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§ 0. Introdnction. In this paper we make some obgervations regarding
Hasse Principles for algebraic equations of one variable (in §1) and for
homogeneous forms (in §2). _

First of all, we give the definition of Hasse Principle. Let & be an
algebraic number field of finite degree and %, its completion with respect
to p where p is a prime spot, discrete or not. Let k [z, ..., 2,] be the
polynomial ring in «# variables with coefficients in k and f(a, ..., @)
belong to k[x,..., o,

We say Hasse Principle/k (resp. strong Hasse Principle/k) holds for
f@y, ..., @), When “f(z,...,2,) =0 has a solution in % if and only if
it has a solution in %, for all prime spots p (resp. for all but a finite number
of exceptions).” If f(a,, ..., ®,) is a form, a solution means a non-trivial
one,

In §1 we will obtain various results on the strong Hagse Principles
for algebraic equations of one variable and for binary forms over algebraic
number fields. As the strong Flasse Principle for irredueible polynomials
of one variable is known to hold (Hasse [4]), we have only to deal with
the reducible cases. The special cage when f(z) = a™—a i3 tonsidered
in Artin—Tate (Chap. 9,10 [1]) and in H. B. Mann (Chap-. 16 [5]). Another
special case is considered in Van der Waerden [10]. Our proofs are hased
mainly on algebraic number theory with some class field theory. _

Tn § 2 our aim is ‘to disprove Hasse Principles for forms of degree 5.
Ag is well known, the Hasse-Minkowski theorem assures the validity
of Hagse Principles for any quadratic forms. So far as forms of higher
degree are concerned, things are not at all simple if the form is irreduecible-
of odd degree. (See [2], p. 72.) For forms of degree 3, E. 8. Selmer [7]
first disproved Hasse Principles by his famous counterexample 3a* +
+ 41+ 52" = 0 and later others were found by Swinnerton-Dyer [8],
Mordell [6] and Cassels—Guy [3]. These four papers seem to contain all
counterexamples for irreducible forms of odd degree known up 0 now.
In this section we assert and show that the irreducible form of degree 5,
(o + 5y®) (2 + @y +4*) — 172" is a counterexample. The proof is based on
algebraic number theory together with some resuits of § 1.
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§ 1. Swrong Hasse Principle, Throughout this section, we fix the
following notations. . ' '

k: an algebraic number field of finite degree,

p: a prime ideal of %,

ky: a completion of % with respect to p,

J(#)e k[z]: the polynomial ring of one variable over 7,

k(f): the composite field of & and the roots of f,

a.2.p.: almost all prime ideals, ie., all prime ideals Dut o finite
number of exeeptions,

S H.P.[k: Strong Hasse Principle over %.

First of all we make two obvious remarks which will be used frequontly.

Remarks. (1) If f(#) has no roots in %, S.H.P. holds for flm) it and
only if there exist an infinite number of primes P such that f{@) has no
Toots in k. : .

(2) LK o> %and f(=) hag no roots in I, then the validity of BH.P. K
for fz) implies that of S.H.P./k for f(m)

The next lemma is well knowmn.

Limvmva 1. Let fi@) be ivreducible over k and o any one of iis roots. Then
Jor wm.a.p., the following statements are equinalent.

(1) f(w) has some roots m-'kp.
(2) p has a prime factor of relative degree 1 in I (a}

ProroSITION 1. If f(2) is @ Qalois equaiion (4. ¢. b(f) can be obigined
from & by an adjungtion of any one root of f(m)) then S.H.P. holds
Jor f(a).

_P.roof. As ky(f) = kyla) for any root a of Sy we ean assmme that
ky(f) = k, for a.a.p. On the other hand if k{f}) 5 &, by the density theorem,
of Tsehebotareff, there exist an infinite number of prime ideals in & which,
do not factor completely in E(f). This implies ko (f) # ky for an infinite

number of p and contradiets the agsumption, henee &(f) == &k and f cawn
be solved in k, q.e.d. '

ProrosiTiON 2. If flz) is @ polynomial o : & . ree ..
holds for fla). pouy f fom.,a, degree then S.H.I.

Proof. (f: irreducible). The Galois group & of fis either symmetric
group 8,, alternating group 4,4, a group B, of order 8 or a g'm;up B, of
o.ré‘ler 4. It @i B,, f(z) is 4 Galois equation o that S.H.P. holds by Proqim-
sition 1. If i3 easily seen that if & is A, or B; then 8.H.P. holds over the
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subfield K of k(f) corresponding to B, and if & iy 8, then it holds over
the subfield K of k(f) corresponding to A,.

By the Remark (2) it holds over k. ‘

(f: reducible.) So'far as S.I.P. is concerned, we can assume without
any loss of generality that f(z) is written in the form (2*— 4)(a®— 4').
HB(f) == k(l/Z, }/ZI—') is of degree 2 over k then f(z)is a Galois equation and
Proposition 1 applies. If k(f) iz of degree 4 over k then k(l/m) containg
no root of f and f(z) is a Galois equation over k(l/ Zi—AT) and Proposition
1 applies, q.e.d. ' ‘ o

COROLLARY. Let m, n be integers which are not squares. Then there
exist am infinite number of primes p such that

51

This Corollary will be generalized after Proposition 4.

PROPOSITION 3. Let f(®) be a reducible polynomial of degree 5 which
is written as f = gh where g is irreducible of degree 3 and b is irreducible of
degree 2. Let D,, Dy, be the respective discriminants. Then S.H.P./k holds
for f(z) if and only if D, is not mulliplicatively congruent to D, modulo k2

Proof. (k(g)/k: degree 3.) In this case the density of prime idenls
of % which do not split completely in %(p) (resp. k(A)) is § (resp. §) and -
3-1-4 > 1. Hence there are an infinite number of prime ideals in & which
do not split in either kE{g) or k(h). This shows the va}lidity_l of 3. H.P. for
f(x) by Lemma 1. In this case D, is in %* and hence D, is not congruent
to D modunlo %2 - . o .

(k(g)/k: degree B.) _ ‘ , _ _

Case 1. k(g) = k(h). Let a be a root of g{x). As k(g)/% is not cyclic,
@ prime ideal p of k& which remains prime in k(q) must split completely
in %(g}/k{e). It follows, by the translation theorem of class field theory,
except for a finite number of p, Nyyp = p? splits completely in % (k).
Hence p itself splits completely in & (k). Summing up, except for a finite
number of p, if ¢ has no root in %, then A has a root in k,. This implies
that S.H.P. fals. ‘ .

In this case, a8 k() has only one subfield of degree 2, k(V.D,) = k(VD,)
and D, is congruent to I, modulo &= o

Case 2. k(g) n&(h) = k. Let K be a subfield of %(g) corresponding
to 4,. As K contains no roots of g ox &, it is easily seen that SH.P. holds
for f(z) over K by the arguments of the first case. In this ease, D, is not
congruent to D, modulo %2, g.e.d. ‘

Using this propogition. it is quite easy to construct examples for
which the 8.H.P, fails. For example f(2) = (x84 5) (2% -+ 3) has no 8. H.P./Q.
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More precisely, by the above proof, f{x) can be solved at all primes excdpt
Q.,Q; and Q. This fact will be used in § 2. . '

ToueorEM 1. For f(z) = g(x)h(x) where g(x) and hix) are irreducible
over &, 8.H.P. holds except the following case (*):

(#) k(g) 2 k(h) and %(z) P k(B) for any root a of g oand 8 of R
{or the case where g and h are exchanged).

Progf. If k(g) = &(R), S.-HLP. holds for f since we know that it holds
for any irreducible polynomials. When k(g) $ k(h) or k{g) ¢ k{(h), put
K =klg) nkh). As K[k is a Galois extension, K contains no root of ¢
or h. Therefore we have only to prove 8.H.P. over K. We distinguish two
cases.

Case 1 (g and & are irreducible over K). First we show that G(K ( g)/k)
(resp. G(K(h) {K}) contains an element o, (resp. o) that fixes no root of ¢
(resp. k) in the following; assume each element of ¢ = G(K (9)/X) fixes
some root of g. Let ay, ..., a, be the roots of g. Since @ is transitive, for

each 4, there is an element @, in @ which sends o, to a;. Then, letting H,

be the stability subgroup of ¢, in &, we have
¢ =H,Va,d, ... uaH, (disjoint union).

Therefore 36 =mn where #H; = m. Put H, = a,H,a". Then +H,

=m anfl Cr* = JE‘L V...V H, by the assumption. But ‘this union is no -
longer digjoint since each H, containg 1. Hence 4G < mm and we have

a contradiction. Thus we have proved our assertion. Now,
E(f) =X(g) E(h) and G(E(f)/EK) — 6(K(9)[E) x G{K (h)/XK).

Rega;rding‘(crg, ;) as an element of @K (f)/E), there exists a prime ideal,
hence an u_:itmte -m_lmber of prime ideals, in K whose Frobenius suto-
mo:thlsm in K (f) 18 {o,, o3). These prime ideals are easily seen, from
;1((311)' _con;tzxalgctmn, to have no prime factors of relative degree 1 in either
a) or ) where a (resp. §) is any root of ¢ (resp. k). H ?
holds for f = gh over K. Y ¢ {resp- 1), Heace SHLE.
N Ga,'se 2 (g or & is reducible over K). Az K {k i8 a Galoiy extension,
]I;edt}ﬂbl(& _faetor_s of g are conjugate over k. Therefore the solvability
;‘ hg ;n K, is eqmvhalgnt to that of any one irreducible factor of ¢ in X,
e same goes with % and hence we can reduce this cag . Hex
S.JILP. holds for f over K. | - 1010 cage 1. Henge
Now, the case left to prove is the one wh
_ ) : hen %(g) 2 %(h) and %(a).
Z ;:(f) for some 100t 2 of ¢ and 8 of k. In this case, ta.lzée an element(of
é 1} (h)/k) that Tixes 1o rooti of & and demote by o, its prolongation to
the au?qmoz:phmn;l_oi kig)overk. As o, fixes no root of g by the assnmption
e prime ideal in %k whose Frobenins automorphism in %(g) is o, has’
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1io prime factor of relative degree 1 in either k(«) or k(f). Hence S.H.P.
holds for f = gh over k and this completes the proof of Theorem 1, g.e.d.

Remark. In the ease (*), whether 8.H.P. holdy or not appears a little
complicated. An example for which S.H.P. holds is (#*—2)(s*+1) and
the one for which S.H.P. fails is (234 5)(x?+3). The latter example iy
already referred to and the former can be verified by a direct computation
of the Galois group of #*—2. Van der Waerden [10] has got & necessary
(but not sufficient) eondition for the validity of S.H.P. for f = gh where
¢ quadratic and & of odd prime degree.

ProrosrtioN 4. Let f(o) = (— A (@?—4,) ... (82— 4,,) where
Ay, Agy ..y A, are numbers of k which are not squares in k. Then the following
assertions are eguivalent:

(i} 8.H.P./k does not hold for f(z);

{2) Some 4;1is multiplicatively congruent to a product of an even number
of others modulo k2. '

Proof First we note that if A4, ...,4,, are multiplicatively independent;
modulo %% then S.H.P. holds. For, in this case, k(f) = k(V Ay, ..., V4,)
is of degree 2™ over k and, putting K = k(v’AIA,, VA, Ay, ..., I/AmWIAm)
K contains no root of f(z). Tt is clear that %&(f) is of degree 2 over K and
f is a Galois equation over K. Hence Proposition 1 applies and S.H.P.
holds over k.

(2) = (1). Let 4, =4, ...4;, (modk*). Apply the quadratie
residue symbol on both sides. Then

)
p

()~ 5
? P/
and it tollows that there exists no prime ideal p making all these factors

—1 at the same time. In another words
(22— A (e — Ay ...

(22— .Aizl)

can be solved in %, for a.a.p. and hence S.H.P. does not hold for this
product, Consequently, S.H.P. does not hold for f(z). o

(1} = (2). It 8.H.P. does not hold for f(z) then there exist 4, with
the following property: S.H.P. holds for (a*—4,)...(#*—2,;) but not
for (z—4,)... (82— 4){(x*— 4;,,}. Then owing to the above-mentioned
remarks, Aj,..., 4, are multiplicatively dependent modulo k* and
therefore 4, , can be written as a produet of some of 4y, ..., 4, mod k%
If this product consists of an odd number of A,'s, it is easily shown, by

. considering again quadratic residue symbols, that S.H.P. holds for f(z)

and this is a contradiction. Therefore the product should consist of an
even number of 4.'s, gq.e.d. - ' ' .
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CoroLLarY. Let wy, ..., %y De infegers which arve not squarves. Then

- , [ iy "y Lo
there extst infinitely many primes p sueh that 1—) == —| = —1 if

r ‘
aind only if each m, is not multiplicatively congruent sodulo Q% o @ product
of an even number of others.
By the way, it is clear that there always exist infinitely many primoes

: e ] . . .
p sueh thab (——1 =, =] =1 for any set of integers miy, ..., my.
? P

ProvosrrionN 5. Let (e, y) be an drreducible bma; y forme aver k. Then
S.H.P.JE holds for F{w, y).

Proof. F(z,y) is irredncible it and only if #(x, 1) is irreducible.
Put F{z 1) = fiz). Then it is clear that F(x, ¥) = 0 has a non-trivial
solution in & (resp. &) if and only if fx) = 0 has w solution in & (resp.
ky). Therefore the validity of S.ILP. for F(», ) is equivalent to that for
f(z) and the latter is known to be true in Hasse [4].

Remark, As a counterexample, put F(x, y) = (2 + 5y3) (w*+ 3y?).
By the remark after PlCIIJOSlthL’L 3, Lth form has a non- 1,11V1a1 ZEr0 in
Q, for all primes p except p = 2, 3, 5. This fact will be used in §2

§ 2. Hasse Principle for forms of degree 5.1We prove the next thoorpm
step by step.

TasoREM 2. Hasse Principle over Q does not hold fm the following
irreducible form of degree 5

(@ + By®) (a*

24y oy — 1780
We have only to prove that the following equation
(=) - ‘ (@ +By*) (w2 oy +y%) = 172

has a non-trivial solntion in every' local fisld and hag no such solution
in Q. ‘

PROPOSITION 6. The equation (*) has a non-trivial solution in 0, for
all primes p and in R.

Proot. Solvability in R is obvious. boh ah 1]11 yin@Q, wheee p 459, 3,
is easily seen Dy the remark at the end of § 1, for a4 ay 4y can ])1(1 Y
the role of #*4- 3y® there. Now let

F(x, y'r z) = (x84 DYy (v

Ly ) - 178,

I p =2 we put (242 = (1,0, 1), then (1, 0,1) == 0 (mod 2}

oF . : ‘ ' '
and - (1,0, 1) 2 0 (mod 2), Tll_is assures the 2-adie solution of () by

Henbel“ lemmg ([2], Chap. ¥, Th. 3).
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If p =3 we put (#,v,2) = (—1,0,1), then F{—1,0,1) = 0 (mod 3)
ar :

and — {

- Oz

¥ p=05 we put (zv,=)

—1,0,1) == 0 (mod 3}.

= (2,0, 1), then F(2,0,1) =0 (mod5)

oF .
and —E-); {2,0,1) = 0 (mod 5).

These assure the 2
g.e.d.

Now, we proceed to the proof of the non-existence of the non-trivial
integral solutions of the equation (*). Firgt we make some reduetions of
the equation to simpler simultaneons equations. Let p be a prime
number and {w, y, 2} be an integral solution of (*). We can assume ¢ and ¥
are coprime. Assmme p" divides both

{resp. 3, 5) achc solutions of (*) by the sume lemnm,

(1) 28+ By
and

(2) a4yt
Then p" divides : '
()= (2) @ =By —aty —ay® = y(3y* o> 2y).

Here we can assume p divides neither x nor y, for if p divides one of o, y
then it divides the other. Hence p™ divides

(3) Byt —af —wy.

Thus p" divides (2)+(3) = 6y°. Therefore p* divides 6. Let d denote the
largest common divisor of (1) and (2). If 2 divides 4 then both = and »
must be even by (1) and (2). Therefore d = 1 or 3.

In the following we show d = 3 is impossible. In this case looking at
the right hand side of (*}, we can see that 3° divides (2® -+ 5y®) (42 + 2y + ).
Therefore 3* divides #*4-5y° or & +ay+y%

Fivst, it 3¢ divides o+ 5y — N(v+4y0), where 6 =5 and ¥
stands for the norm from @(§) to Q, then, considering 3 = (2—8) in
Q(0), (2— 0¥ = 3(2—0) divides x+y8. It follows that 3 divides both =
and y, since 1, #, 67 is the basis of the 11119091% in@(0). This contradicts
our qsqumptmn {2, 9) = 4

Secondly, if 3* c11v1dc\

_J

=, . 149/ -3
ray+y =N (w-'r ;irf 3/),

O, then considering
3 = — (¥ —3), 3 divides both » and y and contradicts the asswmption
{r,y) = 1. Therefore, we have proved d = 1. : ‘

where N stands for the norm from Q(l/:m?;) to @



274 Masahiko Fujiwara

Since 17 remains prime in-Q (¥ —3), if 17 divides

14V —3
ey,

o oy +y = N(w+ 9

where N is the norm from Q(I/WS) to @, then 17 divides both @ and p.

Thus we can assume 17 divides #*+5y° but not &+ oy +4*. Taking
all these facts into account, we have proved that if there exist non-frivial
integral solutiong of (#) then the following system (xx) of equations in
z, 9, %, w must be satisfied by some non-zero integers.

284 By? = 1745,
() 2oy -+t = wb,
(myy) =1.

LExA 2. Tet k be a cubic field over Q and [ be an integer of k such
that 8p(£) = 0. Assume a prime p factors in & as a product of three distinet
prime divisors; say p = pp'p’’. Then, if pp’ divides { then p divides .

This lemma iz found in exercise 21 of Sec. 7, Chap. 3 of [2] and can
be proved eakily.

PrOPORITION 7. (#%) has no non-triviel integral solutions. .

Proof. Let z, y,.2, w be.an integral solution of (+*). Denoting V5 by f,
the field (8) has 1, 8, 6 as an integral basis, has class number 1 and haa
1—40+26* as its fundamental unit [9]. .

We notice that #*+By* = ¥N(z+y8), where N is the norm from
Q(8) to Q. Assume a prime p divides 2, then p factors in prime ideals in
Q{8 in one of the following ways:

(L) p=ppeps, (2)p = (3) 2 =ppy,
() p=p" (8) p =ppi.

As the primes which ramify in Q (0} are 3 and 5 and these ramify completely,
{b) is impossible.

Letting « = @--¥6, we write down the conditions for p° to divide

N(a).

' Case (1). Sp(af) = Bp(xf4-y6") =0. So by Lemma 6, pj, 93,
or p divides af. Since neither p nor p; leldes 8, p, P}, pi or p divides a.

Case (2).-p divides o

Case (3). pl or pi or p divides a. _

Case (4). p* divides « and therefore p dw1des o

In ali these cases if p divides a then p divides both z and y and this
confradicts the assumption (2, y) = 1.
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We nofice here that in Q(6), 17 = (—2+6)(4+50+29") and it
is easily checked by a direct computation that if 4--5--28" divides
#-+y0 then 17 divides both # and y. Taking all these into aceount, ¢ = x -
98 must take the form of one of the following types: {—2+ 8%
(—2+0%el’, (—2+ )8, (=240, (—2+6°)6's where { is an
integer of G () and & is the fundamental unit 1 — 46+ 28° in Q(8)

‘We are going to show in the following that #-+-yf can never take
any one of thege five forms.

Put { = u-+96-+wh where u, v, we Z. Then

£ o= {u+ 00+ wb)f = w454,

where A ig an integer of Q(8)

As == 1—40+ 20 & = —T94+ 120+ 2087, s* = — 359 -+ 5280 —1866°
and & = 864141046 —30166°, pubting (—2+ 0% = a;+ b6+ 8
{(i=0,...,4), it is easily seen tha.t does not divide ¢; (i = 0,..., 4)-
If 4 y0 takes one of the above-mentioned forms then, for some 4,

2448 = (0;+ ;0 +0,6%) % = (a;+ b0+ ¢;0°) (w°+54)
= @, W - BB+ (b;u’° - 50} 8 - (e,u° + 3D) 6*

where B, C, D are rational infegers. Since 5 does not divide ¢;, this equality
shows that b divides u. Conseguently 5 divides both » and y. This contra-
dicts our assumption (z,y) = 1. Thus we have proved «*+5y® = 17°
has no non-trivial integral solution with (x, ) = 1 and finished the proof
of Proposition 7.

Proposition 7 together with Proposition 6 completely proves
Theorem 2.
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fractions with applications to normal numbers
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1. Introduction. In [1, Th. 6, p. 233 ], we established the (4, ) -normality
{1, Def., p. 2227 of a bload class of rational fractions Z/m < 1 in lowest
terme of type A [1, Th. 4, p. 227, and Def., Type A, p. 2291 when repre-
gsented in bases ¢ such that (g, m) = 1.

We shall now present results based on a relaxatwn of the requirement
{g,#) =1 and consider the conscquences for the (4, e)}-normal properties

~of the representations of Z/m in bases g such that (g, m) > 1 where q
containg some but not all prime factors of .

Hgsentially, the above implies that we ghall now permit the represen-
txtions to have non-periodic parts for such ¢ and, of course, the definition
of (j, e)-normality [1, Lemma, and Def., p. 222) does not preclude this
OCLUTTENee.

. .
Lot m = H ‘and assume in contrast to the basic regnivement

for Type A, ie. b > #;+8; for at least one odd prime p, that one or
movre of the p; are such that b, > z,+s;, hence, Z/m is surely of Type
A and (j, ¢)-normal on all g such that 2 < g < m{D where (g, m) = 1.
Sinee we obtain non-periodic parts for those ¢ which contain some bub
net all prime factors of ww, we may write

(1.0) Zlm =ZI(w)jg" M = Q/g”+R/q”M

where ZI{w)[M = Q-+ R/M with I(u) some positive integer, and Q =
is the set of » digits in the non-periodic part. We shall call R/M < 1 in
lowest ternis the “asscciated” fraction when Z/m is represented in a hase
sueh that (g, M) = 1 since M contains all the residnal prime factors of
s not contained in g.

Now if the associated fraction R/JI is still of Type A, then Z/m is
{4, ¢)-normal in all such additional bases g, i.e. those that confain some
but not all prime factors of m. The essential point is to select those prime
factors in the choice of ¢ which leaves behind in the associated fraction



