent space to M at x is a 2n-
-dimensional real-vector space with inner product ¢ and complex struc-
ture J. The facts that g(JX,JY) = ¢g(X, Y) and AJ = —JA lead to
the existence of an orthonormal basis of eigenvectors of A which takes
the form {e,, Je,};_,. For details, see Lemma 1 of [9]. We may choose
the ordering so that, for 1 <1 < n,

(8) Aei - Aiei' a;nd AJ@,‘ - —ZiJG,-, }-i > O.

If M has constant holomorphic sectional curvature ¢, (6) and (7)
imply that

¢
(9) R(e;, €) = (Z +Ailj)(ei/\ e;+Je;nde;),

(10) R(e;, Je;) = (% _ A,-l,-)(ei/\ Je;—JeA 6;)— % 8y .
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5. The condition RS = 0. It is an easy consequence of the Gauss
equation (6) that

n+1

S = cl —2A42,

Thus, using the basis of (8), we have

n-+1

Se; = (’n—2|-1 0—213) e, S(Je) = ( 0_21§)Jei'

The following theorem characterizes the complex hypersurfaces with
RS = 0 in terms of A:

THEOREM 2. Let M be a complex hypersurface in a space of constant
holomorphic sectional curvature c. Then RS =0 on M if and only if
one of the following ts true:

(i) ¢ #0, A® i3 a multiple of I;

(ii) ¢ = 0 and the mon-zero eigenvalues of A* are equal.

Remark. This theorem shows that when ¢ # 0 RS = 0 if and only
if M is Einstein.

Proof. Suppose RS = 0. Then, for ¢ +# j,

c n—+1
R(e,-, 6])(801) = (Z +11}~]) (—2—0'—21;)3{,

S(R(e; €;)¢;) = (% +2,-}.,-) (q—@gl—c—mi)ei.
Hence
(11) (2 +/1,./1,.) (2—22) =o.
Sir.nilarly,
R(e;, Je;)(Se;) = -(E - /1,./1,.) ("—’; c—zzg) Je,,
S(R(e;, Jej)e) = — (E —A,-A,-) (n—2H c—2l§)Je,-.
Hence
(12) (% —Aizj)(/li—zg) =0.

Recalling that each 1; is non-negative, we immediately see that
if ¢ # 0, then all of the 4; are equal. Thus the identity

o trace A2
- 2n
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holds. On the other hand, when ¢ = 0, (11) and (12) are the same and
they clearly imply that all the non-zero A; are equal.

Conversely, if S is a multiple of the identity, then § commutes with
every curvature operator and RS = 0. Now suppose that ¢ = 0 and
all the non-zero eigenvalues of A? are equal. Working at a particular
point ze M, let T, and T, denote the eigenspaces of A®> and hence of S.
We must check that R(X, Y)-8 = 0 for all X and Y. If either X or Y
is in T, then R(X, Y) = 0. Thus we may suppose X and Y are in T,.
By the Bianchi identity

R(X,Y)Z+R(Y,Z)X+R(Z,X)Y =0,

we see that B(X, Y)T, < T,. Since R(X, Y) is skew-symmetric, it must
also map 7, into 7,. But 8 is a multiple of the identity as a mapping
of T, into T,. Thus R(X, Y) commutes with 8. This completes the proof
of the theorem.

We shall see later that when ¢ = 0, the Einstein condition com-
pletely determines the hypersurface M and its curvature tensor will
satisfy VR = 0 and hence RR = 0. Thus the conditions RR = 0 and
RS = 0 are equivalent when ¢ ## 0. However, when ¢ = 0, it is not known
whether these conditions are equivalent. We have the following

PROPOSITION 3. Suppose ¢ = 0 and RR = 0 in the preceeding theorem.
Then the rank of A® is at most 2 at any point.

Proof. We begin by substituting in (2) to obtain the following
identity for 7 #£j:

[R(e;, ¢;), R(e;, Je;)] = R(R(e;, ¢;)e;, Je;) +R(e;, Re;, ;) J¢;).
The left-hand side is equal to
— 132 [en e;+Je;nde;, e;nde;—de ne] = —AiAi(e;nJe;—e;nde;).

The first summand is
LA R(—e;, Je;) = A;4;(223)(e; A Je;).
The second summand is
A (—223)(e; A Je;).

Comparing coefficients of the linearly independent elements ¢; A Je¢;
and e; A Je;, we get the two identities A31] = 2434, = 22}4;. This gives
4;43(24;— ;) = 0. Hence, if 1;4; # 0, we must have 1, = 24;,. But since
RS =0, we have also A; = 4;. This is a contradiction. We conclude
that A, is non-zero for at most one 7.
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6. The classification.

THEOREM 4. For a complex hy‘persurface of complex dimension n > 1
i a space of constant holomorphic sectional curvature ¢ # 0, the following
are equivalent:

(1) RR =0 on M;

(2) RS =0 on M;

(3) M is Einstein;

(4) S 4s parallel, i.e. VS = 0;

(5) R ts parallel, i.e. VR = 0;

(6) M is totally geodesic or ¢ > 0 and M 1is locally the quadric Q" (glo-
bally, if M is complete and M = P"*'(c)).

Proof. The equivalence of (2) and (3) is given by Theorem 2. Theo-
rem 4 of Nomizu and Smyth [56] says that (4) and (6) are equivalent.
The standard examples are all Riemannian symmetric spaces. Thus (6)
implies (5). Thus, we have the following string of implications:

(2) = (3) = (4) = (6) = (5) = (1) = (2).

The last implication is a result of the fact that 8 is a contraction
of R and every R(X, Y) commutes with contractions. This completes
the proof.

7. The case of constant scalar curvature. As mentioned in Theorem 4,
Nomizu and Smyth classified the complex hypersurfaces with parallel
Ricci tensor. They proved that if VS = 0 on M, then

(i) when ¢ = 0, M is totally geodesic;

(ii) when ¢ # 0, M is totally geodesic or is locally the complex quadric,
the latter arising only when ¢ > 0.

Kobayashi [2] weakened the assumption in case ¢ > 0 to compactness
and constant scalar curvature. We now observe that Theorem 2 allows
the weakening of (i) as follows:

PROPOSITION 5. A complex hypersurface in C"*' having RS = 0 and
constant scalar curvature must be totally geodesic.

Proof. Let s denote the scalar curvature. Choose a point x, where
the rank of § is maximal. Then the rank of § is constant in some neigh-
borhood of this point. If the rank is k, then the non-zero eigenvalue —24*
satisfies the relation —2A*k = s.

Since s and % are constant near z, so is A>. We now appeal to a theorem
of Smyth [10], which says that if the eigenvalues of A? are constant in
value and multiplicity, then they are all zero. This shows that s = 0
in a neighborhood of xz and hence 4> = 0 on all of M. Thus M is totally
geodesic, i.e. a piece of a complex hyperplane.

8. Concluding remarks. The classification of complex hypersurfaces
with RR = 0 was done by a longer method in an unpublished portion
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of the author’s thesis [6]. These results were announced in the notices
of the American Mathematical Society, August, 1968. The part of this
pertaining to the case ¢ = 0 (Proposition 3) takes on added significance
in light of a subsequent theorem of Abe [1] which follows.

THEOREM (Abe). Let M be a complete complex hypersurface in C™*'
with rank A < 2 at each point. Then M is cylindrical, i.e. M is the product
of an (n—1)-dimensional complex hyperplane C"' and a complex curve
in a 2-dimensional complex plane orthogomal to C*' in O™+,

We remark that RR = 0 whenever rank A < 2. Hence, we have
the following consequence of Proposition 3 and Abe’s theorem:

THEOREM 6. Let M be a complete complex hypersurface in C"*'. Then
RR =0 on M if and only if M is cylindrical.

The following question remains unanswered: Can RR = 0 be replaced
by RS =0 in Theorem 6? (P 808)
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