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ACTA ARITHMETIGA,
XXIIT (1973)

On the problem of odd #-fold perfect numbers
| oy _
M. M. Awmrunov (Ordzonikidze)

§ 1. In this paper we generalize a known result, related to the existence
problem of odd perfect numbers, which was first obtained by Dickson [3]
and then rediscovered by Gradstein [5]. This regult consists in Theorem TV
of Gradstein’s paper [5] and here it is quoted as Theorem A in §3. A1
generalizations of this result are here obtained at the expence of an im-
provement of Gradstein’s method. In order to prove his Theorem IV
Gradstein first of all described a special class of arithmetical functions,
for which he then established a general theorem {Theorem F in [5]). Here
{ef. §10) we shall also use this theorem, but in a more suitable wording
for the subject (cf. § 6).

§ 2. Tt is usual to denote the sum of all different natural divisors
of a natural number ¥ by «(¥N). If (¢(N)—N)/N = h, where h is a natural
number == 1, then N is called a multiply perfect number and in the case
h = 1 N iy simply called a perfect number. In this paper a number ¥ with
{o(H)— N}/ = h, hnatural (= 1 or # 1), will be called an h-fold perfect
number (so the notions “a perfect number” and “a 1-fold perfect number”
here coincide). . '

There are rather vast lists of even h-fold perfect numbers for = 1,2,
3, 4, 3, 6, 7 (of. [1], [2], [4], [6], [7], [8]), however, we do not know whether
there exists even one odd h-fold perfect number. Further, the question
whether infinitely many such numbers exist, is still open. Theorem IV
in [6] is just one of the known (at all not numerous) important results
connected with the last problem.

Concerning the notation, we make the convention, that in this paper &,
n will always be used to denote natural numbers, N will denote an odd
natural number and the right-hand side of the equality N = pfipf2 ... pfu
will represent the canonieal factorization of N (py, Pq, ..., P are different
‘odd prime numbers, f;, fs, ..., fi, are natural numbers). The nuniber n
oceurring in this factorization will be called the rank of N, and N itself
will be called a number of rank n. For any {not necessarily multiply perfect)
N the real number (cr(N )— N|/¥ == Awill be called the measure of perfection
of N (so, if 2 = & is natural, then ¥ is an odd h-fold perfect number),
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§ 3. TueoreEM A (due to L. XE. Dickson and I. 8. Gradstein). For
any #, among all odd nalural numbers of rank n there cannot be infinitely
amany 1-fold perfect numbers.

Gradstein’s proof of this theorem is based on the faet that p,, p,, ..., p,
in the canonical factorization of N are different prime numbers (ef. [5),
Ch. I1, § § 6, 8), but as can egsily be seen, this condition cannot be uged in
the same way to prove the analogue of thiy theorem for h-fold perfect
mumbers with 7 # 1. Ag-a matter of fach, a deepened consideration
ghows us that the above condition on p,, Ps, -.-, Pp I8 unnecessary at
all (even for the proof of Theorerm A itself). In the sequel we shall avoid
this condition, but nevertheless we shall he proving much more than
Theorem A.

§4.let(@={n<n<. << . hd)={u<au.<g<..}
be two given infinite sequences of natural numbers. Denote the variable,
running over numbers g from (Q), by m, and the variable, rurning over
numbers o from (4), by ». We shall consider arithmetical functions f(m, ),
where m, » are arguments with domains (¢)), (4) respectively. We specify
a class (f) of such fanetions by the following specisl conditions:

(a) g << g implies f(g, o) > fg’, a) for every a.

- (b) a< o implies f(g, a} < flg, ¢') for every g¢.

(¢y For every a there exigts 11m fim, a), where m tends to

infinity through the sequence (¢). ™7
, (d) For every ¢ there exists lim f(g,»), where » tends to infinity
through the sequence (4). yoree

(¢} There exists lim f(m,») = lim lim f(m,») = lim Hm Flm, ),

N, per0q M0 p—rtd Y00 NHepd

where m, » tend to infinity through the sequences (Q), (.A) respectively.

§ 5. Let # be a given natural number and lot ¥ = H Sflmy, v), where
Frmil

f{m, ») is some function of the class (f) determined in § 4.

ATl my,, vy, will be considered as independent varviables with the above
mentioned domaing of variation: (@) — for all m,, (4) - for all »,, For
every natural number 1< 2n, by a specialication of the fumction ¥ we
shall mean each function of I variables, which may be obtained from ¥

- by fixing any 2n—1 of ity arguments m, » on any definite natural num-
bers g, a from (@), (4) respectively. The factors in any such speciali-
zation will be arranged in the following order:

1..On the first place we put down all factors of the form f(g, a)
(Le. both the arguments m, » are fixed on definite numbers 4, a from

Q) (4) respectively). '

2. On the second place we put down all factors of the form f(q, »)
(l.e. m is fixed on a number q from (@), while » persists as a va-

riable).
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3. 0n the thivd place we put down all factors of the form fim, a)
(ie. » iy fixed: on a number o from (4), while m persists as a variable).

4. On the fourth place we put down all factors of the form fim v)
(i.e. Doth om, v porsint ay variables).

Let any specialization of ¥ be given and let #, s, i, be the numbers
of ity factors of the first, second and third form, respectively. Every
such specialization, independently of the values ¢, ¢, on which its 2n—1
= 2r--¢ -+ ¢ arguments m, o arve fixed, W111 be denoted by Yf(r 8, 1), ie,

Wir,s,t) = z s I IR, where I = ”f (@1, az), I, = H FGy i),
M 8-t
Oy= ]I flmg, ap), I, - [ ] f (mk,vk ). If any of Lhese inur products
Joen pofagate1 Ic-ar L8411
i8 empty, then we replace it by 1. Thus, for instance, the specialization
¥(0,0,0) is the tunction ¥ itself. .

In virtue of speeial conditions {(¢), (d), (e) from § 4, any given spe-
clalization ¥(r, s, ¢) will gave a definite limit when all { its arguments
m, v, Which remaihed ag variables, tend in an arbitrary way to infinity.
This limit will he called in the Seq’uel the limstary value of the given
specialization,

On the other hand, if for a given specidlization of ¥, in addition
to its 2n — I already fixed arguments we fix the remaining 7 its arguments
(on definite numbers ¢, a respectively), then we obtain a definite numerical
value of the given specialization. In the sequel every such value will
be called an ordinary walue of the given specialization.

§ 6. It is eusy to verify that the function ¥ with all its specializa-
tions satisfics conditions 1, 2, 3 which are inherent to the funetion
F(oey,y gy ooy Aoy Doyy Pay - - -y Do)y deseribed in Gradstein’s Theorem X {ef. [5],
Ch. I, § 2). This fact allows us to apply that theorem in a corresponding
way to the function ¥ and thus we obtain the following

Tmworuwm B. Let (§), (4) be given infinite sequences of natural naumbers,
n — & natural number, u — o real nwmber, and let ¥ = n Flmyg, w,c) be any

Jumction, which is satisfiying the conditions of § B. k=t
If all specializations of ¥ having u as their imatary value, cannol have
T

as some of their erdinary values, then the equation n Flamg, vy) = p connot

hawe mf@mtelj maw?j solutions in nuwmbers belongmg “ (@) for all my, and
belonging to (A) for all vy

§ 7 Now wo are going to consider the (quite definite) function

I—Il_ ) s ) .

D == [I m’a~---}—~—, where all variables miy, g, ... My wil be sup-
k=] I(””’f —1

posed to take (independently from one another) valmes equal to arbi-

traxv odd matnral nmmhers == 1 and all variables #.. #». ..., 7. Will take
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(independently from one another and from all my), arbitvary natural
values. It is clear that & is a particular kind of a function ¥, ag intro-
. mrtt —1 1wt tm b
duced in § 5. Here f(m,y) = pr TP T p” , Where m, v
are running over the numbers ¢,a from the sequences (@) = {3,5,1,

) (4) = {1, 2,3, 4, ...} respectively. As can eagily be verified, such
a function flm, v fulfils condition {a)-(e) from. § 4, i.c. & is in fact just
a specific example of a function ¥. Moreover, leti ug note that here the
functions f(m,») has the following further properties:

lim flm, ») =1,
m—roo
PRt

lim f(m, a} =1,

00

. 8
}i‘::f(% v) = E:'i':

icm

and that for every ¢, a {from (@), (4) respectively) f(q, «) is an improper .

jrreducible rational fraction with an odd denominator.

§°8. For any specialization of @ let the occurring factors f be arranged
in the before defined order, i.e. let the products I in G(r, &, ¥) == I ILILIT,
be formed according to the formulae from § 5. Besides, in order to gimplity
some notations, assume that lim I7; denotes the number, to which [I; con-
verges when it arguments my, »,, remained as variables, tend to Infinity

. T gifed )
over the sequences (@), (A) respectively (e.g., linn [y == lim , [T Flmg, o),

. Mmyp—roe ey 8--1
where all a; arve fized numbers from (A), while all My ~+ 00 over the
sequence (@)). ’

In virtue of the properiies of f(m, »), which are pointed out in § 7,

the following statements, are true for each specialization ®(r, s, 1) of the
function Qi

-8

2. him M, =

i.f 8 >‘ 0, bllt 1i1“112 = I’ e 1 11: ] n

L=rl gfﬂ_
3. UmIf, =1 for any >0
4. imi7, =1 for any r+s+i< n.
§ 9. L. Neither special@zaﬁon of the function @, introduced in
§ 7, has any of its ordinary values equal to ils Wimilary value.

Proof. In the consideration concerning all possible spocializations
D(r,&,1) of & we shall distinguish four cases:

1. r =8 = 0. In this case, on account of the statements from § 8,

the limitary value of &(0,0,7) is equal to 1 (in pa.rticulan algo when

b= 0), hovrever any of its ordinary values fulfilg ” Hlay o) > 1, 80 in
this case the lemmsa holds,
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2.7 5 0, 8 = 0. In this ease (by the statements from § 8) the Hmi-
1, 62 H Flas o)y

while any of its ordinary value fulfils I7,- ['j flay, ak)>171, since in

tary valne of @(#, 0,1) (where r 2 0) is equa.l to Iy =

virtne of ¢ 1 (kee the condition on I in § 5) We have r < n and at the
same time f(gy, a;) = 1 for cvery k. Thus the lemma also holds.

3.9 =20, 8 5 0. In this case (again by the statements from § 8) the

limitary value of @(0, &, ) (whero ¢ =

a8
1,t>0)isequalto [ ]

I -
while
Fxxl 1 ’

.

i a
any ordinary value of such o specialization ix equal to H 1tgt .+ g q"k,

i)
k=1 Qkk
L]

. n
The equality T _ . 120t
4 v ?cll =1 g pd
gide after all reductions pergists as a fraetion with an even denomr-
nator, but at the same time its right-hand side always s a fraction with
an odd denominator (in particular, after reductions it may be equal to
the unit). Therefore also now the lemma is correct.

+ i

i3 absurd, since ifs left-hand

4, r 5 0, ¢ % 0. In this lagt case {once more by the statements from
§ 8) the limitary value of @(r, s, %) (where r 2 1, 821, t> () iz equal

-8
to 11 H EEWT’ while any ordinary value of such specialization is equal
k—r+1 BT
P48
to me [ AEOT o gy T ] et
kel n* Pt Sk R qr

false by the very same reasons as in the preceding case. This completes
the proof of the lemma.

§ 10. Tugorum C. For any given rational number 4 >0 and any given n
there cammnol be infinitely many odd natural numbers of rank n with measure
of perfection equal A

Proof. Lot N = pfrplr .., pi» be any odd number with measure of

o‘(N e

perfection equal A, Then we have A-+1 = n S(pr; By), where
Pl mﬂ-{—l___l
J(®r, ) are gome ordinary value of the funcmon flm,») = wim—1)’

introduced in § 7. By the equalities H TPrs Bi) = A+1, the numbers
Doy B (k =1, 2, ..., n) form & definite solutw:n of the equa:tl.on H F g, )

© = A+1in numbers p, 8, belonging respectively to the sets (), (A); intro--
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dnced in § 7. The left-hand side of this equation is the funetion @,
defined in § 7 so by the Lemma (§ 9), for this function Theorem B is
falfilled (Wiﬂl =i+l and ¥ = @). Consequoently, the msqmmon really
holds.

We remark that in the above thecrem 2 may always be assumned to
be a rational fraction with an odd denominator (which, in particular,
may be equal to 1) since numbers of this form are the only possible ordmmr

values of ©—1.
Besides, we note that in this theorem the words “natural mmmbers

of rank 7" may be replaced by the words “natural numbers of rank 7 with
any 1< o’

From Thecrem ¢ we can immediately conclude the following

CoroTLARY 1. For any given noatural numbers N, n there camnot be
infinitely mamy odd h-fold perfect numbers of rank n.

This Corollary includes Theorem A ag a particular cage.

COROLLARY 2. If‘or any given natural wumber n there connot be mfe-
nately many odd n-rank’s muliiply perfect numbers.

This result follows from Corollary 1 owing to the obvions inequality
a(N) 77 B
N < 4P —
number, while Py =3, Py = B, ..., P, are # initial succossive odd prime
nnmbers. ‘ '

, Wwhere N = pflpé'z ...pi iy any one odd n-rank’s

§ 11.: In our proof of Theorer C the sequence (@) (all odd natural
numbers except 1) was used only partially. In order to form the canonical
factorization of some number N of rank » we were taking out from (@)
only different prime numbers 9., Pq, ..., p,. Howover, with the same
effect one can take out from (@) arbitrary collections of any odd num-
bers g;, ¢ay -+, 4y (S0me or even all of them may be 1denmea]) thig possi-
bility gives us a more general result:

TrrorzM D. Tel for a given n each of qq,0ay ..., @ be an odd
natural number £ L, each.of o, as, ..., o, Do a4 non-negotive integer, and
let 8, be the set of all products g2 g2 ... 4w Then for amy given rational
nmnber u > 1 there commot be mfzmtel@; mwny pwoduats qarasx ... gye for which

T 1t gt @
k=1 G

In connection therewith we remark in conclusion that it is unknown
till now whether there exists even one product g ... g 5= 1 (where

14 A +o- glc
. qdk .

a.]l gk ate 0dd numbers # 1), for which l’] iy equal
1

t0 gome natural number;

icm
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