&
i .
v
i

314 E. J. Scourfield im“

If a2, then as @~ oo,
N < w: 2% 0, (ny %)) ~ B,z (log log @)* *(log &),

where B, > 0.
From Theorem 1 of [10], it follows that in fact

2 p+1
By = Guiig o)1 n p

D

where @ is defined by (37) with d = 2% and furthermore that

Nin<n: 240, (2, x)) ~ H (14 p~ a2,
nige
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On Waring’s Problem in p-adic fields
by )

M. M. Dopgow (Heslington)

In this paper, which is & sequel to {5], we show that for a large enough
exponent &k, any p-adic integer can be represented non-trivially as a sum
of less than %" kth powers of integers in any p-adic field @, with (&, p —1)
< L(p—1). As is well known the problem of representing any p-adic
integer by 2 gum of ¢ kth powers of p-adic integers is equivalent to finding
5, primitive solution of the eongruence

(1) ... +af = N (mod p)
for any rational integer N, where y = 7+ 1 and where 7 is the exact power

of the prime p which divides 2k. Tn fact, as is also well known, a primitive
solution of (1) implies that the congruence

(2) # L af = N (mod p™)
has a primitive solution for every integer % 3> 1. The number I'(k, p"}

is defined to be the least s such that the congruence (2) has a primitive
solution for any integer ¥ so that I'(k, p") < I'(k, p*) for every n>=1, ie.

F(k: PV) = Max I'(k, pﬂ)!

where the maximum is taken over all positive integers. Also plainly if
$ = I'(k, p*) then every p-adic integer can be represented as a non-trivial
sum of & kth powers of p-adic integers. '

The number I'(k, p*) was introduced by Hardy and Littlewood in
their work om Waring’s Problem ([7]) though from a different point of
view and with a different notation; namely y,, and they proved ([8],
p- 533, Theorem 4) that if @ < }(p —1) then I'(k, p*) < k, where as always
d = (k, p —1), the highest common factor of k and p—1. I. Chowla ([3],
p. 197, Theorem 4) showed that i & ig sufficiently large, then for all primes
p with d < }(p 1) we have for all sufficiently large &,

I, p*) < K=,
i.e. for all integers == 1,
' P(ky pn) < klda“:‘
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wheré & is any positive number and ¢ = (103 — 3V641) /220, 2 result which
for large & is much stronger than Hardy and Littlewood’s.

Now in [5] where we considered the solubility of the congruence
(2) with n =1, we proved(') that if & were sufficiently large and
&< }(p—1) then

Ik, p) < BP~7 < E

where % is, as always in this paper, a sutficiently gmall positive mumber,
Tere we prove under the same hypotheses that

Tk p") < k™, e Ik p"<¥?

for all positive integers #.

Of course if the odd prime p does not divide & them ¢ == 1 and I'(k, p")
< I'(k, p) for all positive integers n, so that here we are really only con-
cerned with those primes which divide k. The arguments and results we
use arve in the main due to I. Chowla [3] and we simply -verify that the
improvement obtained in [5] can be maintained in the p-adic case when
the prime p divides k. However as we have pointed out in [5], I. Chowla's
paper is not easily obtainable and contains numerous misprints and

ohsenrities and for these reasons and to keep this paper reasonably self-

contained we repeat his work in some detail.

From now on we shall take % to be a sufficiently large positive integer
and p to be a prime dividing % (so that v > 1) and such that d = (k, p—1)
< }{p—1) so that p is necessarily at least 5 and p° exactly divides k.
The cases ¢ =p—1 and d = 3(p—1) are exceptional in that I'(k, p”)
=T'(k, p*') can be determined in these cases and that in general the
results of this paper cannot hold ([8], p. 524, Lemma 7). For example
when k = p*(p—1), p > 2, then

fk 41 — T4+1 __ I
(5, p"7") =p P "
. Ap—1
and if & =p (—5-_),19>3, then
T . 7 - 1_']9—(”-1)
T(k,P+1)=%(P“—1)=—1—__—p?1““'k

We need to make some of fhe earlier notation more explicit: we
denote by '

'k, p*, N)

(!} Note added in proof. Recently A. Tietavainen Las shown that the
exponent 7/8 can be reduced to 3/5+ & (private communication 14. 9. 72).

icm
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the least s such that the congruence (2) has o primitive solution for the
particular prime power modulus p™ and the partienlar integer ¥. Then
plainly '

I'(k, p*) = Max I'(k, 9™, ).

DN <

We also need some notation connected with. the easier Waring Problem: '
we denote by

A (%, p, N}
the least ¢ such that the congruence
(3) gt ... el = N (modp™),
where each coefficient ,4 =1, ..., s, can assume the values 41 or —1,
has a primitive golution. It is plain that '
| Ay ) = Max Ak 9" N)
0==N-<p™

ig the least s such that the congruence (3) has a pfimitive golution for
every integer N,

‘We ghall always take ? = 2 . 0 that ¢ necessarily divides p—1

and the restriction d < 3(p —1) implies that ¢ > 2. _

Now it iz well known, that the reduced residue classes (mod p™) form
a cyclic group of order ¢(p") = p" *(p—1). As is appropriate for work
on Waring’s Problem, we write / in the form

kE=p"dm

where here p° exactly divides %, so that (m,p) =1 = (m,?). It follows
that the values assumed by &% for given k and arbitrary z, are the same
as those assumed by "¢ (mod p™**). Thus :

(4) Ik, p"™, N) = I'(p"d, p**, N)
and ’
(B) 4 (ka Pt-‘-l! N) =4 (prd: PH-I’ -N):

whenee if & = p"dm, we can take m = 1 without loss of generality.

Plainly if —1 is a kth power residue (mod p™*"), i.e: if 4 divides
1(p—1), then I'(k, p=") = A(k, p***), and it is clear that more generally
we have '
(6) Ik, p™ ) < T(ky ™, —
Moreover

1) Ak, p™).

I'(k, ™, 1)< i1,
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for by FRuler’s theorem
T4-1 Ty T
a??" ) 1 = ¥ "V —1 =0 (mod p™),

ie.
(@ —1 = 0 (mod p™*")

and 50 the sum of the ¢ distinet values of 27 (mod p™**) which are prime
to p, 28, ..., aF % say, ig congruent to 0 (mod p*™). Hence

~1 = (@ )P L (e ) (mod pttY),
i.e.
]’(:p"d, .p”la —1) "g- t"'lz

and the assertion follows from (6), and we deduce that
{7) Ik, p™) < (1=1) Ak, p™).

{This estimate can also be established using sums of primitive roots.)
Thus when ¢ i8 small we can work with the more tractable number
Ak, p*™} and plainly if ¢ is less than some absolute constant, then (7)
supplies us with & simple and effective estimate for I'(%, p™!) in terms
of A(k, p™*). In particular if the prime p is less than an absolute constant,
then cerfainly so is = p—1, and we shall make uge of this observation
subsequently. If, on the ofther ha,nd ii8 large, then d is small and we explmt
that this implies that I'(k, p) is small.
" We now proceed to obtain an estimate for 4 (%, p"'“). The first result
has soroe similarities with Lemma 2 of [5].

Levwma 1. Let p =0 and & = p~dm. Then there is an integer T divisible

_ by p but not by p™** such that

Ak p™, 1) < 2[p*],

where [p**] s the integer part of pH?

Proof. First we show that we can find a kth power residue (modp™1),
R say, prime to p and not congruent to +1 (mod p**!) such that
(8) . E =2y~ (mod p*7Y),

where (z,%) =1,1<y<p, p"* < |o|<p® and |z|>y. Since {>2 we
can certainly i‘:md & kth power residne (mod p**'), R, say, which is prime

to p and not congruent to +1 (mod p™"). Now the least pogitive residues
(mod ™) of the p—1 numbers

. Rl: 2R1: rrey (fp“l)Rn

ey U, evey ’Mp_}_,

icm
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together with 0 and p™' define p -+ 1 distinet points distributed amongst
the p half-open intervals

rlpt+ 0y E< (r+D)(p°+1), r=0,1,...,p-1,
each of length p*+ 1. At least one infierval contains two sueh points and

go there exist integers o, and ¥, say, satisfying

T

1<y, <p—1, 1<in/<p
with '
Y By = a; (mod o).

Moreover we can assume without loss of gemerality that |a,| > ¥, since
otherwise we ean simply replace B, by Br' in the above. Also p cannot
divide y; and 2, and 80 we can take z; and ¥, t0 be coprime.

Thug if |2y} > p?, the integers R, z; and y, fulfill the conditions
required for the congruence (8). On the other hand, if || < p* we can
find a positive integer f such that

PP <l < p
and it is easily verified that Rf, 2] and y{ satisfy the conditions required

for (8). .
The ([p'*]+1)* integers of the form

(9) m4nR, O0<m,n<p"
where R satisfies (8), are incongruent (mod p**?), for it
My -+ R = my+ 0, B (mod p™)
then
BNy = Hy) = YWy — ml) {mod p™*), _
ie. since |7(ny—mng)+y(my—my)| < p*-p 4+ (p—1)p"* < p*, we have
B (Mg —Ma) = Y (Mg My}

But (x,y) =1 so « must divide m;—m, which because |1 — iy |
< pM* < |»j, implies m; = m, and consequently that n; = n,. Now since
([p"*]--1)2 > p, it follows that there are two such integers congruent
(mod p) and hence their difference ! say which is representable as
m—m' + (n—n')R (mod p*1) is divisible by p but not by P77, and

Ak p™, ) < 2[p*7,

ag required.
This result is uged to prove
TEMMA 2. Let & = p* dm where d < 3(p — 1) and suppose that p satisfies

1+2 m](ﬂ] épd
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where § > 4. Then
Al p*) < 97T (ky p)-

Proof. By (5} it suffices to prove the result for A(p"d, *thY, Now
the inequality is clearly true for v = 0, and we assume inductively that
for every natural number o << 7

A(p*dy p™) < PP 14, p)-

By the preceding lemma we can find an integer | == hp” say where p does
not divide & and 1 < a < v such that

AfpTd, p*, hp") < 2[p*].
Further it follows from the observation that
(10 & = a7 (mod p"*")
for any » < 7, that we can solve non-trivially the congruence
| g 07 L b, =R (mdd’p"“*‘l),

where as always the coefficients e, ..., & can take the values +1 or —1,
for any integer n, providing 8 > A(p*~°d, p*°"'). Hence for all integers n,

(11) A(p7d, p™y np®) < A (p7d, p7F hp®)- A (pT0d, pTONY).

Also it follows from (10) that for s> A(p™'d, ™), the congrue.nce'

gal it .. 4 a0l =N (mod p7)

has a pon-trivial solution for every integer N, i.e.
(12) g2 p L be, 0t = N+ N p* (mod ™)
where without loss of generality p does not divide &', has a non-lrivial

solution. We use (11) to get rid of the term ¥’ p*: indeed putting #» = N'p™*
we see that (11} implies we can solve

B37 o eyl = Np® (mod p*H)
§ = A(p*d, p™, hp®) A(pTd, 7).
Now from (12) and by the inductive hypothesis, we have
Ak, p™ = A(p*d, p™) < A{p™ 4, ") + A (p7d, p*T, N p7)
<P, p)+ 2 [p019°C0) - T4, p)
<P A4 2{pN T4, p)
<p I(d, p),

providing p° > 14-2[p'?], and the lemma is proved.
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Starting with a kth power residue (mod p**'), R say, satisfying (8),
woe use the addition of residue classes to obtain in a way similar to Lemma 2
of [5], but modified to deal with eongruences to & prime power modulus,
an estimate for I'(k, p%) which iy effective when d is large. However we
cannot use the Cauchy-Davenport Theorem to deal with addition of
residue elasses modulo a prime power and the following modified version
is used:

LeMmMA 3. Let n be o positive integer and let @, , ..., @ be 1 distinet residue
classes (mod n). Let by, ..., b, be m distinet residue classes (mod n), one
of which is 0 and the remainder prime to n. Then the number of distinct
residue classes represeniable as

by, li<LI<i<m,
is at least
“min (I4+m—1, n).

This iz due to I. Chowla ([1]) but a more convenient reference is
Halberstam and Roth ([6], p. 49, Theorem 15).

Levma 4, Let k& = pdm, 1.e. let v = 1. Then for p > 31,

Max I'(k, p*) = I'(k, %) < 54 p*5.
T
Proof. By the first part of Temma 1 we know that there exisfs

a .kth power residue (mod p2), R say, such that B is prime to p and nob
congruent to 41 (modp?) and such that

R = ay™ ' (mod 9*)
where 1<y <p, ¥y < [2[ <D, (w0, ¥) = 1.
We congider three geparate cases: )
Gy P < ol <p, () 2% < lol <p%, (D) 1< Jol < 9%,
It is straightforwardly verified along the lines of the preceding lerama or

ag in the case 1 of [3], Lemma 2, p. 150, that in case (i), the numbers of

the form

m+nR, 0 m, n<ip*®

generate ab least 3p*° integers which are incongruent (mod p*). Moreover
cach of these mumbers is a sum of at most p** Lth powers (mod p*) of
which at least }p*® —p are prime to p. Hence by Lemma 3 the expression

Mg+ Bt oo mb R, 0 my, < 3900 (LiST),
of at most #-p*® Eth powers (mod p®) represents at least '
min (379" —(r—1)p, p°)
distinct rexidue classes (mod p*). Therefore, provided p > 31,

I"(k’ pz) < 8-,p2f5-,p4]5 - Spﬁfﬁ'
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In case (i) we consider, s in case 2 of 5], Lemma 2, p. 150, numbers

_ of the form

I+mBR+nR, 0<Llmn<; pm |
and it i straightforward to verify these generate at least g p™ numbers
which are incongruent (mod p*). Each number is a sum of at most p** kth
powers (mod p®) of which at least 5 P —p are prime to p. Then as in
case (i), repeated application of Lemma 3 gives us that in this case

I'(k, p*) < 54p%

for p > 31.

In the remaining case where 1 < jz| < p¥5 we adopt a dovice similar
to that employed. in case 3 of Lemma 2 in [3], and we choose an. integer
f such that

P < Joff < p®’
and observe that B is a kth power (mod p*) and that
B = oy~ (mod p*)
where 1 <4/ < {z)/ < p and (¢, ') = 1. Then it is readily checked that
the numbers '
m-Ank, 0K mn < ip,

generabe at least £p*° distinct residues (mod p*), each of which is a sum
of less than p** kth powers (mod p%). Also at least ;p** —p of these num-

bers are prime to p. Thus, a8 in case (i), repeated application of Lemma 3
leads us to the conclusion that

I'(k, p*) < 8p™

for p > 31 and the lemma is proved.
Lenwva 5. If p= T and d < 3(p-1), then for k sufficiently large

7
Ak, ) < B
where n 18 a small enough posm"ue namber.
Proof. Sinee 77> 5* and 3°-11°> 7%, and since for p=11,
= 113f8 =241 24— 1/2 ,

we have
T

PP > 142 [p]
for aﬂ p=, pl'owded %> 0 iy small enough
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Now it is straightforward to verify from [5], Theorems 1 and 2, that
for d = dy, where d, is some constant depending only on #, that

7
r,p<d’”
Therefore choosing & =1 —z in Lemma 2, we have that
(IM,?)T L I
Al p<p® T & =4

providing @z d,. Otherwise when d < d,, we know that d< %(p¥~1)
implies I'(d, p) < & ([8], p. 533, Theorem 4), whence
{11
8 2

(3—-1;)1 (1—1;1)1'
Al p™) <p® Td<pt Tdi<k
for % sufficiently large, which completes the proof.
The following lemma is needed because the previous one fails to deal
with p = B.
LuMMA 6. If & is-odd and 5% exactly divides %, then
I'(k, 57y < BOEME,
Proof. The hypothesis that % is odd ensures that d = (& 5-—-1)

5—
=1<

1 . .

, 80 that I'(k, 5) = 2. Thus without loss of generality, we
can take r = y— 1= 1. Let g be & primitive root (mod 5°*1) and write
R=g"
so that R is & kth power (mod 5"™) which is not congruent to -+1 or —1

or divisible by 5. Also
R =g"= (mod 5°+)
gince 4-b° d1v1des 4k. The numbers
(13) - fnR, 0 < my 1 < § BETUA
generate ([} BEVA] 413 > 4 B**! integers which are all incongruent
(mod B*t"). For if m+nh = m' +n' R (mod 5°*') then we would have
(m—m') - (n—n'f = 0 (mod 5°%),
whence, because the left hand side of the last congruence is at most ¥ 5o+,
m =m' and n = n'.

Moreover each of the numbers (13) is a sum of at most 57D kth
powers (mod 57+') and at least 3 B"F'—B5 = 1 5 of them are prime.to 5.
It follows from repeated application of Temma 8 that
1nk5*ﬂ<205Wﬂﬂ<aowﬂ<5ovﬂ

ad degired.
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Leaia 7. Tet & = p*dm where d < p**. Then
T'(ky p™™) < Max (10127, 10 4 (%, ).

Proof. Tt can be verified readily by using standard exponential
sum techniques (see for example [4], § 2.4) that if & < P then I'(k, p) < 10,
whence in particular I'(k, p, —1) < 10, or equivalently
(14) =1 =yit . Yt

where g = 1, p does not divide e and not all of the integers ¥y, ..., Y10 a7
divigible by p. '
Now if g r--1 it follows by very definition that
Ik, p™*, -1)< 10
80 {6) implies :
_ Ik, p**) < 10- A (R, p™*7)
a8 required. C
So suppose 1 < g < 7. We use an induetive argument similar to that
of Lemma 2, and we assume inductively that for each non-negative
o< T ’
(15) Ik, ™Y < 12°0(k, p) < 127-10,
an assumption which certainly holds for ¢ = 0. A trivial rearrangement

of (14) gives us that

Yit ...ty =ep’

where 1< g <7, p does not divide ¢ and not all the variables #;, ..., ¥
are divisible by p. By definition the congruence

F4o. 428 =e7in (mod pTTY

hag a primitive solution for every integer n, where » = I'(k, prIHY),
Thus on multiplying by ep? it follows that for every integer =

I'(k, p™, np”) < 11-I'(k, P,
whence, a8 in Lemma 2 and by the inductive hypothesis (15),

Pk, ™Yy < I(k, p*) + Max (%, p™%, np")

< I'(k, p7) 11 I (k, p™0*+Y)
<1277k, p) + 11-197 IR, p)
_ <12°1'(k, p) glﬁ’-lo,
and the indunetion is establizshed.

The lemma follows on combining the two estimates for I'(k, ™).
We now use these lemmag to obtain the
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TaportM. Leét @ = (k, p—1) < §(p—1). Then provided & is large

enough, '
Ik, p") < K
for all nz= 1.

Proof. It suffices to establish the inequality for # =y =41
where p* exactly divides & and in view of [5], p. 166, Theorem 2, we need
only eongider the case 72 1. Also by Lemma 6, we can take P >=7. We
congider various cases and begin by taking d la,lge

First suppose 7 =1, p > 31 and d> p** so that < 2p°®, Then
by Lemma 4,

2 ki )

(I, p?) < BL D < 54 (p* )D
providing # is small enough, and hence

n

.
Ik, p?) < B4 (pd)* < FP

for %k sufficiently large. . :
Next suppose 7 == 1,d> p*® and 7<p<3L Then ¢<2p' <16
and so by (7) and Lemma 5, '

,
Tk, p¥) < 18- A(k, p2) < 155 < &

for & sufficiently large.

We continue to take d > p*® but now suppose that 7> 2. Then
(providing 91<fﬁ) 5+~~r < (f—n)7r, and it is readily verified that
if p>2" we have

' . Spn/m - 1+2 L-pl,lE].

It follows from Lemma 2 with § = 11/20 that
A (]G, pﬁ-f) g p(lljZD)rF(-k’ p)
and combining this inequality with (7) we get that
7
I'(k, po+) < 2p¥5- pUT I (R, p) < (5P < K
for % sufficiently large. Ag above the result when p < 2% is an immediate

consequence of (7) and Lomma 5: if 7 p < 2%, then

D'k, ) < o3 < e

for & large enough.

There remains the case T3> 1 and 4 < p*®, when Lemma 7 applies
and go, providing p > 1277,

.
Ik, p™™ < Ma.x(l()'p(“ ) , 10+ A4 (%, 7)) < B'®

since & is suificiently large.
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QOlearly as before, the inequality also holds for p < 12%7 Al the
various possibilities have now been exhausted and so the proot is complete.

Tt is evident that any improvement in 1:110 estimate for (%, p) would
lead to a corresponding improvement in I'(k, » =, and in fact the exponent
can be reduced slightly ([58], p. 166, Theorem 2} but we retain { for simp-
licity as we are probably far from the final answer.

In conclugion, we define the familiar number I'(k) by

(k) = MaxI'(k, p")
n

where the mazimum is taken over all primes p, so that I'(k) is, as is well
known, the least s such that the congruence (2) has a primitive solution
for all integers & and all prime powers p". Hardy and Littlewood have
shown that I'(k} < 4k for all & ([7], p. 186, Theorem 12) and further that
I'(k) << k unless k& belongs to certain special classes ([8], p. 833, Theorem
4), while I. Chowla ([2], p. 97, Theorem 1) proved that IM{¢) <2 [¢/3]-+2
for an infinity of primes ¢ Our results above enable us to show that
I'(g) < ¢ for an infinity of primes ¢ by exhibiting infinitely many 13rimes
¢ which- are not of the form §(p—1) for any prime p > 3.

Indeed mippose the primé ¢ is of the form ¢ = L+ 8¢ where 1> 2,
and suppose also that

for some prime p > 3. Then p = 2g+1 = 0 (mod 3) contradicting the
choice of p as 2 prime. Now in view of the trivial estimates I'(k, 2) < 2
and I'(k,3) <3 and of the above theorem, we have for ¢ sufficiently
large and for every positive integer », that '

Ilg, p™) < 4"
for afl primes p, whence by definition '
Ig) = Max I(g,p") <"
primes p .

But by Dirichlet’s Theorem on primes in arithmetic progression, we know
that there are infinitely many primes p = 1 {mod 3), and so the assertion,
ig established.

It can be proved in & similar fashion that
k) < ¥
for an infinity of even % Here we take g to be a pnme congruent to
1 (mod 15) and % = 2¢ and suppose that for some prime p > b,

p—1

bo=2g = ln,‘

icm
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so that ¢ = (p—1}/2 or 2¢ = (p—1)/2, ie. p =2¢+1 or p = 4g4-1.
Hence either p == 0 (mod 3) or p = 0 (mod 5) respectively contradicting
the choice of p as a prime and it follows that & is not divisible by 3({p —1)
for any prime p > 5. The trivial estimate I'(%, 5) < 5 together with the
theorem above and the definition of I'(k) gives ns as before that for g
gufficiently large,

I'2g) < (2¢)"°

where ¢ is a prime congraent to 1 (mod 15). Since there are infinitely many
such primes wo conclude that I'(k) < &"® for an infinity of even k.
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