Local behaviour of a class of multiplicative functions

by

W. NARKIEWICZ (Wrocław)

1. We shall consider the number $N_k(x)$ of solutions $n \leq x$ of

$$f(n) = k$$

where k is a given number and f(n) a positive, integer-valued multiplicative function, about which we assume the following facts:

- (i) There are numbers t such that for j=1,2,...,t one has for prime p the equality $f(p^j)=a_j$, where a_j does not depend on p. Let T_1 be the maximal such t and, if every t is such, put $T_1=\infty$.
- (ii) If there are numbers $u \ge 1$ with $f(p^u) = 1$ for all primes p then $u \le T_1$. If there are no such u's, then $T_1 = \infty$. In the first case we denote the minimal value of u by T.

The functions

$$d_r(n) = \sum_{x_1...x_r=n} 1$$
 $(r = 2, 3, ...)$

obviously satisfy (i) and (ii), and so does every multiplicative function equal to unity at primes. In the last case a recent result of A. S. Fainleib [2] gives $N_k(x) = c_k x + O(x^{1/2})$, where c_k is non-negative and vanishes only if (1) has no solutions.

2. To state our result define for $n = \prod_{i=1}^{r} p_i^{a_i} \ (a_i \geqslant 1)$:

$$v(n) = \min(a_i: i = 1, 2, \ldots, r),$$

$$s_j(n) = \mathcal{N} \ (1 \leqslant i \leqslant r : \ a_i = j)$$

and for given k let m = m(k) be defined by

$$m = \min(v(n): f(n) = k).$$

(Note that this implies $m \leqslant T$.)

We prove the following

THEOREM. Let f be a multiplicative function satisfying (i) and (ii) and such that (1) is solvable. Then we have the following two possibilities:

(a) If
$$m < T$$
 then $s = \max(s_m(n): f(n) = k)$ is finite and $N_k(x) = (C_k + o(1))x^{1/m}(\log\log x)^{s-1}(\log x)^{-1}$

with C_k positive;

(b) If m = T, then s is infinite and

$$N_k(x) = (C_k + o(1))x^{1/T}$$

with C_k positive.

Let us note that in the case where T_1 is infinite it is possible to make m and s more explicit. Indeed, if $f(p^j) = a_j$ and S is the set of all solutions of $a_{x_1} \ldots a_{x_i} = k$, then m is the minimal value of x_i appearing in S and s is the maximal number of $x_i = m$ which can appear in a solution. It follows that a_m^s divides k; hence if m < T and k is squarefree, one gets s = 1.

One easily sees that for the divisor function d(n) one has $a_j = 1 + j$; thus for $k \ge 2$ the number 1 + m equals the minimal prime divisor q of k and s is defined by $q^s \mid k$, $q^{s+1} \nmid k$. So we get a result obtained by L. Mirsky [3], which we state as

Corollary. If $k \geqslant 2$, q is the minimal prime dividing k, and $q^s \parallel k$, then

$$(n \leqslant x: d(n) = k) = (C_k + o(1)) x^{1/(q-1)} (\log \log x)^{s-1} (\log x)^{-1}$$

with some positive C_k .

3. The proof is based on two lemmas, the first of which is a slight extension of one proved by Fainleib ([2], formula (12)) and of which we give a proof for the convenience of the reader.

LEMMA 1. Let A_r be the set of all numbers of the form $n=a^rb$ with squarefree a, (r+1)-full b and (a,b)=1. Let F(n) be a function defined on A_r which is bounded and depends only on b, i.e. $F(a^rb)=F(a_1^rb)$ as long as $(a,b)=(a_1,b)=1$ and $\mu^2(a)\mu^2(a_1)=1$. Then for x tending to infinity one has

$$S(x) = \sum_{\substack{n < x \\ n \in A_r}} F(n) = C_F x^{1/r} + O(M_F x^{1/(1+r)})$$

with $M_F = \max_n |F(n)|$ and the implied constant does not depend on F. If $F \geqslant 0$ and is not identically zero, then $C_F > 0$. (For r = 1 this is the result of Fainleib.)

Proof. We start with the following elementary result:

Proposition 1. If the integer M is given, then

$$\sum_{\substack{n \leqslant x \\ (n, M) = 1}} \mu^2(n) = \sum_{\substack{m \leqslant x \\ a(m) \mid a(M)}} (-1)^{\Omega(m)} \sum_{k \leqslant x/m} \mu^2(k)$$

where $\Omega(m)$ is the number of prime divisors of m, each counted according to its multiplicity, and $\alpha(m)$ is the product of all distinct primes, dividing m.

Proof. In fact, we shall prove the following identity, from which the assertion follows at once:

(2)
$$\sum_{\substack{k,m\\km=n\\a(m)|a(M)}} \mu^2(k) (-1)^{a(m)} = \begin{cases} 1, & \mu^2(n) = 1, (n, M) = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Write $M=P_1^{c_1}\dots P_u^{c_u}$ $(c_i\geqslant 1)$ and let $n=p_1^{b_1}\dots p_i^{b_l}P_1^{d_1}\dots P_u^{d_u}$ $(b_i\geqslant 1,d_i\geqslant 0,p_i\nmid M).$

If at least one of the b_i 's exceeds 1, then in every factorization km = n with a(m)|a(M) one has $p_1^{b_1} \dots p_t^{b_t}|k$ and our sum vanishes; hence (2) holds in this case.

If all exponents d_i are zero, then the only possible factorization km = n with $a(m) \mid a(M)$ is given by $k = p_1 \dots p_t$, m = 1 and our sum is equal to 1. On the other hand, in this case n is squarefree and relatively prime to M; thus (2) is true.

There remains the case $b_1=\ldots=b_t=1$ and at least one exponent d_i is non-zero. Assume that d_1,\ldots,d_s are non-zero whereas the remaining d_i 's vanish. Then every factorization km=n with $\alpha(m)\mid\alpha(M)$ has the form

$$k = p_1 \dots p_i \prod_{i \in S} P_i, \quad m = \prod_{i \notin S} P_i^{d_i} \prod_{i \in S} P_i^{d_i - 1}$$

where $S \subset \{1, 2, ..., z\}$, and so the corresponding term in the left-hand side of (2) equals

$$\mu^2(k)(-1)^{\Omega(m)} = (-1)^{\sum d_i - |S|} = egin{cases} 1, & |S| \equiv \sum d_i \ (ext{mod } 2), \ -1, & |S| \not\equiv \sum d_i \ (ext{mod } 2). \end{cases}$$

But the number of subsets of a finite set of z elements with the cardinality of a given parity equals 2^{z-1} ; hence in our sum the same number of +1 and -1 appears, and so it vanishes and (2) is satisfied also in this case.

Now we return to the proof of the lemma. For a given number r and all n's we shall write

$$q_n^{(r)} = \prod_{\substack{p^c || n \\ c > r}} p^c.$$

With this notation the sum S(x) which we want to evaluate equals

$$S(x) = \sum_{\substack{a^{r_{b} \leqslant x} \\ b = q_{b}^{(r)} \\ (a,b) = 1}} \mu^{2}(a) F(b) = \sum_{\substack{b = q_{b}^{(r)} \leqslant x}} F(b) \sum_{\substack{a \leqslant (x/b)^{1/r} \\ (a,b) = 1}} \mu^{2}(a)$$

$$= \sum_{\substack{b = q_{b}^{(r)} \leqslant x}} F(b) \sum_{\substack{m \leqslant (x/b)^{1/r} \\ a(m)|a(b)}} (-1)^{\Omega(m)} \sum_{\substack{k \leqslant \left(\frac{x}{b}\right)^{1/r} \cdot \frac{1}{m}}} \mu^{2}(k)$$

by Proposition 1. We shall put aside the case r=1, which is fully proved in [2] and which needs some extra efforts connected with the evaluation of the remainder term. We now utilize the classical evaluation

$$\sum_{k \le x} \mu^2(k) = \frac{6}{\pi^2} x + O(\sqrt{x}),$$

which is sufficient for our purpose in the case of r > 1. Using it, we can write our sum in the form

$$(3) S(x) = \frac{6}{\pi^2} x^{1/r} \sum_{\substack{m^r b \leq x \\ b = q_b^{(r)} \\ a(m)|a(b)}} F(b) (-1)^{\Omega(m)} (mb^{1/r})^{-1} + \\ + O\left(M_F x^{1/2r} \sum_{\substack{m^r b \leq x \\ b = q_b^{(r)} \\ a(m)|a(b)}} m^{-1/2} b^{-1/2r}\right).$$

First we show that the main term in (3) equals $Cx^{1/r} + O(M_Fx^{1/(r+1)})$ where C is a constant which in the case of a non-negative function F can vanish only if F itself vanishes. To obtain this, observe that a trivial estimation gives

$$\left| \sum_{\substack{m^rb>x\\b=a_b^{(r)}\\a(m)\,a(b)}} F(b)(-1)^{\Omega(m)} (mb^{1/r})^{-1} \right| \leqslant M_F \sum_{k>x} \frac{g(k)}{k^{1/r}},$$

where

$$g(k) = \sum_{\substack{bm^r = 7c \ b = a_b^{(r)} \ a(m) \mid a(b)}} 1.$$

Since obviously

$$g(h) \leqslant \sum_{\substack{b \mid k \\ b = a_b^{(r)} \\ a(b) = a(k)}} 1 = \sum_{\substack{b \mid k \\ a^{1+r}(k) \mid b}} 1,$$

one gets, writing $b = B a^{1+r}(k)$, the inequality

$$g(k) \leqslant \sum_{B \mid k/\alpha^{1+r}(k)} 1 = d(k/\alpha^{1+r}(k)).$$

(Note that if $k \neq q_k^{(r)}$ then g(k) = 0.)

Now consider the multiplicative function

$$h(k) = egin{cases} dig(k/lpha^{1+r}(k)ig) & ext{if} \quad k = q_k^{(r)}, \ 0 & ext{otherwise}. \end{cases}$$

By Euler's factorization we get for Res > 1/(1+r)

$$\sum_{n=1}^{\infty} h(n) n^{-s} = \prod_{p} \left(1 + \frac{1}{p^{(1+r)s}} + \ldots \right) = G(s) \left(s - \frac{1}{1+r} \right)^{-1}$$

with G(s) regular for Re s > 1/(2+r) and non-vanishing at s = 1/(1+r). By [1] this gives

$$\sum_{n \le x} h(n) = (C + o(1)) x^{1/(1+r)}$$

with some positive constant C. Finally we obtain

$$\sum_{k>x} \frac{g(k)}{k^{1/r}} \leqslant \sum_{k>x} \frac{h(k)}{k^{1/r}} \leqslant \sum_{k>x} h(k) \int_{k}^{\infty} \frac{dt}{t^{1+1/r}} = \int_{x}^{\infty} \sum_{x < k \leqslant t} h(k) \frac{dt}{t^{1+1/r}} \ll x^{-1/r(r+1)}$$

which shows that the main term in (3) is equal to

$$\frac{6}{\pi^2} x^{1/r} \sum_{\substack{m, b \\ b = a_b^{(r)} \\ a(m)|a(b)}} F(b) (-1)^{\Omega(m)} (mb^{1/r})^{-1} + O(x^{1/(1+r)}).$$

One immediately sees that the series occurring here equals

$$\sum_{b=q_b^{(r)}} rac{F(b)}{b^{1/r}} \prod_{p|b} rac{1}{1+rac{1}{p}}$$

and so in the case of non-negative F vanishes only if F does.

Now we turn to the error term in (3). Utilizing the same function g(k) as before, one sees that it is

$$\ll M_F x^{1/2r} \sum_{k \leqslant x} \frac{g(k)}{k^{1/2r}} \ll M_f x^{1/2r} \int_2^x t^{-1 - \frac{1}{2r} + \frac{1}{1+r}} dt \ll M_f x^{1/(1+r)}.$$

This concludes the proof of Lemma 1.

LEMMA 2. Let B be any non-void set of (1+m)-full natural numbers. (We assume throughout that 1 is (1+m)-full.) Then for every non-negative integer j one has in the halfplane $\mathrm{Re}s > 1/m$ the identity:

$$S_{j}(s) = \sum_{\substack{\omega(n)=j \\ (n,n_{1})=1}} \mu^{2}(n) n^{-ms} \sum_{\substack{n_{1} \in B \\ (n,n_{1})=1}} n_{1}^{-s} = V_{j}(\log(1/(s-1/m)))$$

where $V_j(x)$ is a polynomial of degree j over Ω_m , the ring of functions regular for $\text{Res} \ge 1/m$, with leading coefficient positive at s = 1/m.

Proof. Write

$$S_{j}(s) = \sum_{N \in B} N^{-s} \sum_{\substack{n \ o(n)=j \ (n,N)=1}} \mu^{2}(n) n^{-ms}$$

and evaluate the inner sum as follows: For |z| < 1, Re s > 1/m and given N one has

$$\begin{split} \sum_{\substack{n \\ (n,N)=1}} \mu^2(n) z^{\omega(n)} n^{-ms} &= \prod_{p} \left(1 + \frac{z}{p^{ms}} \right) \prod_{\substack{p \mid N}} \left(1 + \frac{z}{p^{ms}} \right)^{-1} \\ &= \exp \left\{ z \log \frac{1}{s - 1/m} \right\} g(s,z) \prod_{k=1}^t \sum_{j=0}^{\infty} \frac{(-1)^j z^j}{p_k^{msj}}, \end{split}$$

where p_1, \ldots, p_t are all primes dividing N and $g(s, z) = \sum_j g_j(s)z^j$, $g_j(s) \in \Omega_m$, $g_0(1/m) \neq 0$.

This leads to

$$\sum_{\substack{n \ (n,N)=1}}^{n} \mu^{2}(n) z^{\omega(n)} n^{-ms}$$

$$= \sum_{r=0}^{\infty} z^{r} \left(\sum_{\substack{a+b+i_{1}+\ldots+i_{p}=r}}^{} g_{a}(s) \frac{1}{b!} \log^{b} \frac{1}{s-1/m} (-1)^{r-a-b} (p_{1}^{i_{1}} \ldots p_{t}^{i_{t}})^{-ms} \right);$$

thus

$$\sum_{\substack{n \\ \omega(n)=j \\ (n,N)=1}} \mu^2(n) n^{-ms} = \sum_{a+b+i_1+\ldots+i_t=j} g_a(s) \frac{(-1)^{j-a-b} \log^b \frac{1}{s-1/m}}{b! (p_1^{i_1} \ldots p_t^{i_t})^{ms}}.$$

It follows that

$$S_j(s) = \sum_{a+b+c=j} g_a(s) \frac{1}{b!} \log^b \frac{1}{s-1/m} (-1)^o \sum_{N \in B} N^{-s} \sum_{i_1 + \ldots + i_l = c} (p_1^{i_1} \ldots p_l^{i_l})^{-ms}$$

and, as the sum

$$\sum_{N \in \mathcal{B}} N^{-s} \sum_{i_1 + \ldots + i_t = c} (p_1^{i_1} \ldots p_t^{i_t})^{-ms}$$

obviously lies in Ω_m , our lemma follows

4. Proof of the theorem. Case (a). m < T. Let

$$A = \{n: f(n) = k, v(n) = m\}.$$

For any n in A write $n = n_1^m n_2$ with n_1 2-free, n_2 (1+m)-full and $(n_1, n_2) = 1$. Then $\omega(n_1) \leq s$ and for some n one must have equality here. For $j = 0, 1, \ldots, s$ let $A_j = \{n: n \in A, \omega(n_1) = j\}$ and observe that, for n in A_j , $f(n_1^m)$ is constant, being in fact equal to a_m^j . It follows that $f(n_2) = k/a_m^j$.

Now if $B = \{n: n(1+m)\text{-full}, f(n) = k/a_m^j\}$, then by our assumption B is non-void and

$$\sum_{n \in A_j} n^{-s} = \sum_{\omega(n_1)=j} \mu^2(n_1) n_1^{-ms} \sum_{\substack{n_2 \in B \\ (n_1, n_2)=1}} n_2^{-s} = S_j(s).$$

Applying Lemma 2 and the Tauberian Theorem of H. Delange [1] one obtains

$$\mathcal{N}(n \leqslant x: n \in A_j) = (C_j + o(1)) x^{1/m} (\log \log x)^{j-1} (\log x)^{-1};$$

thus

$$\mathcal{N}(n \leqslant x : n \in A) = (C_s + o(1))x^{1/m}(\log\log x)^{s-1}(\log x)^{-1}.$$

It now suffices to observe that for $\mathcal{N}(n \leq x: f(n) = k, v(n) > m)$ one has the evaluation $O(x^{1/(1+m)})$.

Case (b). T = m. If A is the set of solutions of f(n) = k with (m+1)-full n, then

$${n: f(n) = k} = {n: n = a^m b, (a, b) = 1, \mu^2(a) = 1, b \text{ in } A}.$$

Applying Lemma 1 to the function F(n) defined by

$$F'(n) = egin{cases} 1, & n = q_1^{lpha_1} \ldots q_s^{lpha_s} Q, \, lpha_i \leqslant m, \, Q \in A, \, (Q, \, q_1 \ldots \, q_s) = 1, \ 0 & ext{otherwise}, \end{cases}$$

we get our assertion.

References

- [1] H. Delange, Génèralisation du théorème de Ikehara, Ann. Sci. Ec. Norm. Sup. 71 (1954), pp. 213-242.
- [2] A. S. Fainleib, Local theorems with remainder term for a class of arithmetical functions (in Russian), Acta Math. Acad. Sci. Hung. 21 (1970), pp. 271-281.
- [3] L. Mirsky, On the distribution of integers having a prescribed number of divisors, Simon Stevin 26 (1949), pp. 168-175.

WROCŁAW UNIVERSITY, INSTITUTE OF MATHEMATICS UNIVERSITE BORDEAUX I, U. E. R. MATHEMATIQUES ET INFORMATIQUE