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ACTA ARITHMETICA.
XXITI (1973)

Local behaviour of a class of multiplicative functions
by
W. Nirgmmwicz (Wroclaw)

1. We shall consider the number ¥ (z) of solufions n < o of
(1) fm) =k

where % is a given number and f(«) a positive, integer-valued multipli-
cative function, about which we assume the following facts:

{i} There are numbers ¢ such that for 7 =1,2,...,1 one hasg.for
prime p the equality f(»”) = a;, where a; does not depend on p. Let T,
be the maximal such ¢ and, if every ¢ is such, put 7, = oo.

(ii) If there are numbers « = 1 with f(p*) = 1 for all primes p then
% < Ty. If there are no such «’s, then T', = oo, In the first case we denote
the minimal value of » by T.

The functions

din)= 3 1 (r=2,3,..)
. :hl...a:r:ﬂa
obviously satisfy (i) and (i), and so does every multiplicative function
equal to unity at primes. In the last case a recent result of A. 8. Fainleib
[2] gives N,(x) = ¢@-+O0{2'"), where ¢, is non-negative and vanishes
only if (1) has no soluticna.
‘ - .
2. To state our result define for n = [] p% (a;> 1):
=1
2(n) =min(e;: i =1,2,...,7),

sin) =& (1<i<r: ay =)

a.mi for given % let m = m(%) be defined by
i .

‘ m = min(e(n): f(n) = k).

(Note that this implies m < T.)

We prove the following

THEOREM. Let [ be a multiplicative function satisfying (i) and (i)

and such that (1) is solvable. Then we have the following two possibilities:
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364 W. Narkiewicz

(a) If m < T them s == max(s,(n): f(n) = k) 45 finite and
Np(@) = (0 +0{1))a"™ (logloga)* (logz)™

with €, positive;

(b) If m = T, then s is infinite and

Nyle) = (C+o (1))

with O, positive.

Let 1s note that in the case where Ty is 11)11111% it is possible to malke
m and s more explicit. Indeed, if f{’) = @, and & is the set of all solutions
of Gy +os @y, ==k, then m ig the minimal valus of @; appearing in & and ¢
is the m.;nmm.:ul number of ®; == which can appear in a solution. Tt
follows that «f, divides &; hoence if m < T and & is squarefres, one gets
§ =1

One eagily sees that for the divisor function d(n} ome has a; = 1 +j;
thus for k2> 2 the number I m equald the minimal prime divisor g of
%k and s is defined by ¢ | &, ¢*™ 4 k Sowe get a result obtained by L. Mirsky
[3], which we state as

COROLLARY. Jf & 3= 2, ¢ 48 the minimal pmme dividing &, and ¢° || k, then
(n< @ @) = k) = (Cy+ o (1)) & (loglog )"~ (logw) ™
with some positive (. ' |

3. The proof is based on two leminag, the first of which is a slight
extension of one proved by Fainleib ([21, formula (12}) and of which we
give a proof for the convenience of the reader.

Lema 1. Let A, be the set of oll numbers of the form n = &" D with
squarefree a, (r--1)-full b and (a, b) = 1. Let F(n) be a fuwcliion defined
on A, which is bounded and depends only on b, i.e. F(a'b) = F(ald) es
long as (a,d) = (a,0) =1 and p?(e)p?(a) = 1. Then for x lending fo
infindity one Tms

QEFUeWMOT£”+OLM‘MW“U

NEL R
n€dy

with My = 1nax1 F(n) and the implied comstant does not depend on I,
IFli=0 md’ a8 not idewtically sero, then O > 0 (I‘or 7wl thﬂ " the
result of Fainleib.)
Proof. We start with the following elementary result:
ProrposrrroN 1. If the integer M is given, then

D wm = Y (e Z uA (k)
L] T Fessmfm
{1, M) =1 afm) [a(22)
where Q(m) iz the number of prime divisors of m, each counled avoording
to ils multiplicity, and a(m) is the produet of all distinet primes, déviding m.
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Proof. In faect, we shall prove the followmg identity, from which
the assertion follows at once:

@) X (-0 = b = 30 =1,
oo 10, otherwise.
km=n
a(m}la{ M)

Write M = Pil... Pix (¢; = 1) andlet n = p.. ptfP‘ii v Pl (b2 1,
d;= 0, pt M).

If at least one of the b, ’s exceeds 1, then in every factorization fm = n
with a(m)|e(M) one has 9% ... p¥ |k and our sum vanishes; hence (2}
holds in this case.

If all exponents d; are zero, then the only possible factorization
ki = % with a(m) | a(A) is given by & = p; ... p;, % = 1 and our sum
is equal to 1. On the other hand, in this case n is gquarefree and relatively
prime to M; thus (2) is true. _ _

There remains the case 8, = ... == b, = 1 and at least one exponent
d; 1s non-zero. Assume that d,, ..., d, are non-zero whereas the remaining
d;/s vanish, Then every factorization km = n with a(m) | a(M) has the

form
k=pm]] Py m=[[Pu]] Pim

_ el 45 e _
where 8 < {1,2,...,2}, and so the cotresponding term in the left-hand
gide of (2} equals
1 18] = Zdz (mod 2),

—1, 18] # }Y d; (mod 2).

But the number of subsets of a finite set of z elements with the car--
dinality of a given parity equals 2°'; henee in our sum the same number
of +1 and —1 appears, and so it vanishes and (2) iz satisfied also in
this case.

Now we return to the proof, of the lemma. For a given namber r and
all %’s we shall write

o =]]»"

2%In
[

U {E) (1Y% = (1)1

With this notation the sum §{2) which we want to evaluate equals

8@ = 3 w@Fp)~ 3 o) S pa

7 S S < (T
- S
(m,b) 1
= M F®) D (-~ 3y
[P . <{mfo)lit TALe, L
bgye R w(5)
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by Proposition 1. We shall put aside the case r = 1, which is fully proved

in [2] and which needs some extra offorts connected with the evaluation

of the remainder term. We now utilize the classical evaluation

2#2(7,;) ~ %mw{—O(l@;),

ks

which is sufficient for our purpose in the case of » > 1. Using it, we can
write our sum in the form

: 6 (m) p p L ~1
®)  S@) =—att P FE)(—17 b+
mTbsm
l’)a=qg‘)
afn)|a{b)

+O{Mpatr DT ).

LR
Dza’g")
a{m)|a{D)

First we show that the main term in (3) equals Ow™ 0 (M a0+
where € is a congtant which in the case of a non-negative funetion .F can
vanish only if F itsel V‘hmshes To obtain this, observe that a trivial

estlmmtlon gives
T Z ( 1 fm) (mbllr) 2_;_61_(_11/__{:.)”,
b [ k
bl
a{m}|a(b)

‘where

g(k) = Z 1.

B es
pglt
a(m)|a(h)

. T
ORI PR
blla vlk
bmag’) al g

a(b)=a(k)

-Since obviougly

one gets, writing b = Bda"""(k), tho inequality

GES pX 1%d(ro/a“'*(k)).

B | Efaltr(m)

(Note that if & # ¢f then g(k) = 0.)
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Now congider the multiplicative function
alk ot (% if %k =g,

h(k) = {Bja?* (k) i af

0 otherwise.

By Euler’s factorization we get for Res > 1/(1 —e-'r)

27%(%)%"3 - H (1+ e + ) =G (s) (s— 1i )_l

with G(s) regular for Res > 1/(2-+7) and non-vanishing at s = 1/(1 —|—r)
By [1] this gives

Dby =

N=T

with some positive eonstant C. Finally we obtain

9B _ 7 bR s
S 2 < Z (k) f A [ Sw e a7

z e 2 ]

G__l__ 6 (1)} )

which shows that the main term. in (3) is equal to

Z F(B){~1)% (mplry=L . 0 (2047,

bhqg’]
a(m}a(b)

One 1mmed1ately sees that the series occurring here eqnals
F(d) 1

1ir

b=gg") L %‘

and so in the eage of non-negative F' vanishes only if ¥ does.
Now we turn to the error term in (3). Utilizing the same funection
g(k) as before, one gees that it is .

k)
< My f :

< MF $1/2r
. sz

This coneludes the proof of Lemma 1.

Lewvma 2. Let B bs any non-void set of (1L --m)-full m,tuml numbers.
(We assume throughout that 1 1s (1+m)-full.) Then for every non-negative
integer § one has in the halfplane Res > 1/m the identity:

Syisy = Y wrmyn ™ N oni® = V;{log(1 /(s —1/m)))

w(n)=J : nyeB
. {n, '”‘1) =1

where V(@) is a polynomial of degree § over (2, the ring of funciions 'regular
for Res = 1[m, with leading cogfficient positive at 8 = 1/m.

l+r dt< M mil(l-H')
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Proof. Wrile :
8;(8) = EN"S Z P2 () e
Nel3 ‘J'h__j‘
s

and evaluate the inner swin as follows: For {z| .< 1, Res > 1/m and given
N one has ‘ ‘ .

g e A

PN
{n. N)u 1
‘ 1 T (—1)e
= BX]p {zlﬂg ————1—/—~} (s, 2) HZ —
[ L=

where Py, ..., p; aré all primes dividing N and g(s,2) """2 g;(8)a"

g;(8) e m)gﬂ(l/m Y = 0.
This leads to

Z {”2 (ﬂ) zw(n) B

= 2“’ z‘r( 2 ba (s) 10g ji/m (—1)==2(ph

=0 G Doy b By

e D) );

— d'—-a-—-bl b
(—1) 8

bl(pit ... pity™

Z PO R S A1)

G0ty Aty =]
(M,J\;JMI

It follows that - L o
. S I b 1 v N ar—s \] | A gy it
806 = D) galo) G108 s (<1 DINT DT ph ey
a-klFo=jf Nl ) Tyt gy

and, as the sum

N e Z (ph

g
ce P

A

Nel3 LR I -

obviously lies in £, our lemnma follows.

4. Proof of the theorem. G&se (&), m < T. Let

= fln) = I 'u(% =M},

icm
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For any #» in 4 write n = ay'%, with a; 2-free, %, (1+m)-full and (5, %)
= 1. Then w{n,) < ¢ and for some % one must have equality here. For
J=0,1,...,58 let 4; = {n: ned,w(n) =j} and observe that, for »
in 4;, f(#]") is constant, being in fact equal to al,. It follows that f(n,)
= kjal,.

Now if B = {n: a(l+mn)full, f(n) = kfel,}, then by our assumption
B i non-void and

= M gmgn™ D onrt = 8(s).

ned s iny =7 N2
7 (nl ﬂ.q) =1

Applying Lemma 2 and the Tauberian Theorem of H. Delange [1]
one ohtaing
H(h<a: ned)) = (Cj-{—o(l))m”m(loglogw)f“l (log=)™';
thus
' A (n< e med) = (0, +0(1))s"™(loglogz)*~ (logm) ™.

It now suffices to observe that for A (n < @: f(fn, =k, v{n) > m) one

. has the evaluation O (@),

Case (b). T = m. If 4 is the set of solutions of f(n) = &k with (m+1)-
full », then
{n: fin) =k} = {n: n = a™d, (¢, 0) =1, p3{@) = 1,51in 4},
Applying Lemma 1 to the function #(n) defined by '

L, n=4g1. qﬁQ, <mQed, (@, 4 ...

QS) =1 1
0  otherwise, '

Fn) =

we get our assertion.
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