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A type of class group for imaginary quadratic fields
by
MavriceE Oraré (Ann Arbor, Mich.)

1. Introduction. Let C(n) denote the cyclic group of order =,
(%) x C(n) the direct product of two such groups. In [5], Yamamoto
constructs imaginary quadratic fields for which the ideal class group
contains a subgroup isomorphic with C(n)xC(xn), while showing that
for each value of n, the cardinality of fields of this type is infinite. The
consfruoction rests upon a polynomial, of degree 2p— 1 in a parameter
1, which can be arranged in two different ways in the form B¥—44"
Here A, B denote polynomials in ¢ with rational integer coefficients.

A, further result of the same type is the

TaroREM. Infinitely many imaginary quadratic fields have a subgroup
of the class group isomorphic to €(3) xC(3) X C{(3).

The proof is by applying Yamamoto’s methods to ‘a polynomial
of degree 24, which has five different representations in the form B2 —443%.

Making use of a theorem of Scholz, another of Yamamoto’s con-
clusions is obtained as the

COROLLARY. Infinitely many real quadratic fields have a subgroup of
the class group isomorphic fo C(3) < C(3).

2. Preliminaries. (a) Let Q(Vd) denote the quadratic field of dis-
criminant 4. As ghown in [5], results concerning the ideal class group of
Q(VE) may be inferred from certain solutions of the diophantine equation
W ' B —44" = C*d.

Tor the case d << 4 and » an odd prime, the following two propositions
summarize the procedures.

ProrogiTion 1. Let (4, B, C) be a solulion of (1) with A and B relatively
prime. Suppose there is a vational prime 1 dividing A, such that B i3 not an
n-th power vesidue of 1. Then the ideal

B+OVd
(4,222
belongs to & class of order n.
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We refer to %, as the ideal corresponding to the solution (4, B, C) Im“
and write f, to denotie the class containing it. ‘ .

ProrPosITION 2. Let
(2) B — 44" = (°d = Bt —44™
where _

(4,B) =1 = (4", B').
Suppose I, I ave distinct primes dividing A, A’ respectively and that
B = #-th power (mod 1), B’ s n-th power (mod I').
Suppose in addition the following “lrace condition” holds:
B+B

= non-aero n-th power (mod1).

Then the corresponding ideals Wy, Wy determine independent olasses of

order @

Note that by Proposition 1, each of the cyelic groups {f.>, {J.>
hag order % The role of the trace condition is to ensure that the subgreup
(farFady generated by both classes taken together, is a direct product
of two cyclic groups of order m.

By an immediate extension of the ideas nsed in proving Proposgition 2,
we obfain

PROPOSITION 3. If B —44" = B?—44™ = B — 44", with (4, B
— (4", B = (A", B") =1, end for primes I, V, 1" dividing A, A', 4’
regpectively,

B (resp. B, B”) 2 n-th power (modl (vesp.l,1")),

B'
B_; = non-zero w-th power (modl),
B” !
B—; = pon-zere w-th power (modl),
, B!I .
B _; = non-¢ero n-th power (rnod 1),

then
FasFars Fary 22 C(n) x C{n) X C(n).

(b} Consgider the diophantine equation
_ B'—4A™ == B*—44"™
encountered ahove. Writing it as
' B+B B—-F
s 2 -

A A

B+E ) .
= = g™, a paramelric solution is

and setting 4 = oz, 4’ = 2w,

obtained in the form of the identity

(@™ — ™ — 4 (@) = (@ — 2" - w")2— 4 (aw)”.
From symmetry, each side equals
{—a™ 2"+ ™ —4 (2u)".
Suppose now that for integer values of #, 2, w the common value of the
three expressions above iy O%d, where d is a quadratic field diseriminant,

a4 < —4. We evidently have solutions of (2), so from Proposition 2 it
is to be expected that for values of d which arvise in this way, the field

-Q(ﬁ) will in gome cages have o subgroup of the class group isomorphic

to C{n) x Cn).

‘While this i3 the case, we do not obfain in this manner 28 many as
three factors €(»n), which might be expected from the exigstence of the
third expression above. (This is because the classes of the three corre-
sponding ideals satisfy an identical relation.) Suppose, however, that
@, 4, 2, w could be selected with » and ¥ unequal, but so that

(=" 2w — 4 (200)" = (—y" 2" W — 4 (2a0)™

By means of the identities already noted, we ghonld have not merely three,
but five expressions of the same quantity in the form B* —4.4% the values
for the five pairs [A, B] being given by

(w2, X +2Z W],

[w, X —Z+W1,
{3) [ya, Y +Z—W],

lyw, ¥ —Z+W1,

[ew, —~ X +Z4-W],
where X = 2" and so on. It suffices to take

_wn+zn+wn . __(_yﬂ__]_zn_l_w'lla)
or
(4) mn+y1» —_ 2(zn e 'w”‘)
Now when # = 3, the solutions of (4) in integers are known (ef. [L1]). We
make use of the solution given by the formulae
© = st y = (188 —s),

{8)

g =18t", w = 3t(s*—61%)

and conclude the Preliminaries by noting the following



LEvma 0. Let 2, y, @, w be as in (5), where 8 and & are integers. Then
for each of the five pairs [A, B] in (3) we Turve

(A, B) =1,

provided s and i satisfy the conditions
(i) (5 2) =2
(i) (s, 3t) =1,
(iii) (s+2%, 7) =1 for a =0,1,2 (this being the same as for all
oz 0).
Proof. Using (4), it is readily verified that requiring all pairg in (3)
to be relatively prime is equivalent to the requivements

(2, Z—W) = (4, Z—W) = (8, X—W) = (w, X —Z) = 1.

Take, for example, the lagt of these. Supposing there is a prime p dividing
(w, X —Z), then with congruences to the modulus p, we have

w=0, X—%=0.

From the former relation, either 3¢ = 0 or else s® = 6% 1f 3 =.0 then
Z =90, so X =0. Thus p divides (s, 3¢), contradicting (ii). If s* = 61%
then

X = (¢ — (1814 = (685)* — (1889 = — 21(61%)°.

By virtue of (i), 6 = 0 iz equivalent to 3¢ =0 and leads to the same
contradiction ag before. On the other hand, if p = 7, then §% = —i*
We cannot have t = 0, for in that case 7 divides (s, ¢). Thug

8

3
(?) = —1{mod 7) or %E -1, —2 or —4 (mod 7),

contradicting (iii). The other cases are treated similarly.

3. Local considerations. (2) Let distinet primes m, n be chosen subject
to the conditions ‘

2, 8 = cubes

7 = cube {mod. m) and (mod n).

(CPhe srp_all_est examples are given by 307, 499. Cf. [2].) Tor the rest of the
ch§cussmn, m and » are fixed. Suppose now that for integers 8 and ¢ satis-
fying the conditions of Lemma 0, we have

‘ 8 = 0 (mod 7},
(6} o 1883 —¢% = 0 (mod m),
§* — 68 = 0 (mod n).
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Qur purpose is to show that, with the further provision &< —4,
the field Q(}@) hag three independent ideal classes of order three.
The first step is to asséciate with each pair [4, B) in (3) a prime !
dividing A, such that
B == cube (modl).

Trom this it follows, by Proposition 1, that the corresponding ideal lies
in o class of order three. The relevant information is displayed in a table
below.

Prime 1
Clags fu Pair [4, B] dividing A B (mod )
Tz [we, X+7Z—W] 7 2(18M?
Foo Lw, X —Z + W] 7 —2(18%°
Fue [ye, Y+Z—W] m — 7 (181"
Fo fyw, Y —Z+W] e 7184y
Fow [ow, — X +Z+W] n 21 (684

Taking the third line, for example, we have
y = §{1813 —5% = 0 (mod m),

g0 that m divides gz — 4. Then

Cor

2 =18 w = 3t(s®—61%) = 361" (mod m),
RO '
Y 4+7—W = (1864)° — (366" (mod m)
= —7(18t"* (mod m).
Now

(1884, 1843 — %) =1,

by the conditions on s and ¢ given in Lemma 0. Thus B i8 a non-zero
regidue of m. By the assumption on the cubic character of 7 involved in
the choice of m, we conclude that B is a non-cubic residue.

Secondly, Proposition 3 is applied. We select for thig the gubgroup
{Fuas Fyzr Fowps 80 that referring to the table,

=17 V=m ¥ =

Then as
B=X+Z2-W,

B =Y+2-W,
B = —-X+Z+W,



we have (using (4) when necessary),

’
BB _ 9z — aitsi)® (mod m),
B_;B = Z = (18" (mod n), .
B ;‘B — Y—W = 6(12%) (mod #).

Since these are non-zero cubic residues of their respective inoduli, it

follows -
{foes Juos Fawp 22 € (3) x C(3) x C(3).

(b) We consider next how the integers s and ¢ may be taken, so that
the various eonditions needed for (a) (with the exception of & < —4)
are fulfilled. Tn terms of the primes m and » introduced above, let integers
m, and #, be chosen, for which (considering the cubic character of 2, 3)

mi =18 (mod m),
.78 =6 (mod n).
Further, choose & satisfying

1 (mod 2),
Tk = | m, (mod m),
g (mod n).

This may be done, seeing the moduli are relaiively prime in pairs and
prime to 7. Finally, consider the solution in integers w, of the system

% =1 {mod 2},

(7) 2omu =1~k (mod 3{Tk—2)).

Coneerning the second congruence, we have

(2mm, 3(Th—2)) = 1.
For as & is odd,
(2,3(Tk—-2)) =1.
This implies, incidentally, that the moduli in (7) are relatively prime.
Then
(mm, 3) =1,
while if .
Th—2 =0 (mod m),
we have by choice of k,
' ©y =2 (mod m).
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Cubing,
18 = 8 (mod m).

However, neither of 2, b is equal to m. The same argument shows we cannot
have

Tk —2 = 0 (mod n).

Thus the congruences (7) have solution for #, and in fact the solutions
comprige an infinite set, which we denote hy X\

Lmyoaa 1. Suppose
& = T2mmu-+k), 1= "Tmau-+1,

where we X. Then both (6) and the conditions of Lemma 0 are satigfied.
Proof. We have

s =0 (mod 7).
Then
8 =Tk =my(modm), =1 (modm)),
80
181% - 5* = 0 (mod m).
Similarly,

38— 61% = 0 (mod #).
This establishes (6). Next, since % == 1 (mod 2), we have
{1 ( 2) = (Tmnu+1,2) = 2.
Ag 2mau+Fk =1 (mod 3}, it is clear
(8,8) == 1.
And if the prime p divides (s, ), from $—2¢ = Tk —2 we derive
{8, Tk—2) = 0 {mod p).
oT

(71(2mmu +%), Th—2) = 0 (mod p).
However,
2w -k =1 (mod 7k —2) and (7, Tk~2) = 1.
This proves '
(i) (8, 31) == 1.
Lastly, 8 = 0 (mod 7), £ =1 (mod 7) imply

(i) +24, 1) =1 for a=0,1,2.



4. The polynemial D (s, ). Let o, y, #, w be as in (5). I we make uge
of (4), the common value of the five expressions B —44* coming from,
the pairs [4, B] in (3) may be shown to be

Dis, 1) = (&5 —w’)*— (2.
D(s, 1) is homogeneous of degree 24 in s and % Further,
(8) Ds, 1) = ™ (mod 3t).

This gives the first assertion of
TuMMA 2. D(s, 1) is monde in Z[s] and has no faclor of the first or
socond degroees.
Proof. If 8 —a were a linear factor, by (8) we sce
o =0 (mod 3}.
However,
D{a,1) = [18%3—33(4® — 6)3]2 — a* (18 — a®)® = a’*(a® ~ 18)%,

which is positive woless 0 < a®<<18. These two facts imply @ = 0.
But D¢, 1) 0.
Next, if s2—bs — ¢ were & quadratic factor, then
D(s, 1) = §* (mod 3),
Dis, 1) = 0 {mod 82 —bs—0¢),
§2 = bs+ ¢ (mod s¥—bs—c).

Therefore with congruences modulo the ideal (3, 8*—bs—¢) in the ring
Z[s], nnless ancther modulus is indieated,
(9 g = 0,
(10) 8% = bs 0.

I b =0(mods), (10) implies s® =¢* =c* (seeing ¢® = ¢ (mod 3}),
go that 82 == ¢?. Otherwise, b2 = 1 (mod 3), as we now suppose. Cubing
both gides in (10), s° == bs®-+¢. HMowever,
8 == b(bs+0)+os = (140)s+be.
Thus '
8 =b(l--e)s—c.

Cubing again,

$® =b(l+e)sd—e = b(L-+e)2s4cl
Multiplying these, s** = B(1 —¢%)s --¢?, which remains correct on setting
b =0 (mod 3). Using (9), we thus have for all values of b and ¢,

b{L—e?)s+¢® = 0 (mod (3, 82— bs—0)).

. § E |
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Hence
b(l—c?) =0 = ¢? (mod 3),

giving

b =0 =¢(mod3).

Set b =230, 6 =53¢ and ¢ ="b¢+c¢. Then with congruences
modulo (318, s2—bs—¢) unless otherwige indicated, $* = 3e. From. this
we have
1884 39(6 — 8%)® == 3°[28 4 (2 —80)?],
§5(18 — &%) = 3%30%(6 —s0).
Henco
[188 +33 (6 ——83)3}2 = 312’
§15(18 — 5%)% = 310867 (—s0)? = —B13g12

Subtraeting, D(s, 1) = 89(1+0%). But o =b's*+¢ = o (med 3). Thus

612 = ¢'2 (mod 3).
So finally, since D(s,1) =0, we obtain

- 31%(1+¢'2) = 0 (mod (812, 52— bs —¢)),
which means
313(1 4 ¢%) = 0 (mod 3).
However, 162 = 0 (mod 3) is impossible for any integer ¢ This completes
the proof.
Lrvmma 3. Let

D(s,1) = gls)*h(s)
be the factorization of D(s, 1) in Z[s), where h(s) is square-free. Then k(s)
has at least three distinct (complex) roots.

~ Proof. The degree of h(s) must be positive; since

D(2,1) = —2%-4799.

By the preceding lemma, any irreducible factor of A(s) has degree al

least three. Any three roots of this factor then furnish three distinct
roots of A(s).

Suppose now 8 and ¢ are as in Lemma 1. Writing v = mnu (Whero

ue X), this is to say :

§ =T20+k), & ="To41. ‘

D{s, t) becomes a polynomial in » and may be denoted by D(v). Furt];ef,
we write '
D(v) = Ov)*d(v),

with d(z) a quadratic field discriminant. (This defines the function d(z).)
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LewmmA 4. At least three rools of D(v) oceur with odd mulitplicities, |@“

Proof. Let Qy[s, t] denote the homogeneous ring of forms in & and
t with rational coefficients. There is 2 natural one-to-one correspondence
Orls, 11— Q[s] under which ?—1. Analogously, we have the map
Oplv, w]—~Q[v] (where w is not to be confused with ocur earlier uge of

this symbol).
E 14 7Ekl[v
t] 171 |w

The substitution
has determinant 7(2—7k) 5= 0, so gives an isomorphism between the
bhomogensous rings Qy[s, t], Oy, w]. The composite map
Qs]— QH_ES: t] > Qulv, w]—Q[v]
then provides a Q-isomorphism of the rings @[], Q[»], in which D{s, 1)
is carried to D{v). We conclude that on factoring D(v)in Z[v], we obtain
an expression whose square-free part has at least three distinet roots, this
property of D(s,1) in Z[s] being carried over from Lemma 3 by the
igomorphism.
Lemya 5. For oll sufficiently large |, D(v) is negotive. Further, the
cardinality of the set {d(v)] v = mnu, uwe X} is infinite. '
Proof. We have
§ = 2.T0+0{1), ¥ ="Tr4+0(1).
Recalling that D(s, ) is homogeneous of degree 24, we infer
Dis, 8) = D(2,1)- (7o) +0(Jo}*).
That is,
Div) = —28-4799 (T0)* +0([v[*).
T}Jis_ gives the first part. The second follows from the well-known result
of Siegel [4], that for a polynomial D (v) in Z[v] satisfying the statement
of Lemma 4, for each fixed integer d the equation
C2d = Dw)
has at mogt finitely many solutions in integers v, C.

5. Conclusion. (a) The theorem of the Introduetion is obtained if
Wwe summarize our results. According to Section 3, for each v = Mh,
%e %, the field QVa(v)) has three independent classes of order three,
prowded?‘d(w) < ~4. On the other hand, as shown in Section 4, d(v)
s pe'gatwe for all suificiently large |v|, and unbounded as [v| tends o
infinity. Letting u tend to infinity in %, infinitely many distinet imaginary
guadratic fields of the form Q(l/ d{mnu)) ave obtained, each with three
independent ideal classes of order three.

R&.__:____ — —

(by A theorem of Scholz [3] states that if d < 0, then Q(V:::ﬁ}

hag either the same number of eyclic factors as Q(I/E) or one less, when
the 3-primary components of their class groups are compared. Using
(a}, the Corollary iz obtained. ,

{¢) Infinitely many imaginary guadratic fields also occur, for which the
class group containg the more claborate struetare €(3) X €(3) x €(3) x €(3)
(four factorg). It follows that the Theorem above is true for real guad-
rafic fields, as well- ag for imaginary. These matters will form the
subject of a Iater article.
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