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Covariant derivative of product tensors

by J6zEF JoAcHIM TELEGA (Katowice)

Introduction. In paper [6] we have presented the axiomatic defi-
nition of the covariant derivative of (H, H)-product tensors. Now we
shall deal with the special case where H(A) = A, H(B) =

Making use of Theorem 2.1 from paper [6] we shall give in Section 1
formulae for the covariant derivatives of product tensors of wvalences
(1,1;0,0),(0,0;1,1)and (1, 0;0, 1), respectively. The case where manifolds
have the same dimensions and there is a mapping between them has
been dealt with in Section 2. In the final remarks we shall show how our
considerations imply the formula for the covariant derivative of donnect-
ing tensors given in [2].

1. First let us recall the definition of a product tensor. A geometric

product object ¢ is called a product tensor of valence (1,1; 0, 0) when
its law of transformation has the form [3], [7],

(1.1) 'Y — AYBYte, i=1,..,m,a=1,...,n,

P
where A} =35 B, :6—3/“;
zeX", yeY", respectively (in certain coordinate systems), and «*, y*
their coordinates in arbitrary other coordinate systems, X", ¥" are mani-
folds of dimensions =, n respectively. Throughout this paper we adopt

the followmg convention: Latin indices run from 1 to n, and Greek indices
from 1, .

We conclude from Theorem 2.1 of paper [6] that the covariant deri-
vative of the product tensor (1.1) has the form

#',y* denote the coordinates of points

(1.2) D = O —i Dy, t"’—i—Em,
where :
ja at’e ja atle
T ok v = —6—3/7'

In this paper we shall donsider only the special case of (1.2), namely where
(see Remark 2.1 of [6])

ooy = CpGhi,+ DK,
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Further, we assume that the covariant derivative of the product
scalar o(x, y) has the form (see Remark 1.1 of [6])

Jia = Co0;+ D;o 4,
where
_ Oo(z, ) __ Oo(z,y)
R —_0a:i—’ Ca -——ayT'-

Then, as was pointed out in [6] for a more general case of the co-
variant derivative of the (H, H)-product tensors, we have

(1.3) D = Cp(t + G 1y t™) + D, (47 + Kl 1.
Let us denote the expressions in brackets in the following way:
(1.4) Vit = i+ et Wt = i+ K, 0
thus we obtain
(1-5) Dg; - GpV‘tja“l‘Di Vﬁtja.

We see that it is sufficient to consider only the covariant derivative l°7i,

because for the covariant derivative V', our subsequent considerations
would be analogical.

Making use of Remark 2.2 of [6], we obtain the law of transformation
of the product object G, in the form
(1.8)  Glfy = A] AL AL BY BLGh,— 85 A% AL Al — 6% A} By B3,
where
; 0*x” . *y”

_ a
ki —

dx' 0"’ @ oy

If a manifold X" is a space L", i.e. a space with a linear connexion
A%, then we obtain the special form of relation (1.4,), putting

(1.7) Vit Sl =l Al

where the semicolon denotes the covariant derivative of single tensors
(defined at a point). Thus we get

(1.8) Gy = Ay 65.
Let us consider the case where
(@, y) = w (@) (2, y), @@, y") = Bl ¥°).
Further, we put

(1.9)  Fu(wo?) = o+ ulofy = o (s + Aduk) + 0 (07 + To)

= (W v%) s+ A uFo® + TG uioP,
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Leibnitz’s formula (1.9) will be satisfied when the space X" is a space L",

and - besides that there must be defined a product object ~,f‘ﬂ, which we
call the product linear connexion. In our subsequent considerations we

shall show how to express the product object f’,‘-‘a by a linear connexion
ws (if Y™ is L™ with a linear connexion I7,).
From (1.9) we obtain 7
(1.10) B = Ah o5+ T, 01
We assume that relation (1.10) is fulfilled for an arbitrary product tensor
(1.1); thus
(1.11) Vtl* = t05+ At + I,
Making use of (1.6) and (1.10) it is easy to verify that the law of trans-
formation of the product linear connexion has the form

(1.12) Iy = ALBY By T3 — ALB; By,

This connexion is a product tensor when B2 = 0. One can easily verify
that the product linear connexion is the product geometric object, which
we omit.

Remark 1.1. Let
(1.13) ‘ Iy, = wirs,

where I'}; is a linear connexion on the manifold ZY;, and W3 is a priori
arbitrary product object. But from (1.12), (1.13) and from the law of
transformation of the linear connexion [2], [6] we get

. = WETY. = W&(BY B4 BT, — B%BLBL),
AL BLBY T}, — A% B%BY, = Wi (B! BB} I}, — BLBLBL).
The last relation gives
Wi = AL BSWS, Wi BL By, = Ay Bl.
If B!, = 0, then the product object W% is an arbitrary product tensor.
The derivative
v _ﬂi
* 7 oy’
is non-zero when y* = é/“(m‘). Then the relation

3.’;,; = Z:By?k’
P oy’ . . ‘
where ¥, = P is fulfilled. We eventually get

Wi = AL B Y,
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whence
(1.14) Wi = 9.

In Section 2 of [6] the formulae for the covariant derivative of
(H, H)-product tensors o}, »,, have been given. Now let us consider the
case where these (H, H)-product tensors are simply product tensors.
We take two such product tensors: TZ, V,,. From formulae (2.27), (2.28)
of [6] we get '

(1.15) PiVie = Vit GLVis,
(1.16) VT = T2+ L, T%,

respectively. Reasoning in an analogical way as in deriving relation (1.10),
we obtain

(1.17) G, = B 65+ hE, of.
Imposing additionally the condition

t’a Vja = 0, G;i = U,i = Vjavit"’a"i-tjav‘via,

we get

(1.18) W = —Ak, B, = —T% G, = —Gi;
thus

(1.19) ViVie = Vigy— A5 Via— T8V,

¥rom our previous considerations it is evident that formulea (1.11),
(1.19) for the covariant derivative of produet tensors are formally (mnemo-
technically) the same as those for the covariant derivative of single
tensors [2], [5]. Thus relation (1.16) has the form

(1.20) viTh = Ti 4 A3, T — T4, T3,

Remark 1.2. One can assume relation (1.7) as the definition of the

covariant derivative of product tensors. Then, of course, manifolds X", ¥"
must be spaces with linear connexions, because, e.g.,

(1.21) VT™ = T™y = T7,— I, T

Fricksen [1] assumes formulae (1.7), (1.21) ex definitio, and calls
them partial covariant derivatives.

2. Now we deal with the case where there exists a mapping of class

O h: X" - Y™ which we write down in coordinate systems in the fol-
lowing way:

(2.1) ¥ =9, j=1,.m a=1,..,7
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We can interpret relations (2.1) in one more way; namely, they can be

understood as the equations of a hypersurface X" imbedded in a space "
In the latter case we must have n < n—1 [2], [5].

Let manifolds X", Y™ have linear connexions Az, I';,, respectively.

We know that the covariant derivative |°7,- of the product tensor t™ has
the form (see formula (1.11))

(2.2) pat’ = i+ Al e 4 Fgt?.

Let us take in (2.2), instead of the partial derivative 172, the total deri-
vative :

@, o' (@™) ot o dyf
dz’ ooxt 0 oy axt

(2.3) = tf + 03k,

h W
W ere y i F{L‘T'
Further, we assume that relation (1 13) is fulfilled, where W% = y k
(see Remark 1.1), i.e.

(2.4) w =il

Taking account of (2.3), (2.4) in (2.2), we get

(2.5) tle = 94 Af0% + (¢ + T, 87) 9
— dds el

We have assumed the symbol || in (2.5). to denote the covariant deriva-

tive of product tensors for which we take the total derivative instead
of the partial derivative.

It is evident that expression (2.5) presents a product tensor, because
‘both the covariant derivatives tf;‘, t{ and the partial derivatives y'i are
product tensors.

Ericksen [1] calls the covariant derivative (2.5) the tofal covariant
derivative, but he assumes this relation ex definitio, as a generalization
of the total derivative of the scalar o(a’y®(z?)).

Let us assume that n = %, and let a mapping h: X" — ¥", be a homeo-
morphism of class C'. Transvection ' = 9z°/dy” with both sides of (2.5)
and taking into account that

yﬁ‘mfr = 65’
we obtain
(2.6) tleat, = 195 +tliad, = tfs.
In an analogical way we get

(2.7) th = ti5u5.
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Final remarks. The formulae for the covariant derivative of product
tensors are also valid for double and connecting tensors; we mean here
relations (1.11), (1.19), (1.20).

Examples of the applications of the covariant derivative of product
tensors in the theory of elasticity have been given in [4].

If relations (2.1) present the equations of a hypersurface X" imbedded

in a space Y", »n <7n—1, then Golab [2] denotes the connecting tensor
y% by C¢, and Schouten [5] by B;. It is easy to verify that relations (10.26)
given in [2] on p. 303, are a special form of our formula (1.20). Namely,
it is sufficient to take into account (2.4) in (1.20) and to assume A%, as
the linear connexion of the imbedded space X". In this case relation (2.5)
is also satisfied.

Schouten [5], p. 285-287, introduces the Cartesian product of spaces L",
L"* ™ (with linear connexions). The Cartesian product of such spaces is
the space L" for which all components of the linear connexion with two
indices of a different kind vanish. In our considerations it would mean

that the product linear connexion f?,, vanishes (see (1.11), (1.19), (1.20)).
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