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We have obtained the following theorem:
TaEOREM 4. If there exists 2 positive constants d and f§ independent
of n such that

(3.5) 5 < gy (M) [8(n, M) < B

1
for m =1,2,... when {g;m)>1 and §{n, M =2 a0 (MY such that

ta=]

g contains some but not all prime factors of m, then (g, m) in Theovem 3

is a transcendewtal of the non-Liouville fype.

One can eagily see that the same boundedness condition as in [2, Th. 2,
. 247] obtains as a requirement for the franscendental non-Liouville
character of z(g, m) since (3.5) becomes [2, (2.46)] when (g, m) =1, i.e.
M =m.
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Non-divisibility of some multiplicative functions
by

E. J. ScourrrELd (London)

1. Introduction. Let f{n} be an integer-valued multiplicative function
with the property that there exists a polynomial W(z) with integral
coefficients such that f(p) = W (p) for all primes p. Further let ¥ (n < : P)
denote the number of positive integers n < # with the property P. Our
aim in this paper is to find an estimate for

Nin < 2 df f(n))

for any integer 4 > 1. An estimate has been obtained by Narkiewicz in
the case when d is squarefree, and we shall be able to derive an explicit
formmula for his constant A of Theorem IT of [B] (see Corollary 1 of Theorem
1in § 5 below). From Thecrem I of [5], it is also easy to deduce an estimate
for N{n < 2: p°t f(n)) for any prime p and any integer a 3> 1; for

a1

N{n<z: p* fin) = ZN(%Q z: pHlf(n))
A=0

(where the notation p*||f(n) means that p* f(n) but p**'1 f(n)), and
an estimate for each term on the right follows from [5]. Thus the result
of this paper will be new in the cases when o is neither squarefree nor
a prime power. '

”
Let d = J| p%, where the p; are distinet primes and each a,>1,
=1

and let S{p, 2) denote the set {n: p*!f(n)} of positive integers. Then
we can state the main result of this paper:
ag—1

TraworEM 1. Suppose that §; = C) S(p;, &) #= O (the empty set) for
A=0

i =1,2,...,7. Then there exist constants B, §, m (dependent on f and d)
with B>0, 0 A<, and m=0, where B, m are defined explicitly
by (31) and (32), such that as = -— co,

() 4f 0 < f < 1,

Nin< s dt f(n)) ~ Bo(log log o)f*{log #f'~;
i) o f =1,
Nin<a: dt f(n)) ~Bax, where B<1;



e e e AT

288 . E. J. 8courfield

(Gii) if g =0, m > 0,
Nn<m: df f(n)) ~ Bw (log log &)™ " (log )~
(iv) if § =0 = m,
Nin<a: df f(n)) = 0(@"?).

In proving this result {in § § 4 and 5), we shall nse an indirect argument
and apply Narkiewicz's resulty- from [5] and [6], which we shall stato
in Theorem 2. From these results, we shall also be able to deduce fairly
easily an agymptotic formula for

Nin<a: pfit fin) for i =1,2,...,7)

(see Theorem 3), a quantity that clearly does not oxceed N{n << a:
atfim).

In his papers [5] and [6], Narkicwicz has studied extensively the
problem of estimating N (%gw: d ] f(n)), where 4 f{n) means that
d is & wnitary divisor of f(n), so that d |f(n) but (d, f(n)/d} = 1. Thus,
in addition to raising the question considered in Theorem 1 above, it
is & natural step to ask next whether one can obtain an asymptotic formula
for

Nin<w: 4| fin),

& problem considered further in Theorem 4. The quantity & (n< o d|f(n)

is obviously related to N (fn <o at f(fn)) by the formula
(1) | Nn<o: @) fm)+Nn<sa: dt f(n) = [#].

Narkiewicz’s paper [5] sought to generalize a result [9] of the present
author in which an estimate for

Nin<o: p*|f(n) (631, p prime)

was obtained in the special cases when f(n) it Buler’s function p(n) or
one of the divisor functions defined by

T(R) = 21, g, (n) = Zd” (v a positive integer).
Cdn dlm
Previougly, in [7], Rankin had considered the amalogous problem of
estimating N{n < #: pt o, (afa,)). It was shown in [7] and [9] that in some
cages an improvement could be obtained in & result of G. N. Watson
111] that gave the bound

(2) N(ng #: 4t 0,(n)) = O (log 2)~Y/r(®)

when » is 0dd. We shall see in § 7 that, by appealing to Theorem 1 of this '

Paper, we can replace (2) by an asymptotic formula in all the remaining
cases, and in addition we shall consider other applications,
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In § 8, the last section of this paper, we shall obtain for most y the
result analogous to Theorem 1 for the generalized divisor function o, (0, %)
defined by :

o, (n, 7) = Y y(d)d,
din
where » is a positive integer, y is a real non-principal character (mod Q)
for some fized @ > 1. ‘We considered the same function in [16], when
we extended Narkiewicz's result [5] to cover a slightly more general
clags of functions that included o,(n, 4), and dednced an estimate for
Fin<ao: pYio,(n, 1)

r
2. Some notation and preliminary results. As above, write d = Tl»,
where a; > 1 for each ¢ and the p, are distines primes, and les  *=!
D=1011?2~-Pr: 4 = (ay, ayy..., &),
and more generally let
A = (A1 Aoy cavs Ay)

where Z;, 4, ..., 4, are non-negative integers; in the following pages,
A; will satisfy 0 < A; <@ for i = 1,2, ..., . In particular, we shall denote
the ordered r-tuples (1,1,...,1), (0,0,...,0) by I, O respectively.

If @ is a unitary, divisor of d (' || d in the above notation), so that

!
' @,
d = l Ipi;%
=1

where the primes p,, Pigy -3 Py (In this order) form a subséquence_of
the finite sequence gy, Ps,..., P, then let :

D ==pypypy, A= (@) Gigs -y ag)y A = (A, Ay ey Ayy)

We shall use the notation ' < A’ tio mean that 0 < Ay < g forj =1,2,...

<oy I, 50 that >’ stands for the sum over all such ordered sets A’ with
AP
& similar meaning for 3. If ' = pft for some ¢ (1< < #), then 4
A<Ad

= (@}, :\" = (%;) and for convenience we shall denote these throughout
by a;, 4; respectively. :
Lot
(3) S(D', A') = {n: p| f(n) for each p,|D'}.
Then in particular
8D, 4) = {n: @] f(n)}, 8D, 0) = {n: (qfn)) =1},
and, as in the statement of Theorem 1,

8(pss 3) = {n: pHif(n)).
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Define
1 it me S(D, ),

G(D’.A; " :l(} otherwise
(so that a{D, 4;7) =1 if and only if & || f{n));

1 it pit fin)
0 otherwise

. fOT?}ﬂl,Q,..-,‘?",
B(D, Ay n) =l

(defined provided A > I, where this notation means that A; = 1 for cach {);
ki
1 if Bt f(n
0 otherwise

(defined provided that A = 0). Since F i multiplicative, f(1) =1 and
hence clearly

a{D,0;1) =1, a(DA;1)=0 if A0,

B(D,4;1) =1, ¢(D,A;1)=1 for each 4.
We observe also that a(D, 0;4) = 1 if and only if (D, f(n)) = 1.

Lenma 1, For each n =1,

() B(D, Ayn) = Y a(D,d;n)
A<d
(i) o(D, dsn) = — D p(DY(D, A5 n),
’ v ‘
el

where u 1s the Mébius function.
Prooi. Since p*4 f(n) if and only if one of

ot f(n), TR Sl F((

. holds, (i) follows immediately.

Now consider (ii}. From the definition, we observe that

1 dlfm),

IelBdsm) =10 g at fon)

icm
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Clearly 4 |f(n) if and only if pfi|f(n) for ¢ =1,2,...,r, that is if and

only if 1—¢(p, a3 m) =1 for ¢ =1,2,.. Henee
(4) o(Dy Asm) =1— H —6(pi; a5m) = — Y w(D) [] ey, ai;m).
7D Bl D
D'l
Moreover [ o(p;, ai;av;) =1 if and only if pfit f(n) for each p,] D,
B0

and hence, by definition, if and only if b(D’, 4';n) = 1. Thus

[ e(p: ain) = (D', 45 m),
200
and hence the result of (ii) follows from (4).
COROLLARY 1.

(D, I;ny=a(D,0;n).
COROLLARY 2. :

nzT

e(D, A;n) = 2#1)) D aD, A5 ).
DD Al A’
¥l
Let
N (D A5 &) = Y a(D, 45m) = Nin< 2 plif f(n) for each p, | D)

(80 that, clearly, 4 (D', A'; @) = 0 for all » i and only if §(2, 4') = @)
then we have

COROLLARY 3.

Zb(D,A; n) = N{n <o pfif f(m) for 4 =1,2,...,7)
L
= Y H (D, A; ).
A<d

COROLLARY 4.

De(D, A;m) = Nn

T

<o: 4 fin)

== D uD

DD A’
Dizl

N(D, A5 2).

These Corollaries follow immediately from the Lemma. Sinece- an
estimate for 4" (D, A ; ») is given in all cases by Narkiewicz in [5] and [6],
it follows that we can formally deduce an expression for the sums of
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Corollaries 3 and 4. However further discussion (given in §§ 4 and 5)‘ ig
needed hefore we can obtain the precise order of magnitude of th? (101’111.11-
ant terms in this expression. Since in general the sign of w(D") varies
with D', it is clear that in considering the sum of Corollary 4, we have the
added dlfflculty of determining whether or not the LGIIIH A, A m)
with the greatest order of magnitude cancel each other out.

The following Lemmas will be needed later on in the proof.

LeMMa 2, If kb is an indeger > 1, them as » — oo,

) , p(k)
M) Z.: L~ k 5{:,.
(K1
] vy
ox | ~ B2 —
() Z ) ~ b= !)-EJP+1
. : (n,.'axl :

These results follow, for example, from Lemmas 3.4 and 5.2 of [1],
or can be deduced directly from well known results.

Let &, &, x denote positive integers with k> 1 and (h, k) =1, and.
let m,(h, k; z) denote the number of squarvefree positive integers n < @
of the form

(3} o= fs... Gy Where gy =h(modk) (i=1,2,...,x%),

and where q,, ..., g, are primes; thus » has exactly » prime factors that
are all different and all lie in the same congruence class as & (mod k).

LeMyma 3. If © 2= 1, then as o — oo,

~ ((x=1)) o (k)

This is a special case of "u. regult of Delange (Théoréme 28 of [2]).
The pmtmular cafe b =k == 11is also estabh&;hed Eor example, in Theorem.
437 of T4].

7, (b, ;) (log log )™ (log @)™

3. A discussion of Narkiewicz's results. Firgt of all we sof up the
notation needed in order to state Narkiewicz’s results, and then wo inves-
tigate further some of the constants that appear. Where possible, we vhall
nge the same notation as Narkiewicz. We recall that », I}, A were deﬁmed
in §2, and that 8{D, A) is given by (3).

We define the constant M (D, A) whenever S(D, A) = @. If 8(D, 0)

#@, let M(D,0) =0. However when A # 0, we need gome rather.

eumbersome notation in order to define M (D, 4); (as Narkiewiez oxplains,
this complication arises because (D, 4;n) iz not in general a multipli-
“cative function of n}. Let R{D, A) (4 # 0} denote the set of matrices
T = (ty) with r rows and an arbitrary number m of columng 7', w1y

icm
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whose entries are non-negative integers that satisfy the following condi-
tions:

, (i) none of the columns 7,

ing of zeros);

vy Ty, 8 the column O (comsist-

mn
(li) 2 t‘LJ = /’L,; for g = 1, 2, ' ¥,
f=1
(6) (iii) the columns of T always occur in a “lexicographical” or-
der, obtained by assuming that identical columns are adja-
cent to each other, and that otherwise for each pair i, 1
with i 3 j,T; comes before T; when one of the following holds:

tm < t]j; tlt' = tlj and

<ty

ty =%; for w=1,2,...,7r—1 and by << Ty

For any column T, = (t3) of r elements, let u, = n Pl and

i=

let ¥ (1;) denote the number of integers @ that satisty

1<o<uy, (nw) =1 and H D W (3).
Thus, in parficular, if D is a prime p, so that r = 1, T}, has one element
t (say), w, = p*" and N(T,) (= N (1), say) is the number of integers z

satistying
I<e<p™, pte  and ') W(z).
In this case we define
{7 v —=inf {t: N(¢ >0}
i1

if the set is non-empty, so that p| W(z) for at least one ¢ coprime to p;
then clearly if p1 @, either p{ W (x) or p | W(z), and moreover p*|| W(z)
for at least one & coprime to p.

Returning to the general case when D hag » factors, let (D) denote
the set of all possible columuns 7', = O for which ¥ (T,) > 0. For any column

Ty, = (Iy) of + elements (regarded here as an r-tuple) and any prime g,
let '

18

H(-D TMQ? )={

a(D, Ty; g )Q"”}{ 3 a(D, 0; qi’)q—js}—l
i

F=

”
o

and for any Le B(D, A) with columns T, let

® A(T;s)aZ*IQ}H(D,T@}; 455 8)

(Res > 1),
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where T, Ty oo L) denote all those columns of T' that do not' li?- in
D) a.né where 3 denotes the sum over all ordere(-I sets of distinet
Primes gy, Gay -+ry 4p)y and let AT, 8) =1 if the sum is empty (so that
T, @(D) for every column T, of T). Denote by R, (D, A) the set of those
rontrices T'e RUD, ) for which 4 (T, 1) % 0. It R (D, A) 5 @, let M (D, A)
denote the greatest possible mumber of columbs Ty« Q(D) of any
TeR,(D,4), so that M(D,4)=0, and M{D, /.1:) =0 if @D =@a.
Tinally let Ry (D,A) denote the set of thoge matrices T'e 1\31(.1),_/‘1‘) that
nave exactly M(D,A) columns Tye @(D); clearly Ro(D, A) s By(D, 4)
< R(D, 1), and By(D, A) = @ implies B, (D, AY = @, so.that £y(D, A) = %]
if and only if 4(T,1) = 0forall Te R(D, A). Thig completes the definition
of M{D, ) when A # O. .

Let X(d) denote the numper of integers @ satisfying 1 o< d and
[W (z), d) =1, and let

(9) a(d) = X (d)/p(d).

We are now in a position to state the main resulty of Narkiewicz’s papers
(51 and [6]; these give an egtimate for

K (D, dj ) = D a(D, 4;n)

in the cases D prime, D composite, respectively, for any 4 = 0.
THEOREM 2. ‘
() If 8(D,A) =@, ¥ (D, A;m) =0 for all =, and if A0,
8D, 4) =@ if and only if By(D, 4) = @.
Suppose that S(D, A) = @; then as x— oo
(i) if a(d) # 0,
(D, A5 8) ~ 04(D, A)z(log log 2)MP ) log 2)* ¥,

where 0D, 4)>0;"
(iii) if a(d) =0, M(D, )0,
A (D, 4; ) ~ Cy(D, A)z(log log z)MP-0"Ylog a)~,

* where Cy(D, A)> 0;

(iv) 4f a(d) = 0 = M (D, A), there exists e{d) > 0 such that for all
sufficiently large w, ‘

0 < A (D, A7) = 0z,

CoroLLsRY. If 8(D, A) # @ and a(d) =1, then M(D, 4) =0 and
N(D, Ayx) ~C (D, Ayz, where 0<0(D, 4)<1.

- for 1 =1,2,...,r. Thus we have
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This Corollary is an immediate consequence of case (ii) of the Theorem;
for clearly A(D, 4;2)<e, so C(D, 4)> 1 iy impossible. Moreover if
a(d) =1, (W(=), d) =1 whenever (z, d) =1, and so N(T)) = 0 for any
T, # 0, whence (D) =0 and M (D, A) = 0.

Our next objective iz to obtain for later use further information
about some of the quantities in Theorem 2, First we obgerve that if 8(D, A)
# @, then there exists #, such that 4 If (n,) and it follows that S{p,, a,) = @

Levwa 4. If S{D, 4) =0, then S(p;, a;) #@ for 1 =1,2,...,7
Hence if 8(p,, a,)= G for one prime p,| D, then §(I', A')= @ for each D'| D
for which p,| D'

(However it does not follow that the converse of this result holds,
for it might happen that 8{D, 4)= @ whilst S(p,;, a;)* O for i=1,2,...
ceey 1) .

LeyMA B, a(d) is multiplicative, and

a(d) = a(D) — ]_T](l— ji(fii),_.

i=1

where for any prime p, 8(p) is the number of integers @ satisfyingl Ko< p—1
and p| W(x).

Proof. a(d) is defined by (9). It is an exercise in elément&ry number
theory to prove that, since #1 (2) is a polynomial in 2 with infeger coeffi-
eients, X(d) is mmultiplicative and

_ X{p% = p*'X(p), X(p) =p—(0(p)+1).
The result now follows from the well known properties of ¢(d). We observe
that a(d) depends on D but not on the r-tuple A.
CoroLLA®RY. For all d, 0 < a(d) <1 and

(i) a(d) = 1if and only if 6(p) = 0 for all primes p |4, so that (W(m), d)
= 1 whenever (z, d} = 1; : '

(ii) a(d) = 0 if and only if 0(p) = p —1 for some prime p|d;

: : g
(iit) max «(D) = max ¢(p) = max (1 —_ _ﬂ)
gg)l D D p—1

" Thig i an immediate consequence of the lemma; the last part follows
from the fact that if p+ IV,

0< a(pD) = a(p)a(D) < max(a(p), «(D)) < 1.

. We recall that M (D, J) was defined before the statement of Theorem
2, and that M (D, A) is not defined unless §(D, A) = O.
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TEMMA 6. For each p;| D with a(p,) # 1, define v, by (7), m@d lg
2 = [(a;—1}/t;], and pub %; = 0 when a(p,;) = L. Suppose thot

8= J8(D,A) #0

A< A
and let
I{d) = max M(D,A),
A<cd
S(D, A28
Theén

(i) if a({d) =1, i(d) = 0;
(i) if 0< a(d) <1, Ud) = 3 %3
(i) ¢ a(d) =0, 1(d) = min .

Ly
a(pg)=0 ’

Proof. (i) It follows from the Corollary to Theorem 2 that if a(d} =1
then M(D,A) =0 for all A< 4 such that S(D, A) =@, and hence
Ld) = 0. : |

(ii) Since 0 < a{d) < 1, it follows from the Corollary to Lemma 5
that a(p) > 0 for all p|d and that «(p) << 1 for at least one prime p!d,
so suppose without loss of generality that o(p) <1 for 1<4i<j and
a(py) =1 for j < i< r; then v; is defined for 1 <i<g. I8 T = (fy) # €
i§ & column such that :

tg =7, 00 0 for 1Cigy), f5 =0 forj<ism

then N(T,) > 0; for we can choose @; for ¢ =1,2,...,7 30 that p,{ o
and pks| W{z;), and then if 2, is a solution of the simultaneous congruehee:
# =, (mod piTl) (i =1,2,...,r), it is clear that x, contributes 1 to ¥ (T}
T, however, 0 < t; < 7; for some 4 << j or ¢, > 0 for some ¢ > j, then fo
that value of 4, pix| W (2) for no  coprime to p; and so N (1)) = 0.

2

Assume first that % = Y x,> 0, so that at least one »x; is non-zero
[ .
Let 7" be the r x » matrix defined by T* = (), where, if 1 <1 < j, the
ith row of T* has »; elements equal to 7; and the rest equal to zero, and,
i j < 4 <7, the ith row of T" consists entirely of zeros, where each column
of T has exactly one non-zero element, and where the columns of 17
are in a lexicographical order as deseribed in (6 (iii)); thus

T e E O e — o —ay <R — i — -ty
3

tgk= ’ and 1%%(\:3,
0. otherwise.

BE- the remarks in the previous paragraph, N(T}) > 0 for each columi
Ty of I%, and 50 The @(D) for k =1,2,..., » Clearly (see the sentenci
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containing (8)) A (T", 1) = 1, and T*¢ B (D, 4*) where A* — (%177, #gTay »..
<oe3 %755 0y 05 0), 80 that A" is an r-tuple satistying 4* £ 0 and A% < A.
It follows that R,(D, A") # @ (whence 8(D, 4" # @ by Theorem 2(1)),
and that Ud) > M (D, A4*) zx.

To complete the proof in the case » == 0, we have to show that
MDA <« \_vhenever 0 # A< A and R(D, ) #@; (we recals that
M(D,0) =0 if S(D,0) +#@). It follows from the last sentence in Ehe
first pavagraph that if T has at least »-+1 columns in @ (D), then for ab
least one ¢ << j, the sum of the elements in the ith row is > (o +1)7; > a4,
go that T'¢ |J R(D,A). Hence

Od< A
d) = max M(D,A)< x,
A<A
B(D,A)#E
whence 1{d) = .
It 2 = 0, it follows similaxly that if T« (J R, (D, ), then no eolumn

OstA<A

of T b-fa‘long:s to @ (D}, and hence I(d) = 0. This completes the proof of (ii).
(iii) Since a(d) =0, a(p) = 0 for at least one prime pid; suppose

without logs of generality_ that a(p;) = 0 for 1 < i< j and that a(p;) > 0
for j <¢<y. By Lemma 5, if a(p;,) = 0, ther p;| W(z) whenever b1 2.
Hence by the remarks in the first paragraph of (ii}, it T, iz the colunin
(tz) and if ¥ (T,)> 0, then ' '

=1 for 1<is(j,

tpy =0 i j<i<rand ofp) =1,

=0or =z i j<i<rand a(p)<l.

The proof is now similar to that of (ii). Tet », = min x,. If %, > 0,

. C1=cied
let T be the 7 x », matrix defined by

T e T
Ty Ta

H
VAR 3 7 7
0 0
0 ¢

Then each column of T% belongs to &@(D), ko A(T* 1) =1, and T*
e By (D, A%), where A% = (71, ..., %7, 0,...,0), an rtuple such that
0 #4* < 4, and Ro(D, A") @, Hence 1(d)= M(D, A"} > ,. T T
hag more than x; columns in @ (D), then the sum of the elements in the
tivst row of T i8 = (%, +1)7; = a, and so T¢O LZJ AR(D, A). Thus H{d) < »,,
#A< . .

4 — Acta Arithmetica XXIL8
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whenee 1{d) = #,. If % =0, no column of T Dbelongs to &(D) when
Te () Ry(D,A), and bence 1{(d) = 0. The result of (ill) now follows.

Od<d
4. Tirst stage of the proof of the main results, Our aim is to obtain
estimates for the sums
Som, A5y, D e(Dydin)
e nET

trom Corollaries 3 and 4 of Lemma 1, Theorem 2 and our other Lemmas.
Tirst of all, we obgerve that we can assume that for each prime p,|.D,
. ag—1L
(10) | — (8, &) #0  (where pH{d).
3.1:--0
For if not, we can write D = D; D, where Dy =1, Dy> 1, and 8; @
for each p; |D1, 8; = @ for each p,L[_D Then by Lemma 4 and Theoren

2(i), # (D', A'; ) = 0 whenever D' (D but D' Dy, and A" < 4A'. Hence

from Corollanes 3 and 4 of Lemma 1,

Zb(D, A;n) =0 whenever D, > 1,

<L

(11) No(D, Ayn) = — D) w(dy D, A o)
nez D’Il?l Al A’
Dl
oDy, Aygn) i Dy>1,
= =
0 it Dy =1.

Thus we can assume from now on that 8; =@ foréi =1,2,...,7
From Theorem 2 we can dednes immediately an estimate for the sum

# (D, A; @) = 3 b(D, 4; n) = M H(Dy Az @)
NS A<

by Coxollary 3 of Lemma 1. Tn the Theorem below, a(d) and ¥(d) are the
numbers given by Lemmas 5 and 6.

THEOREM 3. (1) If 8(D, A) =@ for every A< A (incuding A = 0),
then e '

F(D, A, 2y =0 for all 5.
Suppose that \J 8(D, A) #@; then as 5~ oo,
AZd . _ .
(i) if a(d) #0 -
2(D, 4; ©) ~ By (D, A)a(log log a)fV(log z)*@~",
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where _
Ey(D,A) = ) Cy(D,4)>0;
A<
(D, A)=I{d}
(ii) if e(d) =0, Ud} == 0,

L(D, A; ) ~ By(D, A) z(log log )@ *(log z)7,
where . .
By(D, 4) = D 0D, 4)>0;

'
A d
: M(D,A)=Ua)
(iv) if a(d) = 0 =1(d), there exists =(d) >0 such thai for all suffi-
clenily large '
0< 2(D, 4; x) = Oz,

The sums for #;(D, 4) (j =1, 2) are non-empty by our assumptions
and by Theorem 2 each term is positive, and hence it fo]lows that E;(D, 4)
> 0forj =1,2.

We tu:ln now to the rather more difficult problem of estlmatmg

me D A4 )

(12) #(D, A; E (D, 4;
DD AraAr .
o] S A’]s&ﬁ

nEE

by Gorollmy 4 of Lemma 1 and Theorem 2 (i); since we are assummg
that S; # O (see {10)} for each p,|D, it follows from Theéorem 2 that the
inner sum of (12) is certainly non-zero when D' = p; (i =1, 2, ..., 7).
Our next objective is to determine the terms 4 (D', A'; ) on the right
side of (12) with the greatest order of magnitude. We then have to show
that when we combine these terms aecording to (12), we obtain an expres-
sion of the same (and not of a smaller) order of magnitude as these indivi-
dual terms; this we shall accomplish in § 5.

 Define
(13) Bl = max a{D"), m(d) = max M(D,A);
D nr ED A< dr
Irgl a{D')=f{D)

(we recall that M (D', 4’) is not defined unless S(D', A ;HZI) By the
Corollary to Lemma 5

(14) 0<pDI<1 and (D) =max a(p),

iy
and by Lemmsa 6,
(18) m(d) = max I{d") .
d#

where d° denotes a unitary divisor of d satisfying a(d") = p(D) and -
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U S(D", A"} # 0 (with an obvious notation). From Theorem 2 and
Ao ¥

equations (12) to (15), it follows that
@) it p{D) # 0,

(16)  #(D, A; @) = {B,(D, A)+o(1)}u(log log =y V(log 2"~

where

BD,A) = — M uD) 3 (D, A);
D, D1 Az’
a(D)=#{0) D, Ay =on(d)

(i) if (D) = 0, m(d) 3 O,
(A7) (D, 4; 2) = {By(D, A)+o(L)}a(log log 2)" D~ Ylog #)™"

where
By(D, Ay = — DlaD) Y 0D, A
P A
¥l M(D', Ay =m{d}

(iii) it (D) = 0 = m{d), then there exists #(d) > 0 such that
(18) (D, 4; ) = 05—y,

Clearly, by definition, .# (D, 4; 2) >0 in all cates, and hence it follows
that By(D, A) = 0 for j = 1,2, but it is not clear that these constants
are strictly positive. In the next section we sha.ll prove, partly by an
indirect method, that

BiD, 4y=>0 and By, A) >0,

a;nd.a:n asymptotic formula for 4 (D, A; )} will follow in cases (1) and
(ii} above. We shall consider separately the three cages

0<BD)<1, BD) =1, D) =o0.

~ 5. Completion of the proof of Theorem 1.

Case I: 0 < §(D) < 1. Tt follows frow. (14) that 0 < a(p;) < 1 for
each ¢ and that a(p;) > 0 for at least one ¢ (1 < ¢ < 7); suppose without
loss of generality that’ :

a(_/p{) =pD)>0for 1<i<<y, and afp) <f(D) for vy <isr.
It follows from Lemroa 5 that if D'|D but D’ is not one of 1, py, Pay ...
<oy Pyy them a(D') < §(D), and hence o(D') = $(D) it and only it D’
i one of py;..., p,, in Which case p(D') = ,u(p) = —1. From (10), (15)

and Lemma 8, we have

m(d) = max [(p%) = max »,;
1ir 1:;1:%1'
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suppose without loss of generality that x; == m(d) for 1<i<j and

<< mid) for § << i<, 80 that §(D) = a(p,), m(d) = »,. Then we have

by (16) that :
(19) M(D, 4; ®) ~ By(D, ) a(log log o) (log z)#) =

where ‘
i
=33 Cupni)>0

=1 _e<lhica;
M(p'l.’ﬁt)’z"l

ginee the sum is a non-empty sum of positive terms by Theorem 2 and
our agsumption that §; #@ for ¢ =1,2,...,n

Case II: (D) = 1. In this case, a(p;) = 1 for at least one z, and we
may suppose without loss of generality that

alp;) =1 for I<<i<<f and alp)<1forj<ikLyr,

Let D, = p,p; ... p;; then it follows from Lemma 3 that o(D') = 1 for

any D'|D; but that o(D') < 1 it D'|D but D'+ D,. Let d, = pM...p¥

and in general let d' denote the unitary divisor of & that corresponds to

a divisor D' of D. By Lerama 6(i), if | J (D, 4") %@ and D'|D,, then
A d’

(d'} = 0, and hence by (15) m{d) = 0. Tt follows from (16) that for this
case

(20) M (D, A; 8) = {By(D, A)+o(1)}z
where
By(D, A) = — > (D) 2 D, A
Diff S{D A}—LQ

Sinee clearly .4 (D, 4; %) < w, we have B,(D, 4) <1 in this case, but,
except when Dy is a prime, it is not yet clear that B(D 4) = 0; we
deduce thig from

Lemwva 7.
MDD, A5 2> Y Jum)],

n<w
{n,D))=1

where D, is defined above.

Proof. Since o
M (D, A5 @) = D'o(D, A; )

) SR

and ¢(D, 4; n) and {u(n)| assume the values 1, 0 only, it is sufficient
to prove that e(D; 4; #) =1 whenever (n, D)) =1 and |u(n) =1,
that is whenever » is squarefree and coprime to D, .

Now a{D,) = 1 and therefore by the Corollary to Lemma 5, (W(m), Dl)

=1 whenever (z, ) = 1. Since W(p) = f(p) for every prime p and f
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is multiplicative, it follows that (f(n), D;) = 1 for every squarefrec.integer
n w1th {n, D)) = 1; but if {f(n), Dl) =1, then d,1 f(n) and so certainly
a4 f(n), giving c(D Aj; n) = 1. Thig proves the Lemma.

An estimate for the sum on the right of this Lemma is given by
Temma 2 (i), and hence we certainly have that for all sufficlently large =,

H

(21) M (D, A; x)>3ﬂ”2{”39%}w-

It follows that B, (D, 4)> 0, for otherwise 4 (D, A; ®) = o(z} by (20),
which is false by (21). Thus we have shown that when g(D) =1,

(32) (D, A; 2) ~By(D, A)z  where 0<By(D, 4)<1.

Case III: A(D) =0. Here we have a(D) =0 for cvery .D'|D,
I =1, Hence by Lemma 6 (iii), if d' denotes the unitary divisor of d
associated Wlth the divisor D’ of D, and it | S(D', A) %@, we have
At
Hd'y = min ;.
Ty
DD
in particular, since §; # @ for every p,1.D by (10) and hypothesis, 1(pf)
= for 1 =1,2,...,r. If &' ranges over those unitary divisors of 4
for ‘which {_J S(,D" '_/1*) # @, it now follows from (15) that

A% 4*

m(d) = maxi(d’) = max min »;, = max x,.
a a D 1<y

We may suppose without loss of generality that

#y = Max x,, cwy =y fOT LKA, wp <y fOr i<y
1<isr ’ .
then m{d) = ;. Let D, = p, . - D5 if '| D but D' TDI, then by Lemma
6 (iii) l(d)<,c1 and hence M(D Ay < uy for all A" < 4" for whieh
M(D", A') is defined. It now follows from (17) that if =, > 0

{23) M (D, A; m) = {By(D, 4)+06(1)} x(tog log x)" " (log &)™

where

BuDyd) = — D u(@) 3 0D, A
: DDy Py ’
D'l MDY, A’y =y :

i %, = 0, we have by (18)
(24) (D, Ay 3) = 0@ where £(d) > 0.

To prove that B,(D, 4) > 0 and to find 2 premse value for &(d), we resort
to indirect methocls |
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Lunma 8. Let & == pPth.. pF™" where ©; is defined in (7) and j has
the same signifioance as above; assume that =, > 0 and write = for »,. Then
there ewists b coprime to & such that

M(Dy A5 @)= m (b Ry %),

where m [k, ky x) 5 defined in the sentence containing (5).

Proof. It is sufficient to show that if » contributes I to n,(k, b o),
so that by (5)

{2B) n=gq¢...q, where g =h(modk) (i=12,...,%)

and where ¢, ..., q, are distinet primes, then ¢{D, 4;n) =1, provided

_that we define h suitably.

Since a(p,;) = 0 for each p,| D, it follows from (9) and (7) that =

~ig-defined for 1 < ¢ < §, and hence % is properly defined. From (7) We obtain

that there exists a least integer z; satisfying
1< o, < pptt, pit @ and  pR| W(wm).
We now define & to be a solution of the simultaneous congruences
o =g (mod i) (6 =1,2...,]);

since the s are uniquely defined and (z, p;) = 1, it follows that b ig
unique (mod k) and that (h, k) = 1. Furthermore if z = h(mod k),
Pt W(x) for ¢ =1,2,...,4, and hence in particular for any prime

= | (mod %), p# W(q) = flq) for 1 < i < §j. Thus, since f is multiplicative,
we have that for any »n satisfying (25},

prfm)  for  1<i<i.

Since wr; = 2,7, < 6; —1, it follows that pfif f(n) if » satisfies (25) and
1< i<j, and hence dt f(n), giving ¢(D, A;n) = 1. The proof of the
Lemma is now complete, for we have shown that if % is defined as above
and if » satisfies (25), so that n contributes 1 to =, (k, &r; z) for any & = n,
then » also contributes 1 to (D, 45 x).

From Lemmas 3 and 8, we deduce that if » = %, > 0,

M (D, A5 2) = (20— 1)) @ (k)" z (log log ) (log &)~
for all sufficiently large z, and hence comparing this with (23}, we obtain
(26) _ B,(D,A) >0,

We now turn fto the case », = 0 and (24).
 LmMmA 9. If x, =0,

(27) M (Dy Ay 1) = 0(2).
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Proof. As in Lemma 8, 7, iz defined for 1 < ¢ <#, but since now
%; = 0 for each i, we deduce from the definition of x, in Lemma 6 that
= a for 1 =1,2,...,r. Hence, since a(p;} = 0 for each 4, we have
from (7) and (9) that p%| W(x) whenever p,f « (i =1,..., ), and there-
fore @1W(g) = flg) for each prime ¢4-d. It follows that d|f(n), whence
e{D, A; n) = 0, for each integer n for which there exigts a prime g satis-
fying ¢ |# and gt d. Hence if e{D, A; n) =1, n iy sguarefall (that is
q ||  for no prime g) or ¢|d-for each prime g|/n, and so we obtain

(28) MDD, A5 )< D14+ Y1 =I5 (say),
HED it
nes” diin=gld
W&

where % iy the set of all positive squa}refull integers. By a result of Hrdos
and Szekeres [3],

(29) = M~ (3207 3)e
nala
nes”
T n¢ & and ¢lln = q[d, then # = p, . - Py Where py e Py 1Dy (B
o iy n,) =1 and n,¢%. Hence by {29)
(30) < Y ) 1
Py Py D Py ML
‘.l'.l,leu" .
LB D (py e py)
pil...yz-fll)
Thus (27) follows from (28), (29) and (30). ‘
If we combine (19), (22), (23), (26) and {27), we see that we have
established the result of Theorem 1. The consmnt% B, m of that Theorem
are given by

- (31) ' A = B(D) = max a(p;) = a(py),
: 1<y
(32}, W= m(d) = max x = x
jEa sy
amg)=a(py)

(say), where a{p,) and w; can be obtained from Lemmas 5 and C. _

As we remarked in §1, some special cases of this Theorem wore
known previously, and in partienlar Narkiewiez considered in Theorem
11 of [5] the case when d is squareiree; however he did not obtain explicitly
the precise power of log # that appeared. From Theorem 1, we are able
to deduce Immediately

CoroLLARY 1. Tf d 45 squarefrée. (s0 that d=Dand 4 =1I), 8(p;,, M
=@ for i=1,9,. s 7y and a(py) = max a(p,), then as @ o,

iy
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(1) & 0 < a(p) <1,
JH (D, I; #) ~ Ba(log z)*®0-1;
() if a(p,) =1, '
, HM(D, I; x) ~ Ba;
(iii) #f a(p,) =0,
H(D, I} 2) = Oa'™).
In-(i) and (ii), B = By(D,1)> 0, and in (i), B < 1.

We observe that since @, =1 for all 4, %, =0 and therefore
m = m(d) = 0.

Finally we remark that by using (11), we can eliminate the condition
in Theorem 1 that §; @ for ¢ =1,2, ..., 7, but our constants 5, m in
Theorem 1 are then related to the sum on the right of (11).

6. An estimate for N (n < a: d{f(n)).
TEROREM 4. As -+ oo,

Nn<a: dif(n) ~=

fd .
except 1when Ul S; # @, where 8; is defined in (10), and 1]285 a(p) = 1.
LEe S;&BT

In the ewceplional case, either T = {n: d|f(n)} =@, in which case

Np<a: difn)) =0 for all m,
or

Nn<a: difn)} ~Bz where 0<B <1,

Proof. Apart from the exceptional cage, the result follows immediately
from (1), (11) and Theorem 1, for

Nin<e: alfn) = [@]-No <2 df fn) = [8]—o(z) ~ =

‘Henee suppose that

U 8 #0 and max alp) = 1.
JEZ4 iy
]
Then by (1), (11) and Theorem 1 (ii),
(33) Nn<a: dlfin)) = {1—By(Dy, 4)+o{1)}a
where
Dy= []p:>1, and 0<B,(D,4)<1

IET =, it is clear that
Nr<e: dif(n) =0, Nm<ao: dtfn)) =[], By(D, 4, =1
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Hence suppose that 7 + @; then we must show that By (D, 4;) =< 1.
For this remaining ease, we prove first that if & = inf 7, then
(34) Nla<ae: difa)z D 1.

usfk
(U k) =1

Since T is a non-empty set of positive integers, & exists and e T, and
gince @ >1 and f(1) =1, k> 1. If » i3 any positive integ(s; suc.zh 1:'11:1.11
kln, so that n = ku where (u, k) =1, then gince fis ]‘nultipllcsmlv:e,
a|f(n) = f(&)f(u). This is sufficient to establish (34). From Lemma 2 (i),
we dednee that for all sufficiently large @,

N{n<w: dlf(n)) = o (k)z/(28).

' Itrfollows from (33) that 1WB1'(1)1, A,) > 0, and the Theorem is proved

in all cases. .
COROLLARY. If ease (ii) of Theorem 1 holds, then B, (D, A) < L unless
T =@, in which case By(D, A) =1 and 4(D, 4; 2} = [2].

7. Applications of Theorem L. In this section we consider the specinl
cases of Theorem 1 obtained by taking f(n) to be the well known functions
@{n) (Euler’s function) and the divisor functions z(n), a,(n) {» a positive
integer). We state the results obtained as further Corollaries to Theorem 1.

CoROLLARY 2. (1) If p,>> 2 s the largest prime divisor of d, then as
€= 00

Nip<ae: df pn) ~ Blm(log log m)”l‘l(log )~
where B, = By(D, A) > 0; :

(i) if a =2,

Nin < #: 2°Fp(n)) ~ Bya(loglog2)**(log &),
where B, = B,(D, 4)> 0. '

Proof. Since f(n) = ¢(n) here; we have W(z) = #—1. It is casily
seen that S(p, A} = {m p*|¢(n)} #@ for all primes p and all 1> 0.
To find the constants §, m of Theorem I, defined in (31) and (32), wo
observe that

(a) a(p) = (p—2)/(p—1) by (9) and henco

g =maxa(p,) =1-1{(p,—1)>1—-1/(p,~1) for di>1,
1y
where p, is the largest prime divisor of d; .

(b} since W(#) =x—1 = p (mod p*) is solvable. with pt & for any
prime p, it follows from (7) tha.t 7 =1 for each prime p and henee (sec
Lemma 6) »; = a@;—1 whence by (32)

m = MAX x; = = a;— 1.
JE<E )
U(ﬂﬁ)—“(ﬂﬂ

The resulf of the Corolla.ry now follows irom Theorem 1 (i) and (m)
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We note that for the case omitted in the above Corollary, -we have
that ¥ {n< a: 21 p(n)) = 2 for all > 2. We turn now to z(n); Corollary
3 (i) below is an immediate consequence of a result of Sathe [8].

Cororrary 3. (i) If  has an odd prime divisor, then as & — oo

Nn<o: dfr(n)) ~Byz  where 0< B, <1;
(i) if a2, '
Nin<a: 2°% o(n)) ~ Byw(log log #)*~*(log «)~*
as & — oo, where By > 0. ‘
‘Proof. From the properties of z(n) = }' 1, we casily deduce that

éln

8(p, 1) = {n: p*llz(n)} # G for all primes p and all 120 and that
Wi(z) = 2. By (9), a(p) =1 for all odd primes p and a(2) = 0, and hence
by (31}, # = 1 or 0 according as 4 has an odd prime divisor or d is a power
of 3, respectively. Thus we only define m (see (32)) when d = 2% and
gince 7 = 1 when p =2 by (7), » == ¢ —1 and so m = a—1 in this case.
The result now follows from Theorem 1 (ii} and (iii) provided that we show
B, <1 when & has an odd prime divisor. We use the Corollary to Theorem
4; gince dir(p?!) for any prime p, T = {n: d|v(n)} # @ and hence
Bi(D, 4) < 1. :

The corresponding result for the case not covered by the above
Corollary, namely ¥{n<2: 21 v(n)) ~ 2™, was obtained in Theomm 4
of [97.

In order to state the result of Theorem 1 in the case when

?

fn) =g, m) =3 & (v a positive integer),
: _ 8m
we need o introduce some notation, which was used also in [9] and {10],
and we shall appeal to one of the Lemmas of [10]. If p is a prime, we define

by {for p #2) and y, by

(35) _ by = (p—1) (v, p--1), p'P|2.
Then we have _ :
CoroLLARY 4. (I) If 4 has am odd prime divisor p sueh that h, is odd,

then as @ — oo,

Nn<u: df o,(n)) ~Bym, where 0< B <1.

(i) If d is mot a power of 2 and if h, is even for each odd prime divisor
of d, the% a8 @ -+ 00,

Nin<o: df 0,(n)) ~ Byaz(log log 2)" (log #) ™,
where B, > 0 and

, -1 .
h =maxh,, m = max[ “ ] (& being defined by p°|d).
Pld P Lyt 11 -

P2 iy
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(ii{) If 622, then as ¢ — oo,
F(n < @ 2% o,(n)) ~ Byw(log log w)**(log z)7h,
where B, > 0.
Proof. It follows from the main results of [7] and [9] that
8(p, 4) = {n: p'llo(n)} =0

for all primes p and all A2 0. Since W(z) = &"+1, we can appeal <
Lemma 3 of [10] to obtain the constants a(p) of (9) and Lemma 5, and
of (7); we deduce that

f1 it p and h, are odd,
alp) ={1— .(m"”p“l) = 1__1_- if pis odd and h, is cven,
»—1 h)]

0 £ p=2,
and that _ '
v+l i pis odd and h, is even,
1 it p=2,

7 not being defined when p and &, are odd. Ag before, let d = piipfe ... py
and suppose that if d is even, p, = 2; by (31) and (32) we have
{i) if 4 has an odd prime’ divisor p such that h, is odd, then § =1
(ii) if p, is odd, if &, is oven for every odd prime divisor » of d, anc
ik, =hy fori=1,2,...,§ and hy, < by for j<i< s and p; odd (s
that h, = max h—”i)’ then

jEw St
pyodd

-1
IB:lw(hﬁl) ], mmfll?‘iliyj)+1:|

(iif) if p, = 2, so that d = 2%, then f = a(2) =0 and m = a4y —1

Most of the result of the Corollary now follows from Theorem 1

It remaing to show (by using the Corollary to Theorent 4) that B, <
in case (i), so that we must verify that 7 = in: dlo,(n)} G, Bino
g,(n) 18 multiplicative, it is sufficient to show that for each p!d, ther
are infinitely many primes ¢ such that p|o,(g*) for some > 1; for w
can then construct from these prime powers ¢* an integer n satistying
@la;(n), whence T 3 @. Now if ¢ =1 (mod p), ¢ prime, then

6" ) = 1+ + "+ ... + 4P == p = 0 (mod p);

by Dirichlet’s Theorem, there are infinitely many such primes ¢, Thi

complefes the proof of Corollary 4 of Theorem 1.
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Some special cases of the above resalt were obta.med in [7] and [9].
In [7] Rankin dealt with the case when 4 is a prime, including the case
d = 2 (not given in Corollary 4 above) when he obtained

Nn<a: 21 a,(n) ~ (127122,

an application of Theorem 1 (iv) of this paper in the case d = 2 would
have given a less precise result, In Corollary 1 on page 280 of [9], we
obtained the result above when d is a prime power, and in Corollary 2
there we established the result of Corollary 4 above in the cases when
(i} hy is odd for exactly one odd prime divisor p of d;
(ii) %y is even for all odd prime divisors p of d, and (see (35))

by =y, L0;—1)[(yy,+1)] = m

hold simultaneously for exactly one value of 4.
Finally in this section we observe that Oorollary 4 (ii) and (iii) above
is an improvement on G. N. Watson's result stated in (2), namely

(36) Nin<az: df o,(n)) = Ofz(log 2)*@) (v 0dd);

the condition » odd implies that h, is even for all odd prime divisors p
of & and hence Coroliary 4 (i) does not apply. In fact (36) gives the correct
order of magnitade for N (ngw: at O‘,,(ﬂ)) only when d =p or 2p and
(v p—1) = 1, where p is an odd prime; for in all other cases either 4 = 2°
for some a =1 or k< p{d), and hence Corollaries 4 (i) and (iif) imply

N(n<a: df o,(n)) = o(v(log 2)~%9).

8. A generalization of Corollary 4 of Theorem 1. In [10] we showed
how a slight generalization of Narkiewicz’s result in {§] could be applied
to a generalized divisor funetion. In this section we shall obtain the result
analogous to Theorem 1 for thig same function by a similar process. First
we need sorne definitions. '

As in the previous sections, let d = plap®,.. po
a given integer > 1 and write

(37 Q' =@ ” :pg.i - Q[S, u =0 n_,pmn:x(a,, ey _ 04,
=1

say, where (@, d) =land e;=0 ({ =1,2,...,7), so that Q" is the Le.m.
of @' and d. Let y denote a real non—principfhl character (mod §'), and
write y = z, %, where y, is a real character (mod @) and y, is a real character
(mod 4); then at least one of y,, y, is non-principal and we shall assume
henceforth that y, is non-principal (so that @ > 1). In this section we shall
be considering a generalization of the usual divisor function, namely

(38) S )= > 2(0)e”

aln

; further let Q' be
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where ¥ is & positive integer, and we shall obtain an estimate for N (n ( <
a1t v, (n, 1)) by applying a slight generalization of Theorem 2. For any
prime p, g, (9, x) = 1+ z{p)p" and bence the polynomial W (a) associated
with o,{n, ) takes the form
Wi{x) = 1-x(x)2",

where the value of y(#) (which ig real by assumption) depends on the
value of x (mod §'). Thus we shall need a generalization of Theorem £
in whieh the coefficients of the polynomial W(x} depend on the valuc
of 2 (mod Q). The form of the result required iy very similar to that statiod
in Theorem 2 but we shall have to modify some of the constants involved

Let f(n) and W{z) be as described in §1 apart from the faet that
the coofticients of W(z) are dependent on the value of @ (mod §'). Lot
X4, Q') denote the number of integers  that satisty 1 < 2 < @', (, @) =1
and {W(z), d) =1, and let

(39) - ' a(d, @) = X(d, @) /p(Q
Similarly for any columan T, = (i) of # elements, let N (T,,Q") denotc
the number of integers x that satisty

: r o
1<a<Q [ pr=eeintl,  (5,Qa) =1 and [ [l Wiw);
f=]1 qe=]

define @{D,Q) (D = pyps... P,) to be the set of all possible column:
T, +# O such that N (T, Q') > 0. The constant M (D, 4; ') is now defined
in exactly the same way as M(D, 4) in §3, but using the quantitie:
defined above instead. of a(d), N (T,), O@(D). It is easily verified that the
result of Theorem 2, with a(d, @), M (D, 4; @) replacing a(d), M (D, 4
Tespectively, remaing valid in the situation deseribed here. A particula
example of this resulb oceurs when we take f(n) = o,(n, y); in this casc
it follows from Theorem 1 of [10] that

B(p, ) = {n: PA”Uv(%: 0 =0

for all primes p and all 4= 0.

We now nge this modification of Theorem 2 and the method used
t0 derive Theorem 1 in order to obtain an estimate for N (n s o df o.(n, x))
Not all the Lemmasg ugsed to establish Theorem 1 remain valid for Wz
=1-yz{®)s"; in partenlar the result of Lemma B tust be modified
whilst Lemmas 1 and 4 continue to hold. We recall that &, and y, wer
defiried in (35); o replace Lemma 5, we have

Lmmya 10. If d 45 odd,
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(where ow empty product has the value 1), whilst if d is even,
a(d, §) =

Prooi., We use the results of Lemmas 3 and 4 of [10] and ideas from
the proof of Lemma 5 of that paper. Since y i§ a real character (mod @),
when (z,Q") =1 we have W(z) = 144" according ag g(z) = +-1. We
see from (39) that we shall need to obtain X (d, '), the number of integers
@ satistying 1 < & < Q", (#, Q") = 1 and either y(z) = 1 and (142", d) = 1
or x(x) = —1 and {1—&",d) = 1.

By Lemma 3 of [10], the number of mteger% raatifyingl <aegp—1

1
- and pt (¢" 1) is p—1 i p and A, are odd, (p—l}(l _T) it p iz odd but

n
Fy, 18 even, and 0 if p = 2; hence the number of integers z satisfying

1

l<e<p’, ptoe and pt (& +1) is ¢(p?), gv(pg}(l—f), 0 respectively
’ ?

in the three cases. Similarly by Lemma 4 of [10], the number of integers

P . 1
@ satisfying 1 < 2 < p% p1 wand p1 (@ -~ 1) is ¢ (p") (1 —h_) or 0 according
. ey
as p is odd or even. Taking p = p;|d and ¢ = g; = max (a;, ¢,) With
i=1,2,...,7 and recalling that 4= pfipe...pl, we easily dedunce
that the number of integers x satisfying

MiKe<d, () =1and (£F+1,4) =1 is
i 1 ;
A3 ][ (1_71_) it div odd or 0 if d iz even;
T=1 Py

(40) h»p even
(ii) 1< <4, (@ d) =1 and (#"-1, 4) =1 is

. * l ) .

"P(él)n (lmm];:) if dis odd or 0 if d iz even.

£=1

We now argue as we did in the proof of Lemma 5 of [10]. We recall
that y = y;%,, Where g, i3 a non-principal real character (mod @) and
%2 18 @ real character (mod 8), where @, & are defined in (37) and clearly
d| 4. We determine first the number of integers z satisfying

(41) 1<e<Q’, (1,9 =1, gz =1 . and (41,8 =1

we note that (2"+1,d) =1 is equivalent to (2" +1, A) =1 sinee p|d
if and only if p{ 4. Let #, be a fixed integer for which 1< 2, < 4, (2., 4}
=1 and (#{+1, A) = 1; then the value of y,(x,) iz already determined
and is mon-zero. Since (¢}, 4) = 1, the integers y satisfying 1<y < @4,
(¥, @) =1 and ¥ = 4 (mod 4) form a reduced residue system (mod @),
and hence, since g, is real and non-principal, y;(y) = g,(»;) for exactly
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tp(Q) of these integers ¥. Tt follows from this and (40 (i)) that the numbe '
of mteger% » satisfying (41) ig

+

1p(@)p(4) ” (1#-m~) if d iz odd or 0 if 4 is even,
1 .

1 b,
h@ ‘iven

Similarly the number of integers @ satisfying

1<2<9Q7, (2, @) =1, g(» =—1 and (@ =1, d) =
is

%¢(Q)¢(d)]7 (1 _%) it ¢ is odd or 0 if 4 is even,
==l 2y

¥

on using (40(ii)). Hence by (39), since W () = 1+yg(x)a”,

w1228 12+ [T

i=1 g i=1

it d is odd, and if 4 is even a(d, ') = 0; the required result now follov
ginee (g, A) = 1. _

We observe that a(D, Q') = a(d, Q). We note also that the resv
of Lemms 10 remaing valid if we replace & in the statement by a divis
of 4 and make the corresponding adjustment in @, 8§ and 4 whilst leavh
) wunaltered, for ¢ will be replaced by a multiple of ¢ and 80 y, will ]
replaced by a character that is also non-prineipal. In general howevt
for Q' fized, «{d, Q") is not a multiplicative function of d, unlike the qua
tity a(d) of Lemma 5. We can easily deduce from the 1esult of Lemma
that if d,1d, dy|d and (dy, dg) = 1, then

a(dydy, QI) < afdy, Q'):

the mequa;hty being strict if d, is odd and d, > 1. Hence, delining 18
in an analogous way to (13) (see below), we have

 CororLarY. If 4 has an odd prime divisor, and D =100 ... ]
then

ﬁ(D) = maxa(D', Q’) = ma,Xa(p“ Q’) — TNAX (1_ W ),
oo lsicr Lszisr h,
D'#1 Dy QJ.L#?‘

where p, =} or 1 according as hp 8 odd or even; tims 0 < g{D)y <1
ais o power of 2, then §(D) = 0.
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We also need to evaluate the constant eorresponding to m{d) of
(13), namely the constant

m(d) = max M(D,A; Q) = max M(p;y 45 Q)
DD A< 4’ .
alD,Q')=(D) a(p‘LQ) ﬁ(D)

gty

by the remark before the Corollary above; since, as we have already
noted, S(p;, &) # @ for each p; and 1;, it follows that M(p;, 4; Q)
is always defined. We have

-LEyyMa 11, If @ has an odd prime divisor,

m(d) = max [a"_l], |
=y ypi"l—l

a(p;, @' y=8(D)

whilst if a =1, m(2%) = a—1.

‘Proof. The proof is similar to that of Lemma 6 of this paper. Define
z ag in (7), so that v i8 the least positive integer such that there exists
a positive integer z satisfying p tw and p*j(L+z(»)2’), and then we have
from Lemma b of [10] that 7 = y,+1if p is odd and r =1 i p = 2. By
considering, for p odd, the row matrix T with [(a--1)/{y,+1)] equal
elements with value y,-+1, we see, by the arguments used to establish
Lemmsa 6, that

max M(p, 4; Q) = [{a—1)/(y,+1)],

[
and the result of the Lemra follows when & has an odd prime divisor.
Similarly if d = 2%, we can proceed ag above but with 1 replacing y,+1
everywhere.

By taking f(n) = 0,(n, ) (see (38)) in (12}, by recalling that S(p, 1)
= @ for all primes p and all 13> 0, by using the modification of Theorem
2 deseribed above and by appealing to Lemmas 10 and 11, we can deduce
the following result by the method unsed to prove Theorem 1 (i) (case I
of § 3) when d has an odd prime divisor, and by a similar method when
d=2%az=2:

TasoreM 5. Let y, (defined after (37)) be a non-principal character,
If & has an odd prime divisor, then as & — oo,

Nin < a: afa,(n, 1)) ~ Bye(log log 2)™ (log @)™,

where
3 ; . a;—1
B, >0, ¥ — min ﬂ, and m(d) = max [ - ]
b i By, 1icr LYp,T1
Py P

wilhp =il

8 — Acta Arithmetica XXILJ
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If a2, then as @~ oo,
N < w: 2% 0, (ny %)) ~ B,z (log log @)* *(log &),

where B, > 0.
From Theorem 1 of [10], it follows that in fact

2 p+1
By = Guiig o)1 n p

D

where @ is defined by (37) with d = 2% and furthermore that

Nin<n: 240, (2, x)) ~ H (14 p~ a2,
nige
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On Waring’s Problem in p-adic fields
by )

M. M. Dopgow (Heslington)

In this paper, which is & sequel to {5], we show that for a large enough
exponent &k, any p-adic integer can be represented non-trivially as a sum
of less than %" kth powers of integers in any p-adic field @, with (&, p —1)
< L(p—1). As is well known the problem of representing any p-adic
integer by 2 gum of ¢ kth powers of p-adic integers is equivalent to finding
5, primitive solution of the eongruence

(1) ... +af = N (mod p)
for any rational integer N, where y = 7+ 1 and where 7 is the exact power

of the prime p which divides 2k. Tn fact, as is also well known, a primitive
solution of (1) implies that the congruence

(2) # L af = N (mod p™)
has a primitive solution for every integer % 3> 1. The number I'(k, p"}

is defined to be the least s such that the congruence (2) has a primitive
solution for any integer ¥ so that I'(k, p") < I'(k, p*) for every n>=1, ie.

F(k: PV) = Max I'(k, pﬂ)!

where the maximum is taken over all positive integers. Also plainly if
$ = I'(k, p*) then every p-adic integer can be represented as a non-trivial
sum of & kth powers of p-adic integers. '

The number I'(k, p*) was introduced by Hardy and Littlewood in
their work om Waring’s Problem ([7]) though from a different point of
view and with a different notation; namely y,, and they proved ([8],
p- 533, Theorem 4) that if @ < }(p —1) then I'(k, p*) < k, where as always
d = (k, p —1), the highest common factor of k and p—1. I. Chowla ([3],
p. 197, Theorem 4) showed that i & ig sufficiently large, then for all primes
p with d < }(p 1) we have for all sufficiently large &,

I, p*) < K=,
i.e. for all integers == 1,
' P(ky pn) < klda“:‘



