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every prime p and let Py, P, be polynomials with (degP,, degP,) =
If py, Py - .-, Dy ore the first & primes, and if » < p;, then there is no proper
extension of Q({y, Lpyr-vvy Cppd contained in K of degree < n. So by
choosing » Dbigger than the degreey of P, and P; and % large enough %0
that % > n and the coefficients of the P; and «, are in @((, ,..., gm ), We
are assured that the zets of the form {«,} are contained in Q{ 1 veen )
and are hence finite. Nevertheless, if P (X) = X" and P, (1’) = ;["n
then taking o to be any prime relatively prime to m and n, we have P 1)
= K, = Py(¥) where T, = {{| k =1,2,...,p}. So there ave infinitely
many sets of the ,second type. The same phenomenon oeeurs for Py, P,
of the same degree when I = @ ([6]).
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On the number of Abelian groups of a given order
by

B. B. SemivAsiw (Bombay, India)

L. Introduction. Let A () denote the number of essentially distinet
Abelian groups of order not exceeding #. Then

A(p) = dyo+ A2 - A0+ A)

where
Arzgc(?) (T=la253)
and

A(z) < 2"log" 2.
Results of the above type with the pairs
(6,6) =0, G2, &, 50, &3, &9, (2,0, (&2

were proved by P. Brdos and G. Szekeres [1], D. G. Kendall and B. A.
Rankin [2], H. E. Richert [3], W. Schwarz [4], and P. (. Schmidt E5],
[6]. As an application of the theory of two dimensional exponent pairs T
have developed elsewhere [9], I here show that

(1) . A(CL‘) < ,W,,Iﬂsl-i,ﬂ?logﬂw.
Here the exponent 3= = 257 . 259 .
Actually the method ylelds exponents smaller than 32, but I shall

avoid the computations that will be necessary to obtain the best possible
exponent in this way.

2. Lemmas.

Levma 1 (Lemma of partial summation). Let g(m,n) denote any
numbers, real or complew, such that, if

Glm,n) = D glu, )
lsusm
IsSysin
{nyv)eD
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then Gim,n) <@ (1<m< M, 1<n<N) for any arbitrary region D
contained in the rectmque lsms M, 1<n<¥N, Let him, n) denote real
numbers 0 < him, n) < H such that the three empressions

B{m, w)— h{m+ 1, n);  h(m, w)— him, n+ 1);

Afm, ) — him+ 1, n)— h(m, n-- 1)+ h(m -+ 1, n-- 1}
Leep o fiwed sign for oll values of m, n congidered. Then

| 37 glm, myn(m, m)| < b6,

(m,n)cl)

Livma 2. Let M and N be positive integers, u, (= 0) and v, (> 0)
(I<m< M,1 < n<N) donote constants. Lel 4, > 0, B, > 0. Then there
exists a g with the follonwing properties (@ and Q, are given non-negative
nambers) :

@L< g,y

and

M 1171
EAm um+ Z Bng_v
=1 )

- n=1
£ (A2 Blm )V Pyt on} A ™+ B @
m‘;z ; s =l

Levwa 3. For arbitirary ¢ > 0 and for any real function g,

Z plg(m, n)) < %L e j‘ 2 e{—vy(m, n))’ Min(--’},—%—)

v
{m,n)e ) =1 (M, n)ed

where o(u) = e p(u) = u—[u]l—4%, [w] being the integral part of w
and |D| is the area of the region D.

LevmMa 4. Let f(x) be veal with eontimuous derivatives uwpto third order
in (o, b]. Let 0<iy <€ —f"(2) < ,'{2 omd Ff(z) < Ay throughout (e, Dd].
Let m, be defined by the eguation f'(m,) = v (a-< v ) where a = f'(b)
and B =f'(a). Then

D olfm) =e(=1 317" (1) " e (f(m,) — ) +

g | . a<rf

+0{(b—a) 3"+ O (45 + O (log {2 + (b — @) Ag}) -

Lemma 1 above is Lemma 1 6f {8] with p == 2; Lemma 2 above is
Lemma 3 of [8]; Lemma 3 above is Lemma 8 of [SJ with ¢ ==1; and
Lemma 4 above iz Lemma, 3 of [7 ]
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3. The theory of two dimensional exponent pairs.

DErFiNirIoN 1. The real function g(, ¥) is said to be an approzimation
of degree r to the real funetion f(z, ¥) in a region D of the Euclidean plane
if f and g possess partial derivatives upto 7 orders in D and

e — Gawya] < €na
for all (z,y) in D and 1 << p+¢ <7, where ¢ denotes a sufficiently small
congtant such that 0 < e < §. We write then f % g
DEFINIIION 2. 'We shall say that the pair (I, !,) where I, and I, ave
absolute constanty such thab
0y, -t <3

Is & two dimensional exponent pair, if to every set of real numbers s, ¢
such that st £ 0,

(ptp)s+(utpdt+utp' +1 #0

where p, u' are any non-negative integers and u,, s, are either zero or
unity, there exists an integer » (> 6) depending only on s, ¢ such that the
inequality
2 e(f(m, n)] < (zw)o{ab)i
(m,n)eD
holds with respect to s, and u whenever the following conditions are
satistied. D is a region contained in the rectangle o < m < ua, b < n << ub ;

>1, &= |psla” I » 1, = jotla~b7"! » 1,

a,b »1  and f— ow 'y

TumoreEm 1. (0, 0)' 18 @ two dimensional exponent pair.

THEOREM 2. If (44, 4;) i3 a two dimensional exponent pair, so is
S Sy 1¢ Sy N

EHAR—1)(]=%)" "7 BAHE-1) (-7

% being any integer greater than or equal to wwity and K == 2%.

Theorem 1 above is frivial, while Theorem 2 above is Thecrem 8
of [9] with p = 2.

{ty, 1)  where 1, =

4. General inequalities for two dimensional exponential sums.

Leymnia 5. Let f(z,y) be real in a region D econtained in the rectangle
M<eg M, N<y<N where M < 2M and N' < 2N. Then
}1/2

offim, ) < X+ {2 ST o, my— pim, )

(on, n)eD 1sustg—1 m,n
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where the summation on the right side is taken over the lattice poinls (m, )
for which both (m -+, ny and (m,n) ave in D, w betng am integer and the
only restriciion on g being 0 < g < M.

TaporEM 3. Let f(w, y) possess condinuous second ovder partial deri-
vdtives in the rectangle M < o< M', N <2y =L N' condaining the region D,
where M' < 2M, N' < 2N, Let

;
T » <

. A
T € 3 ¥

A
fa > €5

Tl "‘f'iw >

for all values of @ and y considered; where 2> 0; M, N » 1. Then

e{f(m, n)) € (P4 2710 ‘(ZGIZNI—-G_}_ A Y

(m, n)eD

for any real number ¢ such thal 0

Lemma 5 above iy Lemma 2 of [8] with p == 2. When ¢ = 1, Theorem 3
above is an immediate consequence of Theorem 1 of [8] with p == 2. When
¢ = 0, Theorem 3 above is got by applying Theorem 1 of [8] with p =1
to the sum 2 e{f(m,n)) for each fixed n. The general case for any ¢ in

= e L.

0ol now obvious.

TemorEM 4. Let f(a, ¥) possess continuous third order partial derivatives
in the rectangle M <o M, N <y K N' containing the region D, where
M <<2M, ¥ < 2N. Lel

o > €

A
Ve

; 3
Jeasi > < g Jovtn < gy

(J == 0,1)

. A
fI(fmf) = wa--l-:FfmJ’yﬁ ~-fi1v|-:f-y g "M.ﬂ;jijﬂiﬁ

Jor all the values of © and y considered, where A > M > L and 4 > ¥N» 1.
T'hen

3 offim,n

(m,njeDr

) < /'L(H 0)/2(-) B C‘)MI]ﬂNﬁ/(‘l +0) (0 ::_;: e 5{,: l) .
Proof. We assume without loss of generality that M » N, Lt

1
Fa,y) =flo+u, ) —f(@, 4) = u [ f(@+ut, y)dt.

icm
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Then F(z, y) satigfies the conditions of Theorem 3 with «A/M in the place
of 4 and so we have by Theorem 3 and Lemima 5,

1 1

® T uw

Z e(f(m,n) < g7+ {r,}__

(m, njeld

M and

1 [ ud (e ,
R

lsusg'—q-l
wazz I

1 wA A\~ ~ fuiy

—_ . yl—e R

* 3w, > ( ) A +J|1NQ_' p) ( )
MN<ud< M2

W F<J‘LIN

< (ql)(l-l-c)f MG y-e . T {ﬂi’(d-ﬁ-c)ﬂN—pl n %_( MN) }
g )

172
P JS’E}

lgusg—1

where 0 < g <

_MN Z

1€’M€€l =1

where £ > 0 and is arbifrarily Small.
Hence

{3)
provided

——_ 8 < < g—1/2 (Q‘/’L)(l-"c}"‘&ﬂf[“(3+C)I4N_c"2

MN

4) MOOEN= @1 and  MTNAT < 1.
Applying now Lemma 2 with @, = 0 and @, = M, we have -
\(5) 8 < Ml+c)f2(3+c)M1f?.N3/(a+c)_{_MI,IZN.

Bince 4 » N and ¢ < 1, the gecond term iz gmaller than the first and hence
Theorem 4 follows sub]ect to the conditions {4).

A b
Let now A1 M 1*N—% « 1 so that N » (ﬂ) . Then

JUreha(8e) prufe arsi(3re) _ 1(2+8)/(3+0) yr2/3+e) ( NMUE+

)

S AEFOHE+O) pRlE+e) (

+ 1+
5 A@+OIE+) FUG+) }?(HHE)NI e

gince 4 » M and 1/ 1s arbitrarily large Theorem 4 now follows from
Theorem 3. :
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Lastly, let AMH#+92N° < 1. Then
)L(I—}-c),f‘l(s—l-c:)ﬂflfzN3/(3+tl) __=. A1]2NA—II(S»{-G)“‘M'UzN_ri,'(s-}-z') o 11/31\7"_
Theorem 4 again follows from Theorem 3. The proof of Theorem 4 is now
complete.

5. The main theorems.
TUrRoREM. 5, If 0, ¢ > 0 and if (X, A1) is any two dimensional emponamf
puir, then

w(zm~no)
{m,n)eld
1 .
< {F1/2+10_11 Ml,'z-|--210Na}z-zal}'ﬁﬂ.‘jomh Ll “N+F””ﬂﬂﬂv
fwhe?e D is any vegion contained in the rectangle M < m <

F=a2MN"", cmdl’} M1, F_>_N » 1.
Proof. We consider the sum

< 2M, N < n< 2N,

(6) o= 3 e(—vemen"")
(e, n)eld

{(r=1;p,0>0).

Fixing », we apply Lemms 4 to 8,. Here f(#) = —wo™ ™", a<a<b
where a == a(n) and b = b(n) are such that M < a < b < 2M; 4y, = »FH 2,
and i, = vFM % Let A be the transform of the region D by the transfor-
mation % = f'(x), » = g; le. (u, v}e d <> (2,y)e D. Then by Lemma 4,
we have

(7 So=e(—p X I (@) Pe(f(m,) — pa )+

iy 164
o 1+ O[(F) ) + O{(vF) 2 M N)
gince :
Nlo (2+ l’ﬂ) < N (»F)1
g W JYHe,
Now '
. ) = vepw,* a7 = p.
Hence
@, = (veou " noyi0TY
and
fla,) — po, = _%—g‘ (veguin™)HrO,

I (@) |7 = (o)A
Applymg now Lemma 1 to (7) we get
(8) 8, <« (»F)” WM\Sﬂ+(vr)1f“N+(vI’)“”MN

icm
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1 1
(©) Si= ) e(— "L pagutn= ), s A,

(s, 1)ed*

Since ¢, ¢ > 0, it is easily seen that —g/(1--p) and o/(1+ ) satisfy
the conditions for s and ¢ in the Definition 2 and hence we get

1—ig—7y

(10) 8, < (vFyZo ("’Tg- N)

where (4, 4,) i8 any two dimensional exponent pair. Substitating (10)

into (8) we getb

’IU.F 1/2+}~u—31
) M1/2+21€0N3/2—-231 + (v_F)l,'aN_l_ (?’.F)—IHMN.

(11) 8, <(W

Applying now Lemma 3 to the sum

(12) 8= D ylemon)
(m, n)eDr
we have
(13) imm( )
ye=al
ITo<a<l, :
“Mm( ) < gl
and
- 1
3 ( A4S grar
il v>g

‘Hence, substitut’ing (11) into {13) we get

14 S <« 1,’2+21_0N5/2w221 ¥/ ][3_N' F-—l/z_MrN.
(14) <T+MN M +(gF)y N +

- . ( oF )1/z+ﬂu—31
Theorem 5 now follows from Lemma 2 with @, =0, @, = .

TEEOREM 6. If D is any region contained in the rectangle M < m < 23,
N << 2N, and ¢, o> 0, then

2 wp(zm"?‘/n"“) & FUS 30 s

(m, nyeld

where B — e M N~ and F » M »1,F > N » 1,
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Proof. We apply Theorem 4 to the sum

8y = 2 e(—vem™ ") (vz=1).

(m, m)eD
Here f(zv, y) == —vza 0y~ We .talke' ¢ =1

A=z MTONT =F,
We get

(1B) Sy < ()R N,

Substituting (15) into (13} we get

MN
(16) 8 <

+ (QF)1[4M112N3M .

Applying now Lemma 2 with ¢, = 0 and ¢, = M, we have

(17) S < F1]5M3[5N4]5+M1]2N. .

Since the second term in the abbve is smaller than the first, we have

Theorem 6. .
LmvA 6. Let Ay{x) be the remainder term in the asymplotic equation

1= A¥pt AX a4 ALe™ 4+ dy(a)

nlngngs:c
where
3
A =H¢(7”-) r=1,2,3).
v

If Ay(w) < #'log" s with 0> 1[4, then 4(x) < a"log"w.

LionvA 7. Let (a, B, v) be any permutation of the integers (1,2,8);

“and let

' ﬁa.{i,y(m) =
na-fn? < e
! men

=

Aofm) == — 3} 8,5,,(@)+ O(z"%).
. (@ 8, 7)

Then

Lemmas 6 and 7 above arve Hilfssatz 1 and 2 of [6] respectively.

We are now in a position to prove our main Theorem.
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. THROREM 7.
A(z) < 2B 0N 1002y

where 0 = Bup (A, —2A,); (A, 4,) being any two dimensional exponent pair
such that A,+31, = 4. '

Proof. In the following proof, we shall write 6 = 1,—2, where
(y 4;) i3 any two dimensional exponent pair such that A3, = %5
80 that 4, = 5430, 2, = {—}6. We also assume 5 < § <. Let

()

where (a, f#, ¥} is any permutation of the integers (1, 2, 3). By Theorem 5,
we have

1/e
A9)  Suplo, U, W)= Y w((;f?) )

mu—I-ﬂ,;?gx
m=>n
M<m=2M
N<naN

(18) Sap.,(®) =

mE+Bprca
m>i

1
& {FI)‘Z—BMsﬂ—ﬂfﬂ NS/G—S&]z} 3/2—16 —]—'FI‘M'M”‘N'-{—F_IH.MN
where ¥ = (M ~# §—7y,

Now
14 wrifa ¥ I\t '
(20) Py ==w(M°+ Nyt (ﬂ) } <t
and
N\e-De
(21) ) F_IIZM.N = {ﬁ'z‘—l (Ma_l-ﬂNy)ajz-l_l (TMT) } <& wl"”'
since M*H*NY €« » and ¥ < M.
- Algo
1 3 0 5 3f 1/1 —
@) 7 TINTT Ll e 6936 (_1‘:)(512“)‘3“”
- AM
1
L (s—s0
< zv ) if a2,
—100
e
Again, if o = 1, (MN)? <« M N? and hence,
I, 3.0 5.8 1, 1, e
(23) F* oM Nt 2 = g? (M—l—ﬁN-—y)E (MN) 4

& wéwﬂ(Ml-i-ﬂN?)-;_(ﬁ_.%) <<m131;—18?5‘)(;_’0)

14e—1

i MAHINT s T
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Next, we congider the case ¢ = 1 and

146—~1

MUHENTY & ml_n—:;zw‘
In this case, we have, by Theorem 6,
(24) - B pplw, M, N) < (FMPN)F

where T = g M PN,
Now
41 149—) 58— 100)

‘ 4
(25) EM:SNtJ. _____m(Ml-lnﬁN?)l,'ﬂ (%)E(ﬂ—y) < .’I:E S5 _ mll =

It now follows from inequalitics (19) to (25) that

3—104
(26) ey (@) < 2130 logy,

Theorem 7 is now immediate from Lemmas 6 and 7
THEOREM 8. A(z) < 2% ogy,

Proof. By Theorem 1, (0,0) is a two dimensional exponent pair.
Applying Theorem 2 to the pair (0, 0) with & = 2, we get the pair (%, 2“0)
Agam applying Theorem 2 with & = 1 to the pair (57, &) we get the pair
(& &) Theorem 2 with % =1, when applied to the pair () i) yields
18

the paar (s 355). Theorem 2 with % = 2, when applied to the pair
(35> 5¢) yields the pair (j=, %) Since the set of two dimensional expo-

nent pairs is obvmusly a convex set, we multiply the pair (3%, &)
650 63

by o and the pair (3%,2%) by & and add. Then we get the pair

(355 32). We apply finally Theorem 2 with %k =1 to this pair. Then

we get the pair (4, 4;) = (,,50, 28). Since this pair satisfies the condition
A1+3%, = % we have 0 = & where 6 ig defined in the statement of Theo-
rem 7. Theorem 8 is now an immediate consequence of Theorem 7.
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