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1. Introduction. In [3], Sierpiiski asks whether there exists an
integer N the gum of whose positive divisors, excluding 1 and N, equals .
Such a number is called guasiperfect by Cattaneo [1]. If o(¥) iz the
familiar arithmetic function indicating the sum of the pogitive divisors
of ¥, then the above guestion is equivalent to the following: does there
exigt an integer N such that o(N) = 2N +1% Much work hag been done
on perfect numbers (¢(N) = 2%) or multiperfect numbers {o{¥) = kN,
%> 3), but unlike these clagses of numbers, (¢(¥), ¥) =1 when NV is
quasiperfect. '

Tn thig paper we continue the study of quasiperfect or QP numbers,
determining some of the properties that such numbers possess. In particular,
we show that a QP number divigible by 3 (prime to 3) must have at leagt
5 (at least 8) distinet prime factors. Furthermore, if ¥ is QP, and 5 1 N,
then p|N, where p ig a prime = 1 (mod 5). Finally, we show that if N
is QP, then N > 10,

2. Preliminary results. Cattaneo proved the following in [L].

PrROPOSINION 0. If N is @ natural number stuch that o(N) = 2N +1,
then N = p ... pXr where the p, are odd primes. Moreover, if p; =1 (m.0d.8),
then e; =0 or 1(mod 4); if p; = 3 (mod 8), then ¢ e= 0 (mod 2); if 4
= 5 (mod 8) then ¢, = 0 or —1 (mod 4). If g is a prime divisor of o(N},
then (—2|q) = 1, where (piq) is the familiar Legendre symbol. Finally,
if M is a natural number for which o(M) = 2 M, then no non-trivial multiple
of M is QF.

Remark. Cattaneo claims to have proved that no QP number ig
.divigible by 3, but Sierpinski pointed out that his proof is erronecus.
A. Schinzel proved that if N is QP then N should have at least three

_distinct prime factors and N > 11000. See Sierpifski ([4], pp. 257 —2568).

Now we apply results on cyclotomy to QP numbers. _
. LmmmA 1. Let ¢ = ¢f -1 be a prime > 2; lat p be o prime different
from ¢.



(a) If » #1(mod q) and p is an eth power residue (mod g_fj, then
o(p" ) = 0 (mod g). :
(b) If p =1 (mod g), then o(p™1) = 0 {mod g). .

Proof. (a) Suppose p # 1 (mod g), and 2° = p (mod g} has a solution.
Then

(_’p——l)o’(_pnjml) =pnfw1 = (me)m"___l (mod. Q) = (wn)q—‘l__l =0 (mo& Q),‘

by the Fuler-Fermat theovem. Since p—1 =0 (modg), we have
o(p™) =0 (mod g). ‘
(b) Suppose » =1 (mod ¢). Then

ng—1 ng—1
o (Pl == Z Pt Z 1 =ng == 0 (mod g¢}.
i=0 f=n0

TaeorEM 1. Suppose p == q are odd primes, ¢ =& +1 =8 or
7(mod 8), N = p*M, (M,p) =1, and o(N) = 2N +1.

(a) If p 1 (mod g) and 2° = p (mod g)
—1 {mod f).

(b) If p =1 (mod ¢), then k = —1 (mod g).

-Pr:olof. This is immediate from Lemma 1 and the statement in
Proposition 0 that, if ¢ i3 & prime divisor of ¢(¥N) = 2N -1, then (—2|q)
= 1_ .

O0ROLLARY 1. If N = p" M, (M, p) =1, o(N) = 2N +1, and p = 3,
B, 11, 13, 23 or 47, then & = 2 (mod 3).

Proof. For the stated p, choose ¢, », and e as indicated, th
the theorem. , T , then SPzY

is  solvable, then k #

P q bt/ é
3 13 2 4
b 381 b 10

i 7 2 2
13 61 4 20
23 7 4 2
47 37 3 12

3. Lower hounds on the number of pfime divisors of QP numbers,
TuroREM 2. If o(N) = 2N - L then N has alleast 5 distinet prime factorse

P.r pof. In accordance with standard terminology, let us eall a number
N defm_lent, perfect or abundant if o(N) < 2N, o(N) = 2N, or o(N) > 2N,
respectively. Thus, any QP number N is abundant; by Proposition 0,

‘D0 proper factor of ¥ can be abundant or perfect. In the terminology

of Dickson [2]; N i3 primitive abundant, so that a QP number must be
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an odd primitive abundant square. All such numbers with fewer than b
distinet prime factors are listed here (gee [2]):

3452137, 3*6TU1A67%, SEEALLM18TY, 825418437, B45P1TR 61,
3552172797, 3PB4172023%, 3591722307, 3'572381%, 34542841’

By Proposition 0, if B|N and o(¥) = 2N 41, then the exponent
on § is of the form 8% or 8k—2. The only such integer in the above list
is 388172289% but by Corollary 1, the exponent on 3 must be incongruent.
to 2 (mod 3). Hence a QP number has at least b distinet prime factors.

Cattanco [1] showed that if & QP number i3 prime to 3, then it has.
at Jeast 7 distinet prime factors. We bmprove this result as follows.

TeonEM 3. If a QP number N is prime to 3, then N is divisible by at
laast 8 distinet prime faclors, and if by exactly 8 prime factors then these
indlude B ond 1.

Proof. We note that
B 7 11 13 17 19

T 6 10 1z 16 18

from which Cattaneo concluded that ¥ must be divisible by at least 7
distinet primes. Since

5 o7 i1 13 17 23 29

it I is divisible by exactly 7 distinet primes, 6 of them must be 5, 7, 11,
13, 17 and 19. Furthermore

5 7 1L 13 17 19 41

T80 1 16 18 40
50 the seventh prime must be 23, 29, 31 or 37. By Proposition 0, the least
exponent allowable on 5, 7, 11, 13, 17 and 19 are 6, 2, 4, 6, 2.and 4, regpec-
tively., Since 19]¢(7%), the leagt exponent on 7 is 4. By Theorem 1 (D}
and Corollary 1, 4 and 8 are impossible as exponents on 11, so 11 must
be raised to at least the twelfth power.

Tt N = 5%7411213%17219?37%; then o(N)> 2N 41, If we replace
37 by a smaller prime or inerease the exponents on any of the primes, woe
obtain an integer M which satisfies the inequalities

o( M) o(N)
M1 7 2N -1
Hence M iz not QP. Finally, we motice that
51118 17 10 23 20 81
170 12 16 18 22 28 30

> 1.




[

so that ¥ must be divisible by both 5 and 7, if there are exactly 8 distinet

“prime factors:

4. Lower bounds on the size of QP mumbers. With the help of several
technical lemmas, we will show that if ¥ is QP, then & > 10%.
Tmvs 4A. Suppose N is QP, and let N = p*M, where (M, p) =1
and p is a prime.
(a) If p =5 (mod 8), then k=6
, (b) If p =3 (mod 8), fhen k= 4.
(¢} If p =23 or 47, then k= 4.
(d) If p =11, then k= 12.
(e) If » =1 (mod 5), then k s 4.
(£) If ¥ =0 (mod 3) end p =1 (mod3), then k=4; furthermore,
if N =0(mod 3) and p =19, then k = 12.
Proof. (a) and (b) follow from Proposition 0, (¢) follows from Corollary
1, (d) was provided in the proof of Theorem 3, and (e} follows from Theorem
1(b). As for (f), if p = 1 (mod 3), then ¢(p?) = ¢(¥) = 0 (mod 3) = (1 9%),
contrary to the fact that (o(N), N) = 1. Finally, 19 =3 (mod8), so
L = 0 (mod 4), and since ¢(19*) = 0 (mod 151) and 151 = 7 (mod 8), we
must have % > 12. Similarly, if p = 2 or 4 {mod 7) or p = 3 or 9 {(mod 13},
then k> 2. Bxeept for 7, 17, 31, 41, 71, 73, 89, 97, 101 or 103, if
p-< 120 then % > 2. If in addition N = 0 (mod 3), then except for 17, 41,

71, 89, 167, 239, 257, 281 and 311, if p < 350 then & > 2.

Levma 4B. No QP number is divisible by 3-5-7,3-5- ]1 3-5-13,
3.5+17-19, 3-5-17-28, 3-5-17+:29, or 3-8 17 3L

Proof. By Lemma 4A the exponents on 3 and 5 are at least 4 and 6,
respectively. But if M = 3'5°13% or 3%5°17231, then o(M) > 2M 1.
. Levwma 40. If N i QP and divisible by af least 7 distinct primes, then
N > 102,

Proof. The number ¥ — 34721723124127173?80* matisfies & > 107,
is mot QP, and any QP number divisible by at least 8 distinet primes iz
greater than ¥. By Theorem 3, a QP pumber having exactly 7 distinct
prime factors is divisible by 3. Let

M= 3TN 71807 167
Using Lemmas 44, 4B and the proof of Lemma 4A, the inequalities
B < 1T < 410 < T < T1E < B9 < BS < 16T < p*

‘where p is any prime other than 3 or 7 requiring at least a fourth power,
and the fact that M > 10*, we conclude that a QP number divisible by
exactly 7 primes is greater than 10%.

TommvA 4D. If a QP number N s divisible by @fmcﬂy or & distinot
primes, then one of the primes must be B, 7 or 11. If (N, 3b) =1, then
N > 1029 ]

m L
Prool. If m and » are natural numbers, then m > n implies +

< m - Sinco
b

3 18 17 10 23 20

RN RO S I ——

g 12 16 18 22 28

the § or 6 distincet primes must include 3, 7 or 11. If (N, 835) =1 then
33|X; since o(3%) = 0 (mod1l) and o(3°) = 0 (mod 13), the exponent
on 8 is at least 12. By Theorem 1 (b} and Corollary 1, the exponent on 11
ig at leagl 12. Ilence,

N > 8%11%18%17%19* > 10%,
and. the lemma is proved in cage N has exactly b prime factors. If N has
exaetly 6 prime factors, then
> 31111218217 197237 > 1020,

Lmywa 418 No QP number containing 5 distinct primes can be of the
form 8*BSp* g1 |

Proof. Lt M = 3'5%17%; then

o(M) 725318067

M 365763625

In order that .
725518087 (@+1) = 2(365765625m},

‘we must have 120 < @ < 121. Thus if 3*5°17°¢** is QF, both ¢ and »
must be greater than. 120. For if ¢ < 120, then
o(N) _ o(M) q+1 1
[ Y B
¥ Tw g TTTF
and & would not be QP. On the other hand, both primes cannot exceed
242 if so, then.
o) o@D g v olM) 244 243 o(M) 122
N M g—1 r—i ~ M 243 249 M 121
Hence one of ¢ and r must be a prime between 121 and 242, By the proof
of Lemma 44, this prime must bo 167 or 239, Bub ¢(239%) =0 (mod 29)

and 29 =B (mod 8), which is dizallowed by Proposition 0. It N =
= 36517216774, then (W) £ 1 (mod B), but 2N +1 =1 (mod 5); hence

< 2,




345597 ¢*»* cannot be QP. We use the proof of Lemma 4A and observe
that '
3 b 41 71 89
RV RPT R TR T I
from which we conclude that 3'56°p?¢%#? cannot be QP.
TevmA 4F. If N is QP and N =0 (mod 3:5-17), then N > 10%.

Proof. Let N = 3°5°17°p%¢". By the proof of the previous lemma,
it ig clear that p and g are greater than 121, and one of  or ¢ i3 greater
than 242. The last remark follows from the inequality

o(M) 240 243
M 239 241

where M = 3*8°172. If @ 544, a212; if b 56, b216; if ¢ %2, ¢ 2 8.
I d =6&=2 and 121 < p < 242 < ¢, then p = 167 and ¢ = 267 by the
proof of Lemma 4A; if, in addition, either o> 4, b>> 6 or ¢ > 2, then

N = 3U5517%167°257% > 10%,
Ha=4,b=06and ¢=2, then d >4 or ¢ >4 by Lemma 4E. Let ¥

= 3*3° 17 p*¢*. It is clear that p > 121 and p = 2 (mod 3), for otherwise
o{N) = 2 (mod 8). For ¢ > 167, we have

_ 380177131 ¢ > 10%.
Hence, if & =4, b = 6 and ¢ = 2, then
BB LT %" > 8455171310167 > 10%.
If ¥ has exactly 6 disfinct prime factors, then
N = 3%8°17%%%" = 3* B 17%1672257% 2812 > 10%,

Finally, by Lemma 40, if ¥ has more than 6 digtinet prime factors, then
N > 10,

LEMMA 4G. If N is QP and N =0 (mod 15), then N > 10%.

Proof. In the previous lemma, we investigated the case 3-5-17|N.
11 3-5-19| ¥, then ¥ > 10* gince by Lemma 4A, 19 must be raised to at
least the twelfth power. By Lemma 4B, (¥, 7-11-13) = 1. Let

N = 3*50peg"r°.
By Lemma 4B, one of @, b and ¢ is greater than 2: guppose it is a. Let
N = 3*5%23% "%
By the proof of Lemma. 4A, the values allowable for ¢ and # less than 350
are 41, 71, 89, 167, 239, 257, 281 and 311. Since

3 b 23 ooy .
.,ﬁ_..__ __..._q._n.,.- <2

1
> 2t
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in cage both g and r oxceed 105, we must have ¢ or r = 41, 71, 89. In order
that o(N) == 2N -1 (mod 7), we cannot have ¢ or r = -1 (mod 7).
Thig condition eliminaboes 41, 71, 167, 239, and 281 as either of the primes
leaving 89, 257 and 311 from the above lish. But

3 5 23 89 g
e ¥ i B it @ ey W e 2 :f 'Y
5 E w8 -1

Thus 345°23%¢** is not QP. By Lemma 44, it is impossible that 29, 31, 37
or 41, be raised to the fourth powor in & QF number, If

N = 36%43% g%,
then o{N) =1 2 (inod 3). 'We then. consider

N e BRI ph PR,

q = 257,

p AT, g3 41, 7L

T g = 41 or 7L, thon r 3= 167 in order that o(N) =1 (mod b); it ¢ = 89,
r 3> 289 in order that o(N) = 1 (mod b). Bub .

3 B 41 AT 167
9 4 40 46 166
T¢

N =38%%p'¢™, 2228 g=4l,rz2T0l,

then N 3 10%, Tt is thoen clear that a QP nuiber having exactly 5 distinet
prime divisors and divisiblo by 15 Is greater than 10%. Tt
N = _:3”“5541-21.2 71289%167%,
then N = 10%. If
N = zsa{;?;pch?mn’

where either a > 4 or b > 06, then the inequalities

Nz 395041271289 > 10%,  23' > 89°
using Lomma 44 and Temma 417 ostablish the result in thig case. Lemmag
4A, 4B, 4R and the inoquality 1672 < 238" cgtablish that a QP number
divisible by 15 and by more than § distinet primes must exceed 10%,

TaMMA ATL Lot N be QP and N w0 (mod. B). Thon N must have o prime
divigor congruont o L (mod §).

Troot, Suppose ¥ i 0 (mod B) and N hag no prime divisor congruend
to L (mod B). Lot ¢ and ¢ denolo the nwnber of primes dividing N which
are raiged to twice an odd power and are congruent to 2 zmd 3 (mod. b},
regpectively. Then o (N) v« 278F (mod )y I 8+4-¥ 18 éven, o(N) = 1.01' &
and 98 -1 = 3 (wod 5), and if 4t is odd, o(N) =2 or 3 and 2N -1
= 4 (mod B). Thuy the lemmea is established. ‘

Lavma 4L If N is QP and N = 0 (mod 21), thon N > 1.0%.



Proof. Since N = 0 (mod 3), the exponent on 7 ig

consider the case when the exponent on 7 is 4. Write
N == 8" p%"r%, m>=4.

Now one of p, ¢ and » {3ay r) must be congruent'to 1 (meod 3) (and then.
¢ = 4 (mod. 6)) in order that o(¥) =2N-+1(mod3). By Lemma 44,
=43 or ¢ > 4. By Lemma 4H, p, g, or + =1 (mod 5). If r =43, ¢ = 4,
p =11 and > 12, then ¥ =10 T r =43, ¢ > 4, p = 31 and a6,
‘then N = 10 If p = 41, then ¢ = L1 in order that o(N) > 2N, since

3 7T 13 41 43

S e RS

2 6 12 40 42
67 is the smallest prime # greater than 43 such that v = 1 (mod 3). Since
' ' 3 7 17 19 67 '

2 6 16 18 66
N must be divisible by 11 or 13. Butb
3L L7R 6T > 3™ 713517767 > 107",
If ¢> 4 then ¢ 10 and then N > 10*. Thig follows from Lemma 4A
and the fact that .
347U > 374311 > 10
Let
¥ =38"7p"¢"", where k> 4.
Since o(7%) ——O (mod 29), ¢(7%) == ¢ (mod 3), and ¢(7*) = o (7" (mod 3),
either £ 212 or k¥ =10 and we have the above situation all over again.
Hence % >12, and
3™ pegbr® > 3ATEY 72412 T1E > 1OW,
In ease N has exactly 6 distinct prime factors, the following values of
N > 10 establish the result:
N o= 3TU7241%43%71% N = 317172412 7T1280%
The lemmsa ig established by applying Lemma 4C in case ¥ hag more than
6 distinet prime factors.
THEOREM 4. If N is quasiperfect thm N> 10"

Proof. The theorem is established, since we have treated the cases
for ¥ divisible by &b least 7 distinet primes (Lemma 40), and by exactly
5 or 6 distinet primes (Lemmasg 4D, 4F, 4G and 4T).

In the cage 3 1 N and 5 + ¥ where N is QP we can. give a congiderable
improvement on the bound.

TemorEM 5. Any QP number N such that 3+ N and B 1 N 4s divisible
by at least 10 dislinct prime factors amd N > 10°,

=4. We first
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Proof. In (5], Theorem 1 (B)), Suryanarayana proved that if P is
the smallest prime factor of an odd integer I not divisible by 3, then

o(N) _ (2P +4o(N)+8 1z
N 2P+1
where (N} is the number of distinet primes dividing N. Since & is QF

y < 2P +-4w(N)4-8 12
- 2P 41 ’

‘%P

Hence o(N) > 5 —~1. Bince 34 N and 54 N, we must have P = 7 so

that o () &= 10,

Tt follows that N s (T.17-81+4L71+73-89-97-101-103)" > 10", If
N were divisible by a prime =5 103 other than those appearing in the
above forroula, then by proof of Lemma 4A, such a prime would appear
with exponent > 4 and hence the lower bound would be larger.

The question of Sierpiiski ax to the exiztence of quasiperfect numbers
remaing unangwered. Just a8 with odd perfect numbers, there are many
necessary conditions that a QP number must satisfy, bub no such number
hag been found.

We note in conclusion that the techniques of this paper are useful
in obtaining results about preudoperfect numbers, i.o. numbers N for
which ¢(N) = 2N —1L. :
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