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On the number of integers which are sums
of two squares
by
Yorcer MoTomasa: (Tokyo)

1. Let b(n) be defined to be 1 or 0 according as » be or not be expressed
a8 2 sum of two integral squares. Ag is well-known Landau has proved
the asymptotic formula

N
1 b = (1 )0 —==
W n‘<§7 ) ( ol )) l/logN

On account of this formunla we may introduce the problem to prove the
agympiotic formula ' '

(as N — o0).

m
2 b = [1-+e(1V)C
(2) MQZMM () = (1+o(1) T

where M is in the range N°< M'< N with a constant o < 1, Although
thig problem has the aspeet similar to the theorem of Hoheigel in the
theory of prime numbers, it seems extreemly difficult to adapt any meth-
ods there to our problem. Thus it iy very desirable to prove a good lower
estimation of the left gide of (2), and this hag been recently done by Hooley
in the following form('): we have

(]

[
(3) D > ——

Nen<N+N0 l/log N

for any 0 > £, This lower bound of 6 comes from the fact that this is the
hitherto best exponent of the remainder term of the circle problem [1],
and. o it seems very difficult to improve (3).

The purpose of the present paper is to prove a non-trivial, but slightly
weaker than (3), estimnation for “almost all” intervals of very small length.
More precigely we shall prove

‘(1) In the first draft of the present paper we hé.ve proved an ertimation weaker
than this (by a factor of (loglogN)~%), and we are indebted to Prof. Schinzel
who informed us of Prof. Hooley’s strong result. - i
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TamoREM. Let ¢ be an arbitravily small positive consioml. Then there
are two constamts O, and D, such that they depend on & at most and the number
of imiegers in the inderval [n, n-+n’] that can be ewpressed as o swmn of two
squares exceeds the quontity

it

FA—
Viogn (loglogn)?s

for all but o(N) indegers 1 <5 N as N — co.

Here wo ghould remark that in the recent paper [3] Hooley hag de--

veloped o very ingeneous idea to aftack tho problem of the estimation.
of the moment of differences between consecubive integers that ean be
expressed as a sum of two squares, and betwoen hig work and ours there
are many similar aspects. Especially his formula (23) of [3] might be
nged o deduce a result similar to our theorem, but to do this we have
to prove the inequality (12) of [8] for every short interval of length 2°
This seems difficult, althoungh it might be possible to modily the definition
of Hooley’s neutralizer #(») and to prove such & result.

We hope we shall return elsewhere to the difficult problem of the
elimination of the factor (loglogn)”s of our theoxem.

Notation. Throughont this paper N is assumed to bo sulficiently
large. @ is & positive variable. p denote generally @ prime number. We
denote by w(n) the number of different prime factors of #. The function
() denotes the number of representations of # a8 a product of k factors,
especially d(n) = dy(n) is the number of diviters of . ‘We define r{n)
as usual to be the number of representations of # a8 a sum of two squares,
and then we have

r(n) =4 > o(d),

din

where o is the non-prineipal character mod 4. The positive consbants &
and A arve assumed to bo sufficiently small and large, respectively, and
all constants involved in the symboles “<€' and “0” depend on them
at most.

- 2. We define § the fundamental quantity in this paper by
(.47) N sem N'(luglogN)—-ﬂ

and we introduce the gymbols 4y, 4, and I" which represent threo sots
of positive integers that are composed entirely of prime factors not excead-
ing N, of prime factors congruent to —1mod 4 and not exceeding N,
of prime factors exceeding N, respectively. Here we aswume that 4y, 4,
and I" contain the number 1.
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We decompose any integer into two factors;
n = 0 pl

where n)e 4, and #® e I'. Turther we define A(n) to be 1 or 0 according

ag # be or not be composed entirely of the prime number 2 and prime
factors congruent o 1 mod 4.

Then woe congider the oxpregsion.

(5) BN, ) == }J{ E /3((%-i-j)“))r((n+j)(2))—-rca(I\T)h}z,
e N Osf<h .
where
(6) BN = ( _},) T (1_i_),
Pral (2104) » pe—1{mod4) P
PN PN -

and the size of % i8 to be determined. later. '

In the right side of (5) #(»™) simulates the behaviour of b(n) and
the factor #(»®) hagy the effect to eliminate the strong - difficulty which
would he cansed by the factor b(n®) if we treat the problem in ity crude
form, and moreover §(n™)r(n®) has the favourable feature that it vanish-
o8 It b(n) == 0. \

Since p(n)rn®) = O0(n*), we have eagily

(1) BB =2 3 I, jy—i)+h8(N) ~2n8(F) BT () +

Oy <ig <l )
+ 7 SN RN + O (RPN,
where _
I(Nya) = D' 8(ar (n®)g((n+ 6)P)r((n+a)®),

NN

(8) WA
B = g, T@) = 3 pnN)r@a®).
RN naN

3. I'irgt wo shall egtimate T (N), and to do this we remark that

(9) - B = X u(l).

1)
Tedy

By this we devide I'(V) into two parts as follows:

10y T = Y| N s+ Y s
N In Hi :
. fedy ledy
w(l)sr.aloglog IV w(l)>.4loglog ¥

== Xy "1“2.25. By .
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We have
rin®)d(nM) < 4 > (),

PAESEEDN

nsN g N
wn>4loglog N w{n)=.Aloglog N
and so we have
(11) IZ'! .{2—;4108‘30&'1\7 ‘ﬂzm(ﬂ)d(%)
nr'N
< (log ¥) mmogq Zda(ﬂ <N(10gN) —dlog
ne NV
To estimate the sum Xy, we remark the simple fact that we have
(12) rin®) = 3" r(m)o(u)uiu),
MU=m
'Lqu

which can be eagily seen from the equality

2?(%‘“’ ”“41‘[( ) 8) L(s, o) {Z el ﬂ)}lj ri::)}"

nady Pyven |
Where £{s) and L(s, o) stand regpectivly for Riemamn’s zeta-funckion
and Dirichlet’s L-function attached to the character o.
Now woe have

= 3 @ Y™,

wli)dioghog ¥ bl
since we have for the above I (square-free) I < N-/1°1%N 5304 also we have
1 == 1, Thus inserting the expression (12) inte the inner-sum we get

) Z= Y am Y rimswew

Tedy ot
o(lpndloglog N usdyg
ns N7l
7 \ | : \ ]
“Suf ¥ & 3

2 = My Xy, BAY.
wiusd loglog NV wli)>dloglog N

We have, a3 i3 easily soon,

1)  m<Y N @)
. sy NN/
aln)>dloglog N

<(10gN —dlog2 2 \"I ds ) <N(1Og_w-)nmdlagg.
g Lo NE e L,N[I ' )
nce

Zr(%) = i+ 0(a™),
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we have
o= D am D wwew Y rm
ledy usd MmN ha-
wil)<dloxlog v a(w)<dloglog N
Y 1
— N 2 _M;(; ) 2 o(u)p(u) L O(N),
w
ledy uedy

w(Nwdloslon N wfu)<.dlorlog N

Here wo see easily

2 Eﬁ%gﬁﬂm=[Y(r—£%1)+OUMgNﬁ““”W

) =
w(%)a.;.‘]cog?lug'N p<N
and
IV 1 ra
> £ = [T 1—5) +0((log W=,
iedy peN
adloglog N Pp=—1 (mod 4)

And 5o wo get
(15) 23 == 'rc_N(S(_N _[uO(N(logN)b-Alogz).
Thug from, (13), (14) and (15) we have
Zy = wNO(N)+ O (N (log N4l

which, with (10) and (11}, gives rize to
- Lmwva 1. We have the asymptotic equality

T(N) = =N3(N)+ 0[N (log N¥)~Ti),

where B, can be taken arbitrarily large.

4. The next problem is the estimation of §(N), but we prove here
an upper estimation of the more difficult sum '

B(nr2(all), .

N-HanaN
where H is in the range N° = H < N. We ghall encounter this sum at the
lagt gbep of this paper.

Our proot clca:p(mrls on a recent result [5] of Wolke, whlch is embodied
in

LimprmA 2. For amy 0 < & < 1}; there i3 an absoluie consmm oz

that
d(n) ﬁ{ 2 1}G(élog$~1)—1

N
wn

whera the conslant in the symbol “&” depends on & al most.

1 such
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Following the assortion of [4] wo put in the above inoquality

Lk = -:]-—(i? -
(16) £ exp

&

Then we have

PEY D s | | g, S0
1n 2o(Elog &) Y [8{:] [- 4 oy SO

And thug woe have

(18) SN, A <€
AV

SN @) Y Ny
o BB < S i It

L) Nema N1 vlﬁ-
ved’
m"N'f

where I" is the set of integers defined in thoe socond paragrapl. 'We have

(S4= 3 3 axSaw

oln tln {={p 1; ©
vl {01235 o221 ) e
vzN? ss.,Ns?ﬂ teaN®

since we have, from (16) and (17),
.8
&y — -}— &z T

Thus 'we have, from (18),

v \ ; 1
sm< Y aw 3 gt = 3 aw pn),
tel” Negnag N+ 1 el Nijtng (N H)
L NS/ nea( (00df) LR

since te I’ The inner-sum. is estimated analogous as in the cage of T(N) -

T (w)

pm“ 1 (mndd-)

() =

NS (I

Lot

which gives

SN, ) < H [ ] ( ) “,‘f’ﬁﬁ_’{)

peo-t (rrma ) i‘\' i

< [113%%< 7 (-3

Nepgy m=0 FNepsh

I-Ie‘re we have

d"(t)
y ) < (loglog ¥y2",

i%N

which gives Tige to
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Levma 3. We have the inegquality

S (N, H) <€ H (loglog N)®

[T (5

pg-—l(modd.)
where the constant B depends only on e,

5. We now ewber into the estimation of the most ditficutt sum I(¥, a).
From () wo have

19) IV, @) o= D rn®r(n+a)®) 3 a0 u)

welN 1
Linta
Ly
N
}J r(@®)r{(n-a)®) x
nea N
X b = } m= o e, gAY,

erd
mox(w{l), w(ly))<Aloglog N max(a(l), w({i;)) >4 loglog N

We estimate Xy firet, and we see that

(20) AR M

il
max{on), olnd-e))s-dloglog N
na N

dn)yd{n+a)

< (log N) ~Aloge E g{n) d(ﬂ)zm(n+a) din+a)

n< N

< oganyers 3 at}™{ 3 dn o]

LfN n N
. .N(lOC"N)lS Alng”
Now turning to the sum X, we remark that I and I, can ‘be asgumed

to be square-tree and so 1, 1, <5 N i oglogy . Thus, noticing that I® =1 =1,
we have
- .l %! )
@ 5 e b gty D rmr(m).
i {w(l); o i )ad logTog N Il’m;mfﬂH &
g‘/ Il)m I m.-..i\
Ljuely
Togerting the exprossion (12), wo have
@) N ey 3 ple)e(wln) elmn) () (e
fyrmy el o Tyneyoy =i+ o
e N Ty N
uy, uedy

-}~

wnx(m{a), afuy))sad loglog N max(m(a), olty))>Lloglog N

e g degy BAY -
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‘We have

(28) %, = > () g (o) o (10) 0 () E r{v)r{v,).
{ad aeydy e Hqv=huoda
w,uyed sV

max(s(u), wi))sdloglog NV

Here we quote the following generalization of Hstermann’s result [2]:
it %, &y < 2" we have uniformly, denoting by [, m] the least common

multiple of # and m,

B,

1 e(tle(h )+0(w‘2 ).

(V)7 () = Lbw T, 751311

(e Togby)
Ly

ey lvba
Ty

This can be established by following Bstermann’s argument clisely, and
go the proof may be omitted.
Tnserting the above result into the inner sum of (23), we have

(24) X =16N (i) g (ub) g (1) @ (4 3¢

w, 1 edy )
max(9, o) pe.d loglog ¥

v _oeellk)
[k, byt )

1l
ST

+O(N

(iud, I]_u]‘tl)la
iV N

Now we have from {19), (20), (21) and (22)

(28)  I(V,a) = > uu(l){Z+ Zp} -0 (N (log v 5-41%%),
T, ed
. (1-1111“61‘
max (ol wdy))sdloglog N

‘where ag in the case of 2 we have earily

(26) () p(l) 2y
L Iyedy
e

max(ad), wip)sdlogios N

< Y

RN
max(e ), o)« Alog logN

d2{n) @2 (n+ a) < N (log NySt-~Alog 1

Angd thus we have, from (24), (26) and (26),
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LevwA 4. We have

I, a) = 16X X p W) %
l,l]-_e'dl
max(al, widy))<4log log N
Y ) o(i
’ O slelwatuetu) Y glelh)
, wy ey (but, Iy ) M [ Wl b1ty 1]
max(w, o)< loglog Liy<VN

+ O (N(ngN)GBHAl_og2).
6. Now from Lemma 4 we have

TN, Ja—J)

04i1<j2<h
-
— 16X )
s
I, lqedy

max(el, oiy)«dloglog v

7" _ele(t)

Loty 12yt
t,tl-::l/“N'[ s btiat ]

w{t) (k) p(w)o ()t o (ti:) X

2

U, Uredp
max{w), o)) sdloglog N -

1+ O{hzl\T(]og_Z\T)“:"““m) .
Jomiy (moddut, I ugis)) :
0€j1<f2<h

Here the inner sum iz equal to
h2

9 (Tuat, Dythy y) +O),

whete (s, m) denotes the greatest common divisor of » and m.
Thug we have, gince [#, m] (w, m) = nwm,

(27) (N, ja—ix)

U’é?,:’]_{,;"g{h
>’"1 M(QM(M)} «
. ? i,

e {w i, o (Il))nﬁ_d loglog N

{2

ity edp
Mo ), © (ula)taA loglog N

= 127}

1 () o () g (uz) 0 (%)
Uy

5

IV N

8"1 B 1

ied [t Uyt
Z,l],'l.&,’l(alﬁuN t{,g [ 1 1]

4O {h N } + 0 (R* N (log )5 —1%%)

== BREN {Zo}{E o} {E0u ) + O (b Zpp) +- O (WP NV _(logN )65“_‘“"82), ROy .
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Now we have

1 alah) M(ll) [ \ L]
(28) = > =
I 115.41 171 z,ﬁI i, I

max(ad,wly) =4 loglog N

=[] (1—?) - O ((log Ny*=4 108

o1 {raedd)

D
gince we have
Ym‘ _J_'_. o 2 {UOQIGQ‘N \1 (’!U (](3 )
L U, ol

1, Ijed
maox(wd, ady))>dloglog N

1, by ety

g -4
<< (og =2t | (1 —;;') & (log yi-4lsz,

pal

In the game way wo have

(29) [ [ (1 - _._;)__)_) -+ 0{(log M)+ Auw)

’ﬂf‘q.N
Algo we have

(30) Ty = 7 A+ ONTR).

Thus, from (27), (28), (29) and (30} wo got

81 > IW, i)

0=y gt

e l'b" NS (.N) ‘ O(hN .-rlu I () (h’zlN(“lOg.KN)ﬁU---AIOE‘E)’

where 8(N) ig defined by (6).
Now we have

e N Gldie)

e

N
< D5 2 A

kN {(Ir(i!j,]“’-ﬂ“

’ g g2
= >3 N = 3 5P

7..=:N2 g\{sk e, N2
1
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And hence we have
210 < (log N,
whieh, with (31), gives
Lemwa 5. We have the asymplotic equalily

2
I(N, ja—ji) = — K8 (F) N+ 0 (BN (log ¥)) 4-0 (¥ (log ¥) %),
Gsh<fy<k 2 '
where Wy can be taken arbitravily large.

s Finally inserting the results of Lemmas 1, 3 and 5 into the right
side of (7) we find

(32)  R(N,h) = O(hN (log¥)"%}+ O (AN (log N)~) -+ O (R N*).

Now let N = = (log N)'" and Q, (k) denote the number of inte-
gers n << ¥ such that .

oM< | 3 By ((n+5)2) —md (WD),

<<k
Then we have from (32)

Q (k)€ N1 6=2(N) (log ¥)* - N6~ (W) (log N)" 1 L A N* 5~(W)

N
< (loglog V)™’
gince
, loglog N
S(N) = (1+o(1)}0 —=.
( ( ( ) Vlog &

Thus we have proved the result that, if N'* > h > (log¥)", then
for almogt all integers » < N wo have the 1nequa;11ty

. . T

2 Blev ) (n+)%) > - 6()0.

1<j<h

And for such integers # we have, by the Cauchy-Sehwarz inequality,

(33) maz(zv s Y bmtd 3 p{n+i)0) (0 +9)%).

[T 0i<h

Now, if % is in the range ¥'~* = L = N*, we have from Lemma 3

7 — Acta Arithmeiica KXIIr4



419 Yoiohi Molohashi im“

‘ o o Uoglog 3
2 ﬁ((%_r_j)(l)),nﬂ((%-,mj)(é)),_{_Z_;b,(.uu.,f’ ’ém)_m _
02 log ¥
Hence, from (33) and thiy, we got the inegnality
, 1
vdien Viog N (loglog )

for almost all % = &, This ends the proof of our theovem,
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