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!, Introduction. The geometry of numbers and Hilbert modular
functions are two topics nof only permanently influenced by the work
of C. L. Siegel but permanently interrelated by his work, particularly
through the reduction theory of fundamental domains (sée [B1, [6], [T]1).

The purpose of this paper is to consider another phase of this in-
ferrelationship as seen through the recent work of F, Hirzebruch on
the resolution of singularities (see [3], [4]). A reexamination of these
newer methods leads to another elemenfary idea in the geometry of
numbers, namely the “support polygon” for the set of integral lattice
points in 2 sector about the origin. 3

Many of the resnlts presented here have analogues in results of
Hirzebruch, particularly as they apply to sectors whose glopes are rational
or conjugate quadratic. Nevertheless a model in the geometry of num-
bers has the advantage of the natural invariance under GL,{(Z), and,
with it the inherent facility for computing and generalizing to several
dimensiong (a8 we shall do later on). '

2. Semigroup of a sector. We begin with an algebraic concept.

DerrvitroN 2.1. Let § denofie a closed secior of the cartesian {x, y)-
plane bounded by two rays from the origin of angle < 180°. '

DerFNiTION 2.2. Let 8 be called reduced if it is bounded by a ray
of slope 1, {> 1) in the first quadrant and a ray of slope 4; (0 < 4, < 1)
in the third quadrant (thus containing the entire second guadrant ab
least). -

* This work has been sponsored by the U. 8. National Science Founda.mon

- under grant GP-33810.
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Derrvrrron 2.3, Lieti V8 (vectors of 8) denote the integral lattice
points contained in S excluding (0, 0} (but naturally including those
on any rational ray bounding S). :

Durrnrtros 2.4. Let SGVS (semigroup of the sector 8) denote the
semigroup of V& under addition.

Remark 2.5, The sector can have an *mgle > 180°% but this matter
can be ignored at- present. o

3. Bupport polygon of a sector. Now geometric teehmqueﬂ enter.

DeriNiioN 3.1. A support line of a set V'S 18 a straight line containing
no points of V8 in ¢ne of the open hali-planes that this line determines.

DEFINITION 3.2. A.support point i§ a poind of VS which lies on a sup-
port line (which may contain several such points).

DEFINITION 3.3. A pair of support points are neighbors 1E they are
end-points of a segmcnt containing no other support points (in between).

DemNiTION 3.4, A suppmt segmewt is the segment joining nelghbonng
support points.. _ ‘

DEFINITION 8.5, A support polygon i§ a sequence of consecutive

support segments wmh cominon end- pomts (l.e., with vertices as support
points). ‘ ‘

Relﬁmk 3. 6. Since support segments are of (euclidean) length at

leagt umty, the supporl' polygon must in the limit extend to infinity.

Whan the ‘boundary ray of S§: has rational slope the support polygon

contmns all the mtegrml pomts of such & ray (except the Gmgm)
DEFINITION 3.7. A fruncated support polygon is ﬁhe portion of the

support polydon excluding support segments lying in the ratlonal bou.nd—
anes, if they oceur. (See I‘lgme 1 below)

. 4. Minimal basis. The following result is immediate:

TasoREM 4.1. The veitices of ‘o truncaied support polygon commme
the unigue minimal basis of the sémigroup SGVS.

We single out the most vital step.

Tmyma 4.2, Any two neighboring support points: of a truncated support
polygon form a basis of the additive group of integral laltice points (i.e.,
these support points have o wnimodular determinant),

- For proof, let P, (=, Yih Pal®y, ¥2) e a support segment. Then with O
ag the origin; OP,P, bounds a triangular region with no other lattice
pomt in its closure, by ‘definition. Hence the p:nra.llelogmm OPQP, (with
Q = P, +P,) is fundamental.

Theorem. 4.1 follows from the further observation that every support
pmnt (of the truncated. polygon} is necegsarily a- basis element of the
semigroup, as ‘it ean not be obtained from the others, by constructmn,
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5. Inva:iant intersection numbers. Tt is elear that the eonstruction
of the support polygon makes it covariant with § under GL,(Z) or SL,(Z).
We standardize the matrix action as

_ e b ¥\ _ (oy+bz
(5-1) M= (c _d)’ M(m) N (cy+dm)'
We also note that the pair of sectors 8§ and —8 (180° rotation) are cova-
riant with respect to their support polygons under PGL,(Z) or PSL,(Z).

The matrices M and —JA7 are identified, or, more praetically, both ma-
trices 4-M lead to the same function

(5.2) M) = (@i+b)(0i+d) (% = yju).

Drrivtriow 5.3. Let (z,, ¥,) = v, denote the support points of
a sector § lying interior to S (and numbered in sequence of the poly-
gonal vertices). Then the intersection number at v,, is defined by scalars
b, for which

(5'4’) - bm'vm = 'Dm~1+vm+1'

DEerFmviTion 5.5. The chain (of intersection numbers) of a sector S
is the sequence

(5.6) | 83 [eey by by by by, By, .nu]e

The sequence is infinite toward the ends of the sector where irrational

_slopes oceur,. while the sequence terminates where rational slopes oceur

at the last support point interior to the sector. Under this definition,
a vacuous chain of intersection numbers describes a secbor with bound-
aries of rational slope determined by a fundamental parallelogram, or
by ratios of infegers in unimodular relation. :

Levma 5.7. The intersection numbers b, exist (<Z) and satisfy b, = 2,
with no infinile succession of conseculive “twos” possible in any chain.

Proof. Use Lemma 4.2 to note that M <GL,(Z) where
_ Y Ym-a Y _ |y
(5.5) o= (_wm %) M(X) - (m)
Thﬁs let Vi, = (X,,, ¥,), the image of v, under M~ Then we have
Vo = (—1, 0), Vi = (0,1} So if we write Vingr = (-Xm—i-la Yoy1) we

{ind that X,,,, = 1 (to preserve unimodularity with ¥,;), and ¥, (<Z)
is precisely b,,. Thus the obvious relation '

(59) ) bmvm = Vm—1+Vm+1

musgt transform itself into (5.4). Now b, =2 by convexity (recall the
support segments). Furthermore b, = 27 iy a relation of collinearity
of consecutive points, which precludes an infinitude of consecutive “twos”.
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Remark 5.10. It is still _possible to have the relation

(b.11) vty = by, (2<bed)

without this equation reducing to the type (5.4) but all we ean say then
is that m lieg between % and I (in the usnal enumeration (5.6) of con-
secutive vertices of the support polygon). ‘

Remark b.12. The terminology “intersection number® ig hased
on the fact that in (5.4), b, describes the “intersection” of the coordinate
system of (Vy_1, V) BNA (U, Uypy) a8 lattice bases. This is in keeping
with the idea of (negative) Chern number developed in Hirzebruch's
work [3]. From a purely number-theoretic point of view, however, each
of these bases gives a b,-fold covering of the eoordinate system formed
by the nonbasis (v,_;, ¥yl

THEOREM b.13. Tvery seclor 8 is determined uniquely o within 8L, (Z)
(4.8, with orientation), by the (directed) chain of indfersection numbers

(5-14) S [y bogy by, by By, By, 00T,

{(subject only to the “infinite twos” prohibition of Lemma 5.7),

For proof, assume for simplicity that there are at least two support
points interior to S so we can transform meighbors to (—1, 0), (0,1)
under SLy(Z). Then by (b.4), the infersection numbers determine the
whole polygon uniquely, step by step. (The polygon will determine the
sector wniquely, in turn, by the limiting slope.} The furthér result that
any sequence (5.14) subject to the “infinite twos prohibition” ig admis-
sible must wait for Lemma 6.1 (below).

COROLLARY B.15. The semigroup of the seclor 8 is determined to within
isomorphism by the (unoriented) chain of intersection numbers.

This is a result of the uniqueness of the minimal basis (Theorem 4.1),

b2 2,

combined with Theorem 5.13 and Remark 5.10. In cffoct, if all the basis -

elements v, can be linked by equations of type (5.11), then they have
to be “numbered properly” and they define the correct intersection
numbers, ‘
Levua 5.16. Every sector is equivalent under SLiy(Z) to one in reduced
Sorm (with the limiting cases A, = 0 or A, = oo or both).
. Thig is a result of the proof of Lemma 5.7.
6. The Hirzebrach algorithm. To find the interseetion numbers of
& sector we use the following method of Hirzebruch [3]:
- LEMwma 6.1. Every real 1 has o unique empansion as continued fraction

‘ - 1 1
( ) . ¢ bl"bz'—.aln ”““
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denoted by
(6.3) A== Tby, by, by, i1,

where byeZ, b, =2 for m > 0, and no infinile sequence of consecutive fwos
com ocewr tf the empansion is infinite.

Conversely, every such expansion corresponds uniguely to some real A.
Finally, the expansion is infinile exacfly when A iz irrational.

This lemma is quite analogous to the ordinary simiple continued
fraction. The recursive procedure ig set up by writing 4 = 4, and defining
inductively the “partial denominators” b, and the “remainders® 1, as
follows:

(6-4) b'm. = - [_Am]} j*m = bm'““"l/lma-l-
{Note the inequality i< —[—1] < A+1.) Also the “infinite twos pro-
hibition” and uniqueness are tied together in the fact that b, by, ...]
= k=1 (t>0), with cquality only when all b, = 2.

TuworeM 6.5. Let 8 denote the sector (for 0 < lcR),

(6.6) o<aly<1/h, y>o0.

Then the support polygon for 8 beging with « verler at v, = (0, "1) and ends
ab vy = (@pr, Ypr) B A = Wy/Byy (veduced positive fraction), or else the sup-
port polygon is infinite if A¢Q. The intermediale verfices v, = (%4, Yim)
are given by the (reduced positive) fractions :
(6'7) . ) ym/mm = {507 bl! ceny bm-lj
wrising from the expansion of A. The intersection number af v, = (By, V)
18 by, and the chain for the seclor S is
(6.8) ) _ 8 > [by, by, e o
Then chain is vacuous when 0 < AeZ as the support polygon is then the
single segment from (0,1) 1o (1, 2).

To prove this theorerna, we set up an induetive process by transform-
ing the gector from coordinates (w,y) to (&', %) by

" )= )

Thu$ the new sector is one with slope A; {where i = b,—1/4;),
(6.10) Sy fe < gy oy > 0.

The initial support vertex (for m = 0) is (#', ¥") = (—1, 0), and the next
one is (@', §') = (0, 1) (corresponding to m = 1). The vertex corresponding
t0 m =2 iz then (1, ;) since b, = —[—A4,]. Thus b, is the intersection
mumber for m = 1. Similarly, we identify bs, by, ...
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Lmvma 611, If 9,/o, = [bg, by, oony by q] with @, >0, 4,> 0 and
(@ Yn) = Ly then the volues (X, X) = (Tn.1, Yn_1) are uniquely determined
by the condition

(6.12) Yo,~Xg, = —1; 0<X, 0< ¥ <y,

The proof is evident. The curious notation is required by the case
n =1, where we define formally '

(6.13) (%05 Yo) = (0, 1}.

In Figure 1 an illustration is provided for 1 == 5/18. (Alto seo the
table.) The symbol ¢, is explained in Section 9 (below).

‘yﬁi
& - e
P (18,5)
wal .o e R
=3 ~E e
. k.
1,0} (2,0) (8,0) {7,0) (18,00 X

Fig. ‘1. Bupport polygon for the sestor 0 < 5u/18< 3. The dashed portion
denotes the truncated polygon whils the full palygon goes to infinity along the hound-
ary rays. Note the infersection numbers at each interior vertex., The polygon is
strajght exactly when the intersection number iz 2. A complete table follows:

vl =1 o 1| 2| 3| &l s
bn 1| 2| 2| 38| s

ga | 0| 1| 1| 1| 1] 2| 5
o | =1 0| 1] 2 | 8 | 7 |18
ty 18013 8 3| 1| o

We note the role of intersection numbers in the relations -

(6.14) bﬂ.(yn) — (yn——l) + (yn-l-l)'

. _ Ty Lp—3 Tpy1

7. The Lagrange algorithm. The ordinary continued fraction (often
attributed to Lagrange) has the form

: ' 1 1 '
{7.1) A = @yt —  — = (Ghgy Byy ..

387 AN == (@A 4 B) (02t + ), (
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with Ay = 4 (eR), @ = [A], & = a;+1[4y,,. Bere aoeZ, ;> 1 (for j > 0)
and if 1 terminates in @, (A<Q) a,> 2 for unigueness. This algorithm
ocenrs most prominently in number theory hecause the convergents

(7.2) . Dulln = (Ggy Gyy ey @)

provide both the larger and smaller of the best approximations.

By comparison, the Hirzebruch algorithm provides neeessarily only
the larger of the approximations as well as many which are not the
best. Specifically, the convergents w,,/n, of the Hirzebruch algorithm
are the seb (for n =1, 3,5,...) of “neben-fractions”

Pu P Puns

(7.8) =,

Prt Opi2Pain _ Pnrye
g.'n gn+ %H—l ’

[/ Y Inyz

In the standardized eonfiguration (see Figure 1) for 4 > 0, the Hirze-
bruch algorithm defines an approximating polygon above the ray
y = Az {x > 0). To find an approximating polygon below this ray we
must expand 1/4 and invert our convergents (or, equivalently expand —24
and ignore sign of the convergents; see Remark 8.8 and Corollary 10.17
below).

8. Reduced form of a sector. Tf we use a reduced sector as defined
in Seetion 2 (above), we can obtain the chain for 8 directly from Theorem’
6.5, The <>y symmetry yields the following result:

TuroreM 8.1. Let us expond
(8.2) (1 <) 22 = [bo, bl! bg, ...],
(8-3) i (1 <) 1/"}*1 = [b—lf b-2? bH3; ]!

then the reduced sector S containing the second quadrant and lying
between Yy = L in the third and y = l,w in the first is determined by
the chain

(8.4) S [er., by, byy by, byy by ..l
Turorwy 8.5, Det AW, A9 be drrationals with the cupamsions
| O = B ] (= 1,2).
The condition for ultimate ogreement of these expansions, i.e., for some N
(8.6) B = bfmy
is.ewaotly that AV and 1 are cquivalent in PRL,(Z). In symbols, Am_ ~ A2 or

& b

A d) eRL,(Z),
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It is clear that “ultimate agrecment” leads to 1™ a2 A®. Therefores
we have only to skow fthat the equivalence leads to ultimate agreement.
Assume A > 0 (by adding integers if need be), and consider the sectors
S9 from (say) the ray at 90° to the ray of slope A¥), We know that for
some MeSLy(#), M(A®) = ¥, go this transformation gives wus #wo
sectors terminating on the “right” with the same slope A® (but with
different slopes on the left). Tt remaing only to show that if the slope
is the same on the right, then the support polygons ultimately agree.
But one sector now includes the obher. Thus any support scgment of the
larger gector which lies in the gmaller is necessarily a support segment
of the smaller,

Bemarlk 8.8. Thus if 1 has an “upper polygon” as defined in Theo-
rem 6.5, the expansion of 1/4 (oxr —i ~ 1[4, ete.),
support polygon” on expansion and inversion (or negation, ete.).

9. Hirzebruch's resolution of radicals. The singularities

9.1y w = (2,28 5YE, RB>8>0, (R 8) =1,

oceur at the fixed points of the Hilbert modular function (see [2]). We
consider the function-theoretic problem of resolution only in ferms of
a very superficial aspect: The field (2, 2,, #) has a subring O of elements

integral over the polynomial ring €[z, 2,1 The puore radicals in that
ring are the set ~

(9.2) Wy = (FAVE, 120, 220, t4+82 = 0 (mod R).

There would be only R-41 such radicals if we reduce & and ¢ {mod R),
but clearly, even so, all of them are not needed. Some can be congbructed
multiplicatively from others. What, then, would be the minimal basis
of this whole (unreduced) set of pure radicals?

Clearly the (,1) in (9.2) lead to a sector §:
(9.3) Ry =t--82, Ol<afy<RiS, y>0, 230.
Thus as in Theorem 6.5, we éxpand
(94). IR =[by, by by, (B = 1,322, 1> 0).
The minimal basis of 8GVS i3 the n--1 vectors (#,, ¥,,) with
[Boy bay ovvy By,

Thus for the Jllustlat:r.on in Figure 1 {above) the generating radicals
for (225" are

(95) ym/mm = 0 mm.

(0.6) oz, (AN (@A (@A (), e

produces the “lower

icm
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Remark 9.7. If we renumber the »+1 basis radieals as wy, wy, ..., W,
we can say that the coordinate wystems of (w,,_;, w,) and (W, Wy.,)
have intersection number b, at w,,, or

b
(9.8) Win Wiy, = Wy »

Thig is interpreted in [37] by the (negative) Chern number, Actually the
traction RJ(B~8) = [b1,..., b,] gives the successive steps on “blowing
up the origin® in [3].

TovMA 9.9. If P>Q>0, P>Q >0, QQ =1(modP), then if
[Boy - rry Ds] = PjQ, it follows that [b,, ..., by] = P|Q".

Thls “alagsical lemma™ is 111L01e%1ng becaunse ity proof can e seen
purely algebraically. We note that (2,2f)"F and (228)'" both lead to
the same set of radicals, hence the sectors (9.3) are equivalent and the
chaing are the same oxcept for order. (See Corollary 5.15.)

10. Quadratic sectors. Next congider the four sectors demoted by
8,8, —8, —S' as determined by the real lines

(10.1) yo= Ay, y=>Np, (11,

_where the slopes 4, A’ are taken to be irrational for convenience. The

four gupport polygons will, of course, mateh in pairs by 1806° rotation,
but, otherwise, two generally different polygons emerge.

DerNon 10,2, Let ®(x, y) = 0y — i) (y—Va), fox 0 # R,
then the sectors S, 87, —8, —9 are called sectors of the quadratic form @
(and the support polygons are said to belong to that form).

DEFINITION 10.3. A support polygon of sector S (or the sector itself)
is called periodic if its doubly infinite chain of intersection numbers is
periodie, i.e., b, = b for some p > 0. We usually designate the mini-
mal (pI‘llIll‘LIVB) period and write

(10.4) S (b byy oy 0pi))y 2> 00

TasorEM 10.5. A support polygon belonging to o form @ s periodic
epactly when A, A are real quadratic confugaies, or & is proportional to an
indegral guadratic form .
{10.6) B, y) = Cly—Az){y — ¥ o) = da*+-Buy +0y,
where (4, B, 0) = 1 and the discriminant D = B dAC (> 0) 48 mol
a perfeot square. Thus when ene support polygon is pmodw so is the other.

Proof. First agsume periodicity, and further assume that the sector
is in redueed form (see Lemma 5.16 above). Congsider the support points
given by the ratios

(10.72) YporlBpz = [Boy oey Dpaly (Yoo = 1/0},
(10.7b) Yplp == [Bos + e Bpaly
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as in (8.7). Then the malrix action

wr (¥ o (v —ypﬁl) y’): (y
v @, —o, [\’ @

will shift (@', y') = (1, 0) to (2,_1, ¥p_,) and (&', ") = (0, 1) o (@ Up)-
Thus M;? maps 8§ intio another reduced sector of the same period, or
into the same oriented sector by Theorem 5.13. Thus, in fractional form

(10'9) -M-O(A) = (?fjJR“yzi—-l)/(T A Wy q ) =1

for the roots 1, A'. Thus these roots are real guadratic conjugates.
To show the converse, let

(10.10) A+BI4HOR =0, (4,B,0) =1, D = B —440.
We wish to congtruct a matrix M, «SL,(Z) such that
A= M,(1) = {aA-+B)[(cA+d),

(10.8)

(10.11a)
or, equivalently

(10.11b) oA+ (d—a)A—b = 0.

Thus we must find some ¢ such that the matrix has the form

(10.12) ¢=0 d=a-+Bt, b= —Ai.

The unimodularity condition, ad - be = 1, yields

(10.13) (2a+Bt)2—Di? = 4.

We easily see solutions can be constructed from the positively normed
unity of the ring of discriminant D. Thus at least one matrix M, must
shift the support polygon into itself becange it does not change the bound-
ary slopes (10.11a) or the orientation (10.13). Thus there i a translation
on the intersection mumbers, which is precisely what & period is.

UoroLLARY 10.14. If the veal quadrafic conjugates sabisfy

(10.15) A=1>A>0

then the Hirzebruch expansions (6.2) of A and 1/ are purely periodie.
This is a divect consequence of Theorem 8.1, '
Remark 10.16. We now have a practical method of “reducing”
a gquadratic sector. Since any gedior is equivalent under S, (#) to a reduced
sector, then any gquadratic 4 ~ A, where A, has an expangion with pure
period. Therefore the expansion of 1 must ultimatély agree with 1, by

ultimately having a pure period if we follow the elementary numerical

operations in (6.4) above. (See Remark 11.14 below for an illustration.)

icm
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CororLARY 10.17. If 2 45 equivalent to a certain period, then this period
is veversed by 1/ or —A.

In terms of Remark 8.8, we are saying that the uppel polygon of 4
is the reverse of the lower polygon of 1/4".

The above results on quadratic sectors are conta,med in esgence in
the work of Hirzebruch. [4] except for the geometric imagery of the sup-
porl polygens. The next two secfions carry this work somewhat further
in directions sufficiently broad to extend to several dimensions.

11. Construction of period from wumits. Actually a sard algorithm
can be devised for producing the period analogously with that of the
ordinary continued {raetion. If is more in keeping with the spirit of ring
theory to proceed directly from the units of the ring.

TeuorEM L1.1. Lot us consider a seclor corresponding to
(11.2) CA*+Bl4+4 =0,

where A, B, O are relatively prime iniegers and the sector i veduced so thot
B <0, A>0, C> 0. The discriminant is ¢ nonsquare given by

(11.8) 0 <D = B*—44AC.

Consider the support polygon of the reduced sector and its various periods
(including the monprimitive ones),

(11‘4) ((bﬂl ey b,’p—l))? ((bﬂi Loy b_'p-~1? bOJ rrr b:p—l))} bS]

and of the same fime consider the various units of the quadratic ring of dis-
eriminant D which have norm 1 and exceed 1 numerically,

(11.5) w = (s +1D*) 2, —2D =4, >0, t> 0.

Then there is a biunigue correspondance belween (nonprimitive) periods by
jumtaposition and (nonfundomenial) units by wmultiplication expressed by
the ratio

(11.6) [period] = 3(—Bt+s)/Ct.

Proof. We ghall first show that in (11.6) some period must corre-
spond to the given unit (11.5) via the ratio (11.8). Thus we expand the
ratio 4{—Bt-+8)/0t by the Hirzebruch algorithm

{11.7) H—Bt-+ 3)[m = [byy byy ey b.p—d] = Yp[p-

We, of course, are taking liberties with notation. The value p is just the
number of dencmingtors in the expansion of the ratio (11.6), but we do
not yet know that the get of b; constitutes o period (or that the period
is primitive). We make the further assertion that the ratio (11.6) is reduced,
or N . :
(11.8) Y, = }(~Bi-+s), @, = Ct.
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This is true because the values
(11.9) Ypy = At, @y, = F(—Bt—g)
have a unimodular relation by (L1.5), namely

{(11.10) By ¥p = Tp¥Yp_1 = 1.
‘We can alse apply Lemma 6.1 gince

yp/wp> 3 ”Bt”i“ﬂligt)/Ot == A2 1, yp/?l1)~1> +{—Bi '“%‘-Dlmt)/ﬂ-f' = 1/-'1' >1

by the definition of reduction. Therefore #,_;/@., expands into [by, ..
y bp_a] (=1/0 if p =1).
We now have a matrix of 8L, (%)

Yp —VUp— i Jz‘(;_Bt‘“FS) —Al )
(11.11) ( ) _(0:: (—Bi—s))

T, —@p_y

If we can show it leaves a sector invariant, it follows from the method
of Theorern 10.5 (firgt part) that ((by, ..., by_1)) 8 a period. To do this
we check that (11.2) is the same ag

(11.12) E(—Bt +8)ft-At)/(0ﬁ»-%(—Bf~8)) = A

Conversely, let us start with a period. The corresponding linear
transformation (11.11) stretches an eigenveetor at i = y/o by the factor

(11.13) A ip_q =

Thus any period corresponds to a totally positive unit acting as multiplier
on the boundary rays of the sector. The correspondance of umts and
periods is now complete.

Remark 11.14. We now have an algorithmic procedure for finding
the primitive period from the ‘fundamental {totally positive) unit. Let
A, 2’ be conjugate surds. Bxpand them by Lemma 6.1, Take 4 (= Ao);
a reduced gurd must equal some remainder Ay, Thus Theorem. 11.1 deter-
mined the period “above” ;. We repeat the procedure for A'.

¥or example, if we take 1 = 3", ¥ = —3"%, we expand

BV [—2, 4], Ay =243 = ((4),
~B = (1,2 4], A = (3438 = ((2, 3)).

Thus to apply the algorithm to (say) iy = (3-+3"%)/8, we note it is reduced
and satisties (4, B, 0) = (2, ~6,8), D =12, (s,1) = (4,1). Thus (1L.7)
becomes 5/3 = [2, 3], the period of 4; {ox —3"#). (See Figure 2b, below.)
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12. Symmeiry types. There are four types of symmetry possible
with quadratic seetors. They ave illustrated in Figure 2 and the accom-
panying descriptions are justified by the use of Corollary 10.17.

a. Rotational symmetry: 4 ~ X', This is like 90° rotation of th i

! . 8 18 e period
ey A = (214-221'7) /22 ~ 3 & ((2, 3, 4)). i ’

b. Reversing symmelry: A ~ —i . Bach peri i i

7 R . period is reversibl -g.

z ﬂsl,’ﬂm ((4)), lf — ___31,’2 v ((2 3)} I e; eg?

¢. Reflection symmetry: L~ —4, ' ~ —2 Here each period can be

reflected "IrGI'OSS the eigenvectors into another period, e.g., 4 = (2482"%)/3
~{(4,2,2,2,2,3,2,7), I ~((7,2,32,2,2,2, 4)).

d. _Toﬁal symmeiry: -4 ~ £1 (all four mgns) Any two symmetrles
imply total symmetry; e.g., 1 = (3-+-5")/2 — ((3)).

e. Total asymmetry. Here only the tlzma,l 180° rotation oceurs ag
a gymmetry; e.g, 4 = (2+74)/3 ~((4,2,2,7,3)), 1’ ~((2,3,3,2,2,2,5)).

a)

Fig. 2. Symmetrics. The drawings are only symbolic and the opposite quadrants
Lave polygons determined by symmetry with respect to the origin. a) Rotational
symmetry @ = Ga?—1lay —5y%; b) Reversing symmetry @ = a2 — 3y%; ¢) Reflection

gymmetry @ = 3% 4 doy — 263%; d) Tobal symmelry @ = 22— py -2

.:i3. Symmetry criteria. The following eriteria distingnish the sym-
metries. As before, the symbol ~ denotes eguivalence in SL,(Z)} as well
a8 PSL.(Z) according to conbext.

4~ Acta Arithmetica XXIV.3
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TeEOREM 13.1. a. Rotational symmetry holds exactly when

(13.2) P ~ Adx?+Bry—Ay®
b. Reversing symmetry holds exvactly when P is ambiguous, or
(13.3) & ~ Azt -Azy--Cy2, Ac*+Cy?, As®-+Boy--Ay*

c. Reflection symmetry holds emactly whei
(13.4) gt f2D = —
is solvable for s, teZ (or unit of norm —1 ewisls in the ving of diseriminant D).
d. Total symmetry follows from any two of the above cases, so thal any
two symmetries smply the third.
Timvma 13.8. Let M GLy(Z) and

(13.6) M* = —dl, @ ==detM = 1.
Then there ewists o VeSLy(Z) such that one of these cases ocours:
- 01

(13.7) . VMV = i(—l 0) (> 0),

1 1 —b _
(13.8) VMY =4 0 —1 (d<0), b=0,1,

1 01

(13.9) VMV = 4 10 (d < 0},

: 01
. This lemma is proved by repeated use of ¥V, = (_1 0) and
Vi = (3 H];) as transforms of M.

Now, to prove Theorem 13.1, we first note that rotational symmetry
comes when A = M (1) and d = 1, hence from (13.7), The reversing sym-
metry applies when —1 = M (%) and & = —1; there the three ambiguons
forms in (13.3) follow from (13.8) with b = 1, from (13.8) withb =

and (13.9) respectively. The case of reflection symmetry applies when
—A = M.(3), M,e8L,(2Z), which leads to (13.4) by the method of the.

proof of Theorem 10.5 (second part).

Remark 13.10. The rotational and reversing symmetries have meaning
for nonguadratic irrationals (even for rationals), but the reflection sym-
metry is possible only for A4 A’ real quadratic conjugates..

Remark 13.11. The examples in Section 12 are contrived o have

the smallest possible field-discriminants. For instance, the case of reflection
symmetry only (Figure 2c) requires that a unib have norm —1, but that
there be more than one class per genus (to preclude ambiguity of forms)
Hence we arrive at Q(82%).

of Gg.
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Lmvova 1312, Let 0 < Dy (eZ), Dy*¢Z. Then if Dy = 1 (mod 4}, we
let @ = L--[Di] or 24D, so that a is edd. Then

{13.13) Ho+Di") = (g, by, ..., bpad)y b= bp-—t
If Dy =1 (mod4), let a =1+ [D¥]. Then
(13.14) (a+Di*) = (24, by, ..., bp1)); By = by

© This follows from Theorem 13.1b (or (8.2) and (8.3) directly).

14. Formal ring of a sector. We begin with the “canonical” con-
struction of the monoid ring of & sector. We enlarge the semigroup SGVS
of the sector 8 to a monoid by the neutral vector (0, 0). Leb (u, y)—swv,

(o', 4 )—>®'. Then we define

(14.1) v’ = (ot y4-y')

while addition v+v’ ig formal. This creates the monoid ring (over Z) RBg 5.
We focus our attention on the field € and define

(14.2) Rs = RS.Z ® C.

DrriNiTion 14.8. Call By the ring of the seclor S.

Remark 14.4, When 8 is the sector for (9.3), then Rg is the local
ring at the origin for ey, 2, (2/25)"%). -

DrrmvrTioN 14.5. Call i%s the formal ving of the seclor § the completion
of Rg through the use of infinite formal sums of vectors v with coefﬂclents
in €. Thus Ry = C|[»].]

I5. Quotient ring of a sector. In general a sector 8§ will have auto-
morphisms forming a subgroup G < GLip(Z). Let G be some subgroup

DErinrriow 15.1. Call the formal quotient ring of 8/G

(15.2) | Ry = C[[v7]]

where v® denotes the forma,l sum of the actions of & on w, ie,
(15.3) = va” ge.

{(Here the a,cmon a(m, y) = (o, y)¥ >0 m the cbvious way. )

Remark 15.4. It can be seen that RS;G is the subset of RS invariant
under . Thus a formal ring is needed when & in infinite.

A simple, yet nontrivial case oceurs when S is defined by

(15.3) ly| < Am, 2>0, 0<i (eR).
It we take ¢ == {1, g}, g(z,¥) = (&, —y) we obtain

(15.6) ; ¥ = v 40"
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The relationship of I%S/G to Eis iz similar to the guadratic extension
of a ring, but thiz matter will be explored in a later paper.

16. Formal ring of a quadratic sector. Mollowing the work of Siegel [5]
and Gundlach [2], we consider the spaces H, and H_ defined by the
product of half-planes

(16.1) Ime, > 0, dImz,> 0

where d = 41 for H, and d = ~1 for H_. Let cither of K, be acted
upon by a group denoted by {L, U} as follows: Eere

. (16.2) L= 8y, 8,]

a two-dimensional Z-lattice of elements of Q (DY), for Dy > 0 square-free;
and. T ig a unit group generated by a totally positive unit w, (> 1) such
that

(16.3) wols = 1,

According ﬁo the classical theory, we can multiply L by a factor so as
o malke it an ideal in & quadratic ring for which w, is a unit, for con-
venience. The actions on (2, 2p)efl, are generated by

(16.4) P21y 20) = (21 -F B, 2+ ),

(16.5) Uler) #s) = (w02, 052,) _

where fel (and primes denote conjugates). We orient the bases so that
{16.6) - Babr—fufs = 4> 0.

We then consider the ring of functions of 2,, 2, holomorphie in a neigh-
borhood of infinity defined by

{16.7) {Imz,) (Ime,)| > const

and. this ring ean later be completed to o formal ring. For the present,
define new variables

(16.8) Ay = —pies+ foray ALy = fle—Puzy
50 that these correspondances hold.:

(16.9) (21, 2a)(8y, La)y

(16.10) (1 B1y 22+ .3;)“‘“*(51 +1, &y),
{16.11) A&+ By 2o ﬁ;)‘_’(fza at1).

-Thus we are dealing with a ring of functions of

(16.12) (i Mg} = 6xP 27 (my &y + 1 L)
' = eporrz‘(le’—_zgg)/A.

icm
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Here o i again a general element of I,
(16.13} 0 = =il fa+myfy.

For boundedness of 4 on H, we must have ¢ >0, do 0 (d = £1).
This leads to the sector in the (m,, m,) coordinates

“mﬂgé‘f‘mzﬁi >0,
£ (—myfy-Fmyfy) > 0.

The (monoid of) SGVS, has an isomorphic image in pimy, m,) under
multiplication and the ring of holomorphic functions on H /L 1s eanon-
ically imbedded in the formal ring of §,.

The unit group U corresponds to periodic translations of the support
polygons, indeed izsomorphically (by Theorem 11.1) i wy is a fundamental
unit for the ring “into which I is injected by a proportionality factor.

The ring of holomorphic functions of H_ /{T, U} is also canonically
imbedded in fﬁs,{ij, bnt the fact that the imbedding is injective is

not trivial. It involves convergence of the series (15.3), under Ve (M, M)
(sce Gundlach [27).

(16.14) S,

17. Comjectures of Serre and Hirzebruch. Tn 1969 Serre conjectured
(private ecommunications) that if U is the periodic (translation) group
of a quadratic sector S then ﬁ,gm is an algebraic formal ring of degree
of transcendence 2.

This was proved by Hirzebruch in 1971 [4], at least with regard to
the subring of holomorphic functions, by the construction of a cyelic
covering of the singularity of B /{I, U} at oco. This covering was based
on the period of the intersection numbers.

A direct proof should be possible, at least for the formal rings, based
only on number-theoretic manipulations. Unfortunately thiz has been
achieved only in a few cases (see [1], for instance),

A more extended study of the formal rings and quotients is planned
for later papers, however, as well as the generalization of the geometric
concept of support poiygons to several dimensions.

Added in proof: The finiteness of the formal ring ﬁs,'U is demonsirated by
the author in a fortheoming paper. The author was unaware that he eguivalence

- of chains and wnifs (Theorem 11.1) had been proved by Dr. Roblfs in 1971. (No pub-

lished reference i available.)
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Specialization of quadratic and symmetric
bilinear forms, and a norm theorem

by
MANFRED KNEBUSCH (Saarbriicken)

Dedicated to Carl Ludwig Siegel on his 7§ birthday

Introduction. In the first part of thiz paper (§ 1-§3) we study the
specialization of a symmeiric bilinear or guadratic form over a field i
with respeect to a place A: E—ILuUoc, provided the form has “good reduc-
tion”, We have to distingnish between symmetric bilinear and quadratic
forms ginee we do not exclude fields of characteristic 2. A typical result

obtained by this theory is the following: We denote a symmetric bilinear

form by the corresponding symmetric matrix of ity coefficients. Let k()
be the field of rational functions in independent variables #;, ..., 1, over
a field k. Congider symmetric bilinear forms (fy;(8})y {gu () over k(1) whose
coefficients f; (1), 9:;(?) are polynomials. Agsume that the form (gm(t)) is
represented by (f;(2)). Assume further that o is an »-tupel in %" such
that the form ( fﬁ(a)) over k ig non singular. If chark # 2 the following
holds frue:

(i) Tt also {gy;(e)) is non singular, then this form is represented by
[fis(0)) over ¥ (see §2).

(ii) Tf (gm(t)) is a diagonal matrix with m rows and columns and
if ¢ iy & non singular zero of each polynomial g,,(t), then the form (fy(e)}
has With index == m/2 if m is even and > (m+1)/2 if m is odd (see §3).

The assertion (i) may be considered as a generalization of the principle
of gubstitution of Cassels and Pfister ([15], p. 365; [10], p. 20). At the
end of Section 8 (Proposition 3.6) we shall also generalize the subform
theorem of Cossels and Pfligter ([15]. p. 366; [10], p. 20).

Using the result quoted above and a similar result for chark = 2
we prove in the last section § 4 a theorem about the polynomials in k[#]
which can oceur ag norms of similarity over %(¢) for a fixed symmetric
bilinear form.defined over k. Special cages of this norm theorem have
been uged in a crucial way by Arason and Pfister in [1] and by Elman

- and Lam in [5].



