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A class number congruence
for cyclotomic fields and their subfields

by

Tavno MeETSANKYLA (Turku)

1. Introduction. Consider the cyclotomie field F = @ (£) generated by

= exp(2ni/p), where p = 2m+1 is a prime > 3. As usual, write the

clags number of ¥ in the form H = H, H,, where H, is an integer and H,

denotes the class number of the maximal real subfield F, of F. Carlitz [57]
recently derived a congruence

) _ H, = H,G(modp)

thus giving, among other things, a new proof for the known fact (Kum-
mer’s theorem) that H, = 0(modp) implies H, = O(modp). It is Te-
markable that Carlitz's proof wses, apart from the explicit expression of H,
only a few elementary results from the theory of cyeclotomic fields.

Borevich and Shafarevich proved Kummer’s theorem in [3] by a new
p-adic method, due to D. ¢. Faddeev. In this paper we shall show that
thig p-adic method easily gives a congruence for H,, from which we can
deduce a congruence of the form (1) (see Theorem 1 and its Corollary).
Furthermore, we shall prove that our congruence implies that of Carlitz,
and vice versa. '

We shall also generalize Theorem 1 to the subfields of #. This gener-
alization yields, as a special case, the well-known congruence connecting
the class number and fundamental unit of a real gnadratic field (se
Section 6). '

(¢ an infeger},

2. Preliminaries. Recall that the prime factorization of p in F is
p =p*Y where p = (1 —[). Let F, denote the p-adie completion of F.
Then @, the p-adic completion of ¢, can be embedded in F, in a natural
way, and [F,: @,] =[F: @] =p—1. Moreover, the automorphisms
oy (8§ =0,...,p—2) of the extension ¥/@, defined by

o (f) = 7
can be extended to ¥,/Q, in a natural way. (For the proof of these and the
following results in this Section, see [3], Chapter 5, Section 6.)

(r & primitive root modp),
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Let us denote by Z the ring of rational integers and by Z, and ¥,
the rings of p-adic and p-adic integers, respectively. Choose the unigue
prime element A of ¥, satisfying the conditions

Zp-—l_l_p — 07 2 = é’—l(l’l’lodﬂ.g)

and note that the system {1, A, ..., A"7%} is a fundamental basis of F,/@,.
Lemma 1. In F,, the mazimal subfield whose elements arc left fiwed
by o, is the subficld generated by {1, 2%, ..., A" 7%

Congider the funetion loge over the field #,. Xt iz defined for all |

principal units (i.e., for units ¢ with & = 1(111()(1,1)) of ¥, and satisfies the
equation
(2) log(e; &) = loge,+loge,.

_ Levua 2. For every wnit s of By, "' is a principal unit of Y, and
loge™™! ean be vepresented in the form

-1

loge™™! = M @i (dye 7).
Tomal
Levra 3. Put
r-1 L1

Il +1) n,  Blw) = Y anl,

L= ) N0

=

Then the following congruences hold in the ving Y:
(i) L(e?™Y) =loge? *(modA?) (s a unit of Fy),
(i) B(RA) = Fmodi?) (B =1, 2,...).
3. Congruences for H,. The so-called cyclotomic units of F, are
the units
(3) & = oiafe(d)) (8 =1,..., m=1),
where ¢({) is the positive 1111it
. ' 1 — E’r R }_1/2
o) = { TEETIIE

1

Let {o; = {0 § =1,..., m——l} denotoe a system of positive fundamental

unity of Py and put

N~1

W =[] (i=1,..,m~1)

Feel

with #(i, j)¢ Z. Then it is known that
(5) ' H, = .def_;(r(i,j))] (i, =1,...,m—1).
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{Cf. [3], pp. 361-362. Our system of cyclotomie units is not the same as
the corresponding system in (3] but is more appropriate for generalization,)
In what follows we shall assume the gequence of fundamental units to be
s0 chosen that the determinant on the right is positive.

We apply Lemma 2 to the above units. Since every p-adic integer
is congruent modp fo some rational integer, we may then write

m—1
logel ™ = 2 v A (mod Yy (1 =1,...,m—1),
k=1
(6) et
loged ™ = 3wy (modA”Y)  (§=1,...,m—1)
prass
with vy, wy Z. By (4) and (2), this yields
H— Mm—1 m~—1
Z ot = 3 2 (i, Hwp A (mod P (G =1,..., m—1).
=1 k=1 f=1I

Hence we have the following “hagic? congfuence for H,:
(7} det(vy) = Hydet(wy) (modp) (i,§,k =1, sy 1)

The computation of the numbers v, can be accomphshed by a pro-
cedure completely similar to that in [3], pp. 374-375, by starting from
the formmnlag

6 = oy (i;__ll c"(’“-”’z) {i =1,...,m—1).

The resnlt is
qu (l _ Tzk) ,.l,.z('i-l}fc

(8) Un S modp) (4 k=1, ..., m—1),

where B, denotes the 2%-th Bernoulli number in the even suffix nota.tlon
Observing that

(L—9%) (1% ... (L—r"=) = —}(modyp)
we therefore get _
TaeorEM 1. The class number H, of F, mtii.s'ﬁes the congrience

m—1

(9) —Jdet (r20-DF) IY%J“T — H,deb(1y) (mod p)

(3:0, 5 =1,..., m—1), where the wy, are rational integers defimed by (6).

The determinant on the left side of (9), being of Vandermonde type,
equals, except for sign, the product of all #* —**, where 1 << i < k<< m —1.
Hence this determinant is not divisible by p.
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According to a classical result of Vandiver ([11}, see also [10]),

= (~1"2"p [ [ By ypss (modp).

F=al
Using Kummer’s congruence and von Standt’s theorem for Bernoulli
numbers ([3]), we may put this relation in the form.

m—-1

(10) Hy = (—1y"220" [ [ (By,[20) (modp),

=l

which combined with (9) gives

CoroLLARY. We have
(11) H, = —2*""H, D det{— (2k) 1wy} (modp),
where D= det (%Y (4,4, %k =1, ..., m~1).

Ag mentioned in Introduction, it follows from this congruence that
H, = 0(modp) implies H, = 0(modp).

4. Comparison with Carlitz’s congruence. Let us suppose that the
unit g;(£) is written in the canonical form by means of the basis {1, ...

oy 7% of F, so that sj(a:) is a polynomlal over Z (j =1,...,m—1).
Wmte briefly (;/e;) (%) for g (@) je; (), where & () denotos the denvmtwe

of &(x), and set .
{12) C el (€)= ) eald) (e B)
§=0

Carlitz’s congruence can now Dbe presented in the form

: D2
H, = —2*""H,D " det () ¢,r® ) (modp)
§=0 .
G,k =1,...,m—1), where D is the determinant defined in the above
Qorollary. We shall prove the following lemma Whlch indicates that this
congruence implies (11), and convoersely.
- LemmMA 4. _ :
~ (200 g _Eo P08 (modp)  (§, k== 1y een, m—1),
Su=i
Proof. Making use of the fact that g;(L) 18 real, and of Lemma 3(ii),
" we obtain from. (12) .

-z o
C(ej EJ) (§) = JA‘E s O'H(C — Opnpal ) = %2 G_w(E (r*A) — ('F‘m“’ﬂ,))
8w =0

Loom R ) .
= 2 (2% —1)1)" 2 & :r(” “1)s jrk—t (modl" 1)

k=1 & ()
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- (here and below j is fixed, 1<j< m—1). Thus our lemma is proved

after we have shown that the definition (6) of w, % Amplies

-1

(18) L(egfe) (£) = — D 2wy 4%~ (mod ##72).

=
To verify (13), put

) -2
(14) ¢=Nai (apeZ,)
n=>b

and. denote

Pz) = 2 a,a"  R(z) = g(P@)*,

n=0

so that
Py =1, R@A) =gl)P™

Obviously, P(z), B(z)eZ,[#], and the constant term of B{z) is, by
Lemma 2, eongruent to 1modp. It follows then from the 1dent1ty

{1+ﬂ3) a L(].w}—m) =14 (1) 2gP-1

“that-

. |
(15) R(@)—L(R(@)) = B (z)+2°~ §(s) + pT'(a)

with 8(a), T(2) Z, [#].
Applying Lemma 3(i) to (6) we may write

p—-2

LY = Do i* (b2,
n=0
where

by = wy(modp) (k ==1,...,m—1)

and the other b, are = O0(modp}. Now, the equation

n--32

LE@) = > ba"
. n=0
holds for every o,(1), that is, for » = 2, 46, ..., 16772, where § is a pri-
mitive (p —]_,)-th root of unity. Hence we have the identity

n—2

L{R(@) = 35 @) E )

n=0
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with F(z)e Z,[«]. After differentiating and setting ¢ =1 we get,
by (18),

m—1

{(16) (R |R) (A) = 2'27‘,@0%&215—1 (modl-"’_'“’).

. k=l

- On the other hand,
(17) (R'[B) (1) = (p—1) (/&) (D) F'(A),

where, furthormore,

! »—2
(18) PA) = 2 My, AV == £ (mod A7)
ne=l

4

because @, = 1/nl(modp) (see (14) and Lemmma 3{ii)). Combining (16),
(17), and (18) we obtain the congruence (13).

5. Generalization. We ghall generalize Theorem 1 and Lemma 4
to the subtields K of . Tt is known (see, e.g., [6], [2]) that the class number
of K is of the form & = h, e, where h, and hy are integral factors of H,;
and H,, respectively, and %, is the class number of the maximal real sub-
field K, of K (hy = 1if K = K). In the following we may assume that K

'is imaginary, sinee every real subfield of F is contained as a maxinoal
real subfield in some imaginary subfield of F. Let K he of degree o = 2%
over § and put p~1 = ab, where b is odd.

The maximal subfield of F being pointwise invariant under the
automorphism o, is the real field K,. The following lemma can be proved
gimilarly as Lemma 1. _ ‘

LEmma LA, In F,, the maximal subfield whose elements are left fiwed
by o, is the subficld genorated by {1, 2™ ..., AHu—1bY

. Using this lemma, one can easily prove

Lmwa 2A. For every wnit & of Ko, 67 is @ principal wnit of Y, and

logeP~! cam be represented im the form '

u~1 o
loge? ™ = > @ (dye Zp).,

Towsn ], .
The éyclotomic units of K, are the units
Ny = Cpy - Cirpnu (0 =1y ey w—1),

where the e, are defined by (3) ({67, p. 28). Let {&;, ..., &,..} denote a sys-
tem of positive fundamental units of I, (this notation may be used
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without eonfusion because the fundamental units of F, are not needed.

. any more). Writing, by Lemma 24,

w—1

logn~ ER_Z 8 A (mod AN (5 =1, ..., u—~1),
=1

{19)

w1

loge?™ = M wp ™ (mod2”)  (j=1,...,u—1) .

k=1

With 8;., wye Z, we have then as an analogue of (7) the congruence
det{sy) = hydeb{w;y) (modp) (4,4,b=1,..., u—1).

Indeed, the analogues of (4) and (5) hold in this case, too. (See, e.g., [6].

Note that there is no ambignity of sign when we assume the sequence

of the ¢; to be suitably ordered, or in case # = 2, when we assume & > 1.)
The numbers s; may be computed by means of (8) ag follows:

b—1 . b=1 m—1
Pl n—1 __ . a
logni™ = 5‘ logefin = E §: Vi A
- =0 i=0 k=1

m—1 b-—1

B, (1— 1)

2itiu—1k 12k
2E(2E)1 '

=1 #=—=0
41
By {1 — %) )
= RN L ! ppRlE-1)bhgk Ho1
g 2Bk (26k)! o AP (mod 2P,
Because of

(L —) (L—o¥) .o (1 =700 = —1/2b(mod p)
we thas arrive at |
TEEOREM 1A. The class number h, of K, satisfies the congruence

. u—1

(20) — 37  det (Rl 1VEy =B hydeb(wy) (modp)

et 2n.(2bn)! e

(tydy & =1, ..., u—1), where the w,, ave rational integers defined by {19).
o The following lemma allows one to put (20} in a slightly different
orm. : .

LEdua 4A. Let the rational inlegers ¢, (j=1,...,u—1;58 =0, ...
ey p_—Z) be determined by the expansions (12), written for the f-uﬂdamemal
units & of K. Then - :

) -2

—(20F) gy = N @508 (modp) - (f,k =1,.0., u—1).

§=0 .
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Proof. From ({12) it can be concluded that
-2 2b—1
Clejfe)i) = (2B)7 2 2 &7 0y {£) (MOd AP
. s=0 =0
(apply the automorphisms o, to the element on the left). The right side
of this congruence is, by Lemma 3(ii), congruent modi”~" to

0] Dom2

2 Ob?n'-'“'] ZG ?(207 1)81257&—

k=1 LR

On the other hand, it follows from (19) that

u—1
5(8.;/63) (C) = - 2 2b]cwj,n/12”’““1 (modgnm-z) .

==l
This can be verified similarly as the corresponding congruencé (13) in
the proof of Lemma 4. Thus Lemmea 4A id seen to be true.

Remarks. As in connection with Theorem 1, we find that the de-
terminant on the left side of (20) is not divisible by p. However, Theorem
1A does not imply any result analogous to the Corollary of Theorem 1,
since the analogue of {10) is

%

B,
= ( —1jel-t SR oot Lo SO PN |
= (e [ [t - wmotp),

provided X ig o proper imaginary subfield of #. This congruence has heen
demonstrated by Carlitz [4]. ‘

The author {9] has previpusly derived some congruences for h,,
by goneralizing certain considerations in. Carlitz’s paper [0]. To see that
these congruences agree with the present results one has to observe that
the polynomial

‘ e
Y(@) =p7h Y (e =)
Gu) )
where », {denotes the least positive residue of »* modyp, is connected with
Bernoulli numbers by the congruoences '

2np(r**Y) = By, (r'"—1) (modp) (mn=1,...,m—1)

(cf. [71, pp. 280—281)

In [9] it is shown that the analogne of Kummer’s theorem for proper
subficlds I of F reads as follows: if by = 0(modp), then H,/h, = 0(modp).
This could also be proved as an application of Theoreny LA.
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6. Application to a real quadratic field. Let p = 1(mod4) and choose
a == 4, whence K, is the quadratic field Q(¥p). Tn this case (20) reduces to

(21) B fm! = hwy, (modp)
where w,, itz defined by

100‘57%1 = Wy AT (]IIOdﬂ.p"l)

& (> 1) being the fundamental unit of K,. Let T and U be rational integers
such that & = (T Ul/p ). Clegaly,

L= 1 (UTWp (tnod AP
and so
(22) loge?™! = -—(U/T)l/— (mod A¥~Y).

We may compute Vp by the known Gaussian sum formula ({31,
p. 349) and by Lomma 3 (ii) as follows:

Z - Z e = - (modﬁ” .

g=0

Vp = pZ( —1)0,(0)
s=0

By substituting this in (22) we thus obtain
wyy = UfTm!(modp),
which combined with (21} yields
' I'B,, = hU(modp).

This congruence has been discovered by Kiselev [8] and, independently,
by Ankeny, Artin, and Chowla [1]. A proof for it, resembling our proof,
is alse sketched in [3], pp. 377-378.
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On pairings of the first 2n natural numbers
‘ by
G. B. Hurr (Athens, Ga.)

 Introduction. In proposing a research problem [2], Mok-Kong Shen
and Tsen-Pao Shen noted that the first 2n positive integers may be group-
ed in » pairs, (&, b)), {@s, Bs), ...y {0, B,), With @; < b; and conjectured
that for » > 2, there exists a pairing sach that the 2x numbers &+ a;
and b, — a,; are all different. We say that a pairing of any 2n distinet posi-
tive integers i3 accepiable if these conditions are satistied.

A program devised by Mr. James €. Fortson for an IBM 360, Model 65,
has produced all acceptable pairings of {1, 2,...,2n} for n < 9. The
printout shows that if A (n) designates the number gf acceptable pairings
of {1,2,...,2n}, then A(1) =1, A(2) =0, A(3) =1, A(4) =8, A(5)
=22, A(8) =51, A(T) = 342, and A (8) = 2669. This suggests that the
difficulty in an existence proof stems from the fact that too many accept-
able pairings exist for large values of » and that the problem may he
simplified by pufiing on additional conditions.

M. Slater [4] has suggested that the Shen problem be attacked by
requiring that 1 s a; < » and conjectured that acceptable pairings satis-
fying this condition exist except for » = 2,3, or 6. D. A. Klarner [1]
noted that the Slater conjecture is related to the “problem of the reflecting
queens” and used. results of M. Kraitchik to construct all favorable exam-
ples forn = 4, 5, 7, and 8, J. . Sebastian [3] used a computer to construct
a favorable example in each of the cases » =9,10,11,..., 27,

If K., is a set of 2n distinct integers, a pairing of Km is 8 collection
of pairs {(a;, b;)] ie [1, n]} such that a; < b; for all ¢, {a;; b;} = K., and
each element of K,, occurs in some pair. A pairing such that each of the
sets {b;+ a,} and {b,— a;} iz a complete residue system, modulo n, is a good
candidate to be acceptable. In this paper the Shen question is given an
affirmative answer by studying pairings such that

(*) each of the sets {a;}, {b;}, {b;+ a3},  {bi—a;} s 2 complete residune

and system, modulo =,

(#) b; = 2a,, modulo #.



