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Hence ‘ .
L)l = 0 (exp (-~ X 1/p));

where, for each fixed u 0, 3" denotes the sum over thosc primes which
patisty (10). By Lemmas 6 and 7 we geb

2fp = loglogw-- O(1).
prdimed )

Tence
1L ()] = O{{oxp (—clul*)}),

AACCY 1

Bo L{w) is integrable and hence L{u) is the characteristic function of an
absolutely continuons digtribution function.

where
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A simplification of the formula for Z(1, y) where
x is a totally imaginary Dirichlet character
of a real quadratic field

by

Dowazp B. Rmrovr* {St. John’s, Nfld.)

1. Tntroduction. Let & = Q(V4) be a real quadratic field, and let
% be a totally imaginary Dirichlet character of k. The Dirvichlet T-series
L(s, ) evaluated at s =1 can be written in the following form:

Ll 1) = =W () N(Dyb,)2 Y x(4)G(4))
A

where b, is the conductor of y, the summation ig over integral ideal Tep-
resentatives of the ray class group 1d(b,)/R(b,), the bar denotes complex
conjugation, W(y) is a constant of absolute value 1 (see [1], page 300),
&(A) is a rational number with denominator at most 125 whete b is the
smallest rational integer divisible by b,, and D, is the different of k. The
rational number G(4) does not depend on the class of 4 modulo E(b,).

‘For details see [4], p. 171

Of interest here is the rational number &(4) for any given infegral
ideal 4. We begin by defining &¢{4) explicitly.

For rational numbers u,v with w,ve [0,1) and (u,) 5= (0, 0) we
introduce the following modified theta function:

. 2 I = . gy
B(z w)=q“ ﬂ)l g"t)n(l "

where g = 6™ and 1 = g™,

If«' and ' are any rational numbers, we denote by ( ) the normalize
padir ( ) with 0 <2, v <L and o' ==u,9 = v (mod1).

Let BL(2, Z) denote the special linear group of two by two matrices
with. entrieg in Z and determinant 1. For any matrix M in SL{2, Z)

* Ressarch supported in part by a National Research Council of Canada Grant
. -A~8080.
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zmd rational numbers w, v with 4, ve [0, 1) and (s, v) 7 (0, 0) wo introduce

ra,tlona,l numbers (‘5(M L} by the following formula (1):

mine _ g {
1) (5(];[ w) = (Iogo(ﬂh ) 10g0(~|M (v)))
where 2z I3 a complex number in the upper hall plane, M oz (::’ 2), and
az-+-b .
Mz = oy
Let ay, ay bo a basiy for the fractional ideal 4D7'6;? considered

as a Z-module and such that o e,—a,a, > 0 where the prime denotes
conjugation. Let & denote the last unit of & greater than 1L and congruent
to 1 (modulo b,), i.e. the finite part of b, divides the principal ideal gene-
rated by e—1 where & and iy conjugate are positive. Then there exists
‘@, b, 0, de Z guch that :

a0ty == qoy -k Doy,

0y == 0ol - datg

dl].].d m] bG a‘.f;' ] U = al+a;’ 21:]1(1 -V w3y 'l- a;. rl.‘h()ll

7, Ve@ gince a1 —E— ay and ay -0y are just Lhe trace of a; and «,, respec-

tively, the t'race mapping being from % 1;0 Q. Let( ) (U) Then G(4) is

14
H
v}

For an explicit determination of &(4) in terms of elementary arithmetical
functions see [4],'p. 183. However, from a computational point of view
this formula is not suitable because there are j¢| summations to be carried
out and |6} cam be extremely large. This will be clearly qhnwn in an exaple
in the next section.

Using the fact that the left side-of (1) doos not (lupund. on thoe # chosen
in the upper half plane, it is straightforward to show that tor M, N

¢SL(2,7) ‘ o
MN_i "g) e (Ml;‘f) +& (.N | u (;‘))

(This fact was pointed cut to me by A, "Brnmer.)

- 1. et M~~(

defined by the following formula:
Gd) =8 (M

©

. ( ) It is convenient o uge the notation E(M ‘ ) rather than the vsuul notetion
S(HM, u., ), ‘

icn

_ the group BL(2, Z)

we have
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By a simple induction argument 11: follows that for M,, M., ...

oy M6 BL(2, Z)
= el ()

@) s([]w
' kel i=g
where I, is the identity matrix,
By mimicking the method for determining G(A) in terms of ele-

mentary arithmetical functions in [4], we can calculate G(T :) and

G(S‘Z’) explicitly where T = (i‘; i) and § :(‘1’ '_;) are genetators of

&(z[3) = tt-oton,
@ I
' o)~ ~3{}—v) it w=0.

(The author is again indebted to A. Brumer for peinting out this fact.
For the generator 8° there iy no need for two cases as for S, 6(8’
= (}—u)(§—v) for all u,ve [0, 1) with (u, ) = (0, 0).)

*

?
In this paper we prove the following results,
Lavma 1. Let a, b, ¢, deZ where ad—bo = 1, a,c>0 & #£1, ib| = 0

orl,d # 0. Thena/ |5 can bewritien as a continued fraction (a,, By - y Gpogy
suah that :

(i) of a> o0, 0/ld] = <au Ugyveny Bpon)y

(i} #f a <o, 6/|@] = {ay, ay, ..., a’n—‘u a,)

where a, = (c@Q — |@|P)fla \d|—~|b] ¢) and P, Q ars relatively prime positive

integers defined by the formula P[Q = By, G5y ..oyt _
LeMMA 9, Let M = (Z g)eSL(Z, Z)ywith @, ¢ > 0, b, & 0, then M can

be factored as follows: ' ' -

(4) M=N,N,..N, 8

or }
(8) M =Ny N, ... N, &

wkere N, = ﬂﬂi'_f ==

) tmd d, —-0 if a> ¢ gy H( — 1 a,; or
Qg = { 1)“-1%-&: 0

<n—1, unless a == 1 or |b|] =1 in which cases )
N N_ N 8 zf e =1,
M = NN, 8 if b =1,
N_N_, 8 if b = —1.
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TaroreM. For M = (: Z)eSL (2,2), 0> 0,0, d # 0

%)—i{ zq‘( — ;) A () (§ = 1)}4

7=1

-+ (4 “"'M'n-p-l)('b ) - 6('“‘".-1-1)
where g = 0, 4y = u, and for 2 E<siw-bL, Wy 52 Qg — e, (od 1)
where 0 << uy < 1, the g,'s ave def mod in L('mma. 2, and $(%p,q) = 0 unloss
Unya = O and M is factored as in (4}, then (U, 1) = = (&)

COROLLARY. In the particular case where M arises from an ideal 4 as
disoussed above, then

# n—1 1\,
o) ~&(u}) =2 - 55 > Dt
1
+—Z {Qi”w:"uimi_“i-m}(l'""’“1:) +A(M)
il
where A{M) = (1 —wu) if M is faotored as in (4) omd AM) = v if M i

faclored as in (B).

2. An example. 0111' claim ig th at - the formula given in the eomlla.l Y
is much better suited for computations than the existing formula, In the

cage that k = Q(l/j;) ‘where p iz a prime congruent fo 1 modulo 4, and

for the extension Q(?/i) of k then the conductor of y is the principal ideal
generatod by Vp, in the ring of infegers of k, times the two infinite primes.
- The different D, is the ideal gemerated by Vp. Hence for any ideal A,

1
ADF'e = r 4. It is algo straightforward to check that the least unit

& of k greater than 1 and congruent to 1 modulo b, is just the fourth power
of the fundamental unit > 1.

 For. p = 1297 ENaZ:
the ideal 4 = {24400 4, beZ} {which, incidentally, i a generator of
the class group of Q(V1287) of order 11) o = 2/1297, ay = 6/1297,
| 13073905 1493568\ - '
= 120979008 13820689)’ t =% = 41207 and wy =0 = 19T
The fraction 120979008/13820689 written as a continued fraction i
8 1,3,17,1,3,17,1,3,17,1, 3, 9>. To compute G(4) we compute the

& = 13073905+7467846 where 0 == g Yor

iocm

4 #0. Let (i, @yy ey
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+12

foliowing table  where 4; = P By =q;A;—A,_,, C; = B,— A,
=p—A; and T; = (C;D)/p.

L |0 1! 2| .:1| ‘I:J 5[ GJ ?I 8[ 9[ lﬂi 11 12 13 14
% of -3 o ~17) 8 -1 wr| -3l 1] w8 -3 8

Ay 1 L3 35/ 1188 11531 1260 33 __‘.l 35] 1188 1153] 1260 33 4[ 1296
4By 36| ~100) 1153| —2078D| 2627 —1298] 85] —108|1153] ~2078%] 2627)—-1292 -1

_C_ﬂé e 4 =4 o —11p] 2p -p o] -» ¢ ~1iTe| 2p| -» -

Dy 1203 1262] 109 144 37| 1264| 1203| 1242 109 144 37| 1264; 1293

By 0 1242 G 4448 T4) 1264 O] —-1202 0] —2448 T4| 1264, -1293

TFrom the formula given in the corollary we have

ki
N _}_‘EI._ E,L—j—-—zl-—
4 25 2p

G(d) = (p—4y)

=l

where n = 13. Froni the table it is clear that G¢(4d) = ~-1009/1297. This
calculation involved a summation of 13 terms. In the formula listed in
[4], p. 183, the calculation involved a summation of 120979008 terms!
The iormula above clearly simplifies the existing formula for G(A) and

ia easily adaptable to computers.

3. Proofs of Lemmas 1 and 2. We use some elementary results about
eontinued fractions that are listed, for example, in [3], Chapter 7. It
is convenient %0 extend the definition of a finite continued fraction,
denoted by (@, @y, ..., a,> where the a;s are positive integers, so that
&, may be negative. In the case where @, could possibly be negative but

Byt .y &, to be the continued fraction <a1, gy s

1
- # O define {a,, a,, ..

n

..,aﬂl__z,anﬂl—k-——>. This definition agrees with the usual definition
a'ﬂv .

when a, > 0. _
Lemmsa 1 can be divided into two parbs.

Part 1. Let Ii’[ = (g 2)6 RL:(2,2) and a,c>0,a £1, 6] %0 or 1,

Ay where a, > 1 be the comtinued Jraction
|} PY (e} — |ble) where T, Q are
vers Oy oy Then

empansion of aflbl, and let a, = (¢Q)—
relatively prime positive integers such thal P]Q = {a,, 0,
1) if a, =0,¢f|d] = {ay, @, ..., 05 )
(1) if @, #0,0f/ld] = Ly, Qg -y By, Gy
‘Part 2. If o, ¢, a,, are defined as in Part 1, then a, =0 or —1 wf and
only if a> e
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= —1, it is conveniend to wrike

affb] &= (dyy Goy oo L1 =<ay; dey ooy @y

These are the only two ways of writing a finite continued fraction. Hence
in this case we can write ¢/|b| in such a way as a continned fraction by
relabeling the as so that a,_, = 1 and from Part 1 ¢/ |d] = (@, ... #5070
Hence the statement of Lemma 1 is a summary of parts 1 and 2 above,
hence we now prove Pafts 1 and 2 in that order.

We need the fact about continued fractions that for # any non-zero
complex number (and hence, in particular, for » & negotive real),

4y, 5 aP’ +P”
v YRy = .L'(J _}_ Q”
where k32,7, P", @', Q" are pomwe integers and (P, Q) = 1 = (P",Q"),
PUIQY = (ayy oy ) and PQ" = {ay, ..., 4. Note that a|dj—|bte
= 41 gince &« and ¢ > ¢ imply that both & and d are negative or both
are positive. Hence the «, defined in Part 1 is an integer. If a, = ¢ then
cleatly ¢f|d| = PjQ. For a, + ¢

In the case where a,

T

(6) {ay, Gg, -

a4 I
By nnny O gy By o e
< 11 H 17 I‘l.> lbl»-l»—Q
by (6), and clearly '
anaw}wl’ _ ¢
4, 1B 4@ ldl

To prove Part 2 we first remark that, since a, 0| # 1, |0 > |@] if
and only if ¢ > ¢, and [d| > [b] if and only if ¢ > 4. Also the denominator
of the comvergents (see [3], Obapter 7) of a continued fraction form an
increaging sequence of positive integers.

If g, =0, then by Part 1 || and |b| are denominators of successive
‘convergents, hence [b{> |d| (we cannot bhave [b] = [d]) which implics
that a> o I a, = —1L then efld] = {ay,dy, ..., Gy —1> by Part L.
But a,.,> 1 8o that af/ib| = {ay, ..., @yy—1, 1> so that again |5 > |4]
gince a/|bi, ¢/ld| form consecutive convergents. Ience 4 > o.

Conversely assump that @, =40, — 1, then we shall prove that ¢ > a.
If a, > 0, then [d| > [b| becanse by Part L, a/|b|, ¢/|d| are consecutive
convergents, Ience ¢ > a. If a, < 0, a, 55 —1, then

1
¢l 1d| '”""'<a1; vevy an-—;“”;"> = {lyy vony gy =1, @)
n

where ®» = a,/(144a,), & positive rational number, 1 < a,/(1+4,) <2,
- 80 that the usual continued fraction for ¢/|d| will have more terms than

that for af{b| = {ay, ..., a,,—1,1>. Henco |d| > |b] which implies
that ¢ > 4. This completes the proof of Part 2 and hence of Lemma 1.

iom

= b gy D] = gy e, 1y = aary oy,
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In proving Lemma 2 we first dispose of the cases when a — 1 or
{8] = 1. In those cases the factorization of M is explicitly given and
can be easily cheeked to be correct. Hence we assume that & # 1 and
{b] # 1 so that we can uge the resulf stated in Lemma 1. We can assume
that @/ |b] is written. in one of the two pogsible ways as 2 continned fraction
50 that the conclusions of Lemma 1 hold. By the Buclidean algorithm;
there exist nonnegative remainder terms ry,7s, ...,7,.; such that a
erey Py g == fhy 3Ty s+, , Where
Fpog =0 and 7, , = 1,

If a > ¢ then by Lemma 1 ¢/|d| = (al,az, .y 8y.o> hence by the
Buclidean algorithn there exist nonnegative remainder terms 7,75,
such that ¢ = a |d|+ 7], [@] = aury+75, 1] = g5+ ¥y ooy Thoy = Gyu_gth ,
¥y o Where r,_, == 0 and ¥, 5 =1. ¥ a < ¢ then ¢f|d] = {ay, a,, ...

.y Gy_1y Gy For the case a,> 0 there exist honnegative remainder
BOIMS 7y ony 7, suc'h that ¢ = aildl—i—r{, ld’i = Ty Ry 7y = ATy
“Tyy ey Foy = Auty_y+7;, Where ¥, == 0 and rpz =1 If @, <0 (note
a, # —1), then the remainder tetms r,,...,7,_, can be chosen positive
and 7, = 0, ¥,_, = — 1 It is advantageons to make a table of the various
cages that ean occur where “def” means that the eorresponding #; or 7;
is defined by that value.

.
cery¥nos

a>e < €ty > 0 << Gy < 0
* SRR NN T def
n—3 ﬂ1n2+ 7‘.,'1‘_1—17',,_2&0

_}_1'" 1 .
def " get def
Tpp == GpTy 1+0p [ Th= 1, 3 =0 tp= Lty 4 =0 v, =17, ;=0
: def

I ! 1 ’ 7 F ’ r s
Tpeg = G FTn | Tn= 81 =1 T =0rp y=1lr=0r_,=-1

From the equations above we can compute the fo]lomng gequence
of matrices. For the case b, d >0

P e i

At the nth step the last matrix will be one of the following matrices:

ek (o (e (e
o To_i)’ Yo = Tpe]’ A Y L —F Py

it # =1,2,38,0(mod4) respectively. Henee from the zbove table we
' 10

gee that each of these four matrices must be either I = (0 .1) or &
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icm

0 01
ginee the determinant of each matrix iz forced to be --1. Hence it is
clear from the sequence of matrices (7) that

ﬁ("l ,_;)) Note that the matrices (3 __2) and (ml 0) cannot oceur

wem ] .
so that
8
M= N'an Nrb,N ~aty + u" or &
which proves Lemma 2 in the case b, d = 0 whoere g, ~ a4y, @y = —ay,

Gon = @ €hC.
3y the same method it is easy 1o verify that in the case b, d < 0

n . . 8
M =Ny oo N Ny, N g - ior s
Where g, = — @, . = Oy, jn__n ez i, tbe, This LOU’II}IG’LHS the proof
of Lemma 2.
4. Proofs of Theorem and Corollary. Recall that N, = 877, Ilenca

from formulag (2) and (3) it is straightforward 1o ¢he .I. ih.l.t

© (N,, :,f) = :‘j’ (3w u®) +{ 4~ u) (L —0).

From the factorization of M given in Lemmon 2 and formula (2) we have
u{ l)
) Py
b “n+1)
Uy, $1

Uy 1y '
where wy = 4, 9, — v and N ( K l) ( ) 2+ 4= n-4- 1. Thiy is equiv-

either & ( N

UNE z@( Al

fu ]

or @ (83

2 I ",
alent to saying for 2 <4< n4-1 thai

My B4 0 --’H;-_NA (mod 1} ;»]11(1 O e L

where w4, == . Note that v, == 4, _,, 1 < i« w1, The proof of the theorem

will be complete with the following analysiy of 6(8 “'”). From fog-
mula (2) n

“"“) = 6(83-82

‘G(S
uﬂr

Uniy)
u ) - C5'(’83

n

) e (s s ())
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un—iwl

where S (Z”“) =(_u" ) Using formulas (3) ib is easy to check that
. ‘

el

(:”““)) = 0 unless %,,, = 0 in which ease it is — (} —u,). This

explaing the need for the term §(#x,,,}. The proof of the theorem is now
complete,

‘We now prove the Corollary. In the particular case where M arises
from an ideal A4, the properties of the least unit & implies that M (v) = (:)
From this fact it follows that Uppy = 1y and %, = uy if M is factored -
ag in formula (4), and w,, ; = u, and u, =1 —u, if M is factored as in
formula (5). We used the fact here that w; =% # 0 and s, = v # 0,
which is always the ease for u, v arising from an ideal. It is now straight-
forward to shew that 6/{4) can be written in the form given in the Corollary.
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