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1. Fotroduction. Al least two recent writers have described Gauss’s
theory of composition. of binary quadratic forms as a tour de foree, and
not a few mathematicians have told me it was much too eomplicated
to be of nse. Albhoogh several writers (notably Smith, Arndt, and Pepin

[12]) have published accounts of parts of the theory there has until recently

been no persistent reconsideration of it. Appavently no one spent the
time and offort needed fully fo understand the Gaussinn. approach until
my colleague, Hubert Butts, and I resolved to undertake this in 1968.
Part of the reason for the lengthy delay was the circumstance that alter-
native simpler theories were available. The development of eomposifion
hag tended to De dominated by the approaches of Diriehlet and Dedekind,
bhoth of whom wore students of Gaussg, and both of whom developed alter-
native methods which were simpler for the apparent objective than the
Gaugsian theory as it then was. It may now be said, without detracting
in the least from the immense importance of the work of these men, that
an early thoroughgoing reconsideration of Gauss’s approach by means
of suitably delimited bilinear substitutions might have led to a develop-
ment of form theory in parvallel with algebraic mumber theory which
wonld have cnriched mathemafics. Further, Bubts’s rescarches into
composition over various rings indicate that Gauss’s approach generalizes
better than the moethod of united forms. Furthermore, the bilinear subytitu-
tions have greater flexibility and versatility than the united forms, and
have o wider range of applieations. '

2. Definition of Gaussian composition. Although Guauss dealt onlty
with binary quadratic forms his  definition has o natural extension to
the norm forms of modules in algebraie fields. We will formulate tho defi-

* This worle was supportod i part by N. 3. F. grant GP 201056X.
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nition for the more general case, but will confine ourselves adter hiy

section to the case n = 2.
We will eall an n-ary n-ic form primifioe if 16 hay unzegv]" c:(w’l’:fi(:ivn‘l",q

where g is primitive and & is a positive integer, we call k 1;}10. dvmsw oj f.
We call an n-ary n-ic form f with rational coetlicients fully decomposable
(£d) if it is a product Lyl ... L, of linear forms Ly == agyay - ... -p i, ey,
with coefficients a;in an cmlg(,br,m' extongion & of the rationals. Terniating
the L; and multlplymg them by [.1,01.01'h in ' with product 1 will permute
the vows of the matrix

gy g eee iy
(1) A=1...

fhpy Opy one Oy |

T

and multiply them by the factors with product 1, but will not chango

the value of
(2) d(f) =

The quantity d(f) can be shown to be rational, and to be integral if the
coefticients of f ave integers, and will be called the diseriminant of f. If
a linear transformation with the matrix T is applied to f, 4 is replacoed
by AT, hence 8{f) multiplied by |72 Also, d(af) = *0(f) (¢ rational).
A elass is defined as consisting of all 101'1115 obtained from one by uni-
modular transformations (with integer eoefficients and determinant 1),
Consider a bilinear substitution with infeger coetficienty piF,

n

(3) ' iy = Zpikyjzk (i =1, ..., 0}

Iy k=1 “
‘which sends an £4 form f in the indeterminates »; into a product of fd
forms f* and " in the respective indeterininates g and z,. One obflains
& useful perspective by regarding the z, (or y,) ns fixed, and yo construing
(3) a8 a linear transformation replacing f by &f" (ov kf") wheroe & is the
“constant” £ (or /). Since these fransformations have the detorminants

(4) Ay == IZpJ’L . J‘Xﬁ%’“m‘,
: . ] J
and the diseriminanty t mqiorm as above,
(5) DALY =0y, ) = o).

Equating the divisors of the forms on cach side gives

{6) @R ==, @R e eh
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where B, 17, B, B ave the divisors of the rospective forms Ay A,
and ¢ &, d"” are the discriminants of f, f’ f” respectively. '

Lot f* and " be primitive, i.e., &' == & = 1. Then the ¥; and 2. can
be chosent to make f* and f prime fo any desived nonzero integer, hence f
is primitive. By (3) and (8),

d" = eh®, A, = £hf, = +¥f.

When o =2, Gauss calls f a compound of the primitive forms f'

and 7 # fhare (nmt' a primitive bilinear substitution (3) malking § = f/f"
and, satistying

{8) A A, =Wf'.

(By s0 doing he oblained the class growp familiar to all of us; with other
sign choices in (8) one gets KL, KL, ox X~'L 7, instead of KL.) Here
“primitive” means that the six minor determinants of the matrix

pll 12 Pﬂ[ a3
) 7 [ i o b P ]
2. Py

of the bilinear substitution are coprime. Now the forms 4, and 4, are
(10) Ay = [Digy Dyt Dy, pzm]: fy = [Dyy, Dyy— Dy, Dy,],

where fly is the determinant with the 7 and § eolumn of M. An odd prime p
divides &' and b" if and only if p divides every Dy. Thig is true even if
P = 2 since Dy and Dy cannot both be odd with the other Dy’s even,
becanse of the identity Dy, Dy — Dy Doy + D, Dy = 0. Henee if # =2
the three propertios

{11) M is primitive, (B, A7) =1, ¢ =(dd"),

are equivalent. When # > 2, the condition (A, k') = 1 implies the primi-
tivity of the bilinear substitution, and it seems better to define f to be
a Goussion compound of the primitive forms f and f if f = ff"" under
o bilinear substitution (3) satistying (8) and (B, b)) =1. If » > 2 the
exigtonee of o Guussian compound of " and f requires that they have
further propertiey in conmor. o

In any case wo can put ¢ = h'f', 9" =2"f", ¢ = WD, and can
rogard Chaussian composition ag an operation on forms g', g'* of diseri-
minant d (== ch™h'") with eoprime divisors k', A", yielding a product
form of diseriminant d and divisor A",

3. Wo will show how to construet & Gausgian compound of the forms
L&, b, ¢], [0, b, ¢'] with the same discriminant &, coprime divisors, and
aa’ ¥ 0. Anyone familioe with united forms might guess owr construction
from the following hoeuristic considerations. If @ = gm and &’ = gm’ and



404 (tordon 1'all

Vo= —b(mod2g), then [gm,b,¢] and [gm, b, ¢"] seem to factor ag
[q, b, em[m, b, eq] and [g, b', c'm’|[m’, b, &'q]; und sinee b" = - h(mod2g),
(4, b, em] and [g, b', ¢'m’] ought to cancel,

Thiy suggests putting ¢ = (a, o', %( -+ b ), @ == gy, 68 = gm’, and
trying as a possible product [mm/, b, -1 Now a(an®--bay - cy®) factors
as the product of ax-+-4(5- i«l/(?)'.'/ ,m(l its conjugate. Henee we are lod
to try

(12) (aw+ 30+ Vayyha's' +3 (b - FYd)yy)

Multiplying thiy by its conjugate we got, il d ~ D% daman'e

{m'm"x'” LYy ).

{13) (a2 -+ by -+ ey (@'w2 4 By’ A 'y ) o /w2 LW @y ey,

Equating rational and irrational parts in (18) gives

o . B =" bt by - BT (D -p 07y
@'l == quen’ -y -\-w—;—-‘——« ' Y- Jo o e oy
S 2m dgnim
{(14)
, bA-b
¥ may w4 E_ ¥y,
where the coefficients will be integers if and only if
b == b (wod2m’), b o= banod2m),
(15) ‘ ) ‘ ‘ ’
(b-F5Yb" =2 b -+ d (o dgmm’).
By (13), ¢" ig an integer since d—0""% == (b bYW (H"' —~b") == 0{moddmm’).

Also, (1B5) is equivalent to

bW R
=m'h, bl = e

24 2q
where bb' -+d = b(0 +b) —dae = 0 (mod 2g). It ean be veritied that (LB)
has a unigue solution o mod&mm’ by uge of the following lemma (given
in [3], p. 134). '
Limma 1_. Let (8,1, fy ) = Lo If 5 divides every gy
=1, ..y n)y there 48 one and ondy one solution b mods of

(16) mb" =mb’, m'bH" {mod 2mm”),

by (0]

WO g, e, BT e g, (ods).

Forming 4, and A4, we find that (84) 8 Goussian.
b is well-known that every unimodular putomoerph of o preimibive
form [a, b, ] of nonsquare diseriminant d is expressed by

(e n;g]/d) )

where t, w are any integer solutions of 42— du* == 4. Frow this and from Theo-
rem 3 which we are about to prove will f()llnw ali onee that
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Moy 1,
given by

Brery Qawssian substitution wnder which (12) holds s

(@ - (B~ Y dyy) o o+ SOV d)y') = glmm o + SO AV d) ) (v dy),
where dy s the diseriminant of the priwitive part of [man', b, ¢"], and 4,
are any integral solutions of 14— dyut = 4,

In Angust 1968, L raised and poartially answered the question of how
uniquo the Gaassian bilinear sabstitution iy when the three forms f, f, £/
are fixed, L then searched the lifoeature on this matter. The only thing I -
was dble to find wax 0 conjediure by Arndt something like Theorem 1;
thiy eonjectnre was omitbed by Mathews [B] in his account of Arndi’s
work, bul it iy given i Dickson’s Ilistory.

We will now prove simulbanconsly two theorems:

TimoriM 2. The Gaussian compounds of forms in o dass K by forms
in & dlass Loy, where K and I have diseriminant d and coprime divisors B’
wrid B0 form o undgue class KL, of diseriminant & and daisor W',

Trcworim 3. (thoose [ in K, 77 in D, fin KL, where & and L hove dis-
créminant d and ('uw-r-"m(l divisors. If M is the matria of a Gaussian substitu-
tion wnder wiich f o« f' £, then every such motrie is given by WM, where W
a5 an arbilrary 'M’iiﬂl-m()(ﬂH»l:(M‘ atomorph of f.

Lnsmma 2. I (3) holds, and (41, ¥a) == (21, %) = (F' (90, 92), 1 (21, 22))
= Ly there (g, wy) - 1. :

Proot, The values of f and £ are now the determinants 4, and J,.
IE p divides @, 2, bub not A, or A, then p divides (7, ¥a) oF (2, 2).

Lagvma 3. As dg well-known swe ean choose in K and L united forms
(%1, By ancl, L@y b,y ae] with (ay, ) = 1. For forms f',f" so chosen, if
T s o Gaussian compownd of f* and [, fis in the class of {ayaq, b, ¢].

Proof. Take yy, 9y, 24, 2 =1,0,1,0 in (3). Then (#,,,) =1 and
Flovg,y @) == qgay. Lot 7 ho o unimodular matrix. with @y, &, as first columm.
The vepresentation @, oy by f eorresponds to the representation (@, @)1t

= 1,0 by % s [0ty .ony .. ] Thus now ptt =1, pi' = 0. The condi-
tiong A, oo ff A, 7 now give

b, P —plpl = ae,

g, 8 92, 12
prpy — i

[ i ) ::
ot ay, pE L ety
)

(wa) ul o 1% 9]
ity P Py o By = .

i 2 Y . 23—
0, and sinee (@, o) -1 ;01° = hay, and il = ha,

fp,,rwhb 23, and

Thus pita, —pPa,
where & is an intoger. Thus b -

ar |1 hay ey Bb—c . .
M [() ty @y b ] U



406 Gordon Pall

Replacing @, by &+ ha, replaces M by
10 0 —e¢

{18) 04, @ b

which makes f = [a;04, b, ¢]. Theorem 2 follows, Notice that we ean
absorb this last translation inte T at the beginning of this proof, and say
there that a matrix T with =, x, ag fivst colnmn can be chiosen so that,
1 =[a,as, b, ]

jongider now any other Gaussian substitution under which f = f7f",
where [ »= Lagn,, b, e], f' = ml, by agtr], I = [8s, b, 2,¢]. Then the same
procedurs vields a mateix V b which teansformg £ oinde f, whenee M in
{18) iz replaced by WM.

To extend this to equivalent forms consider first two mateices 5
and M* for f = £V, U wnimodular. Let I' denofe 7% Applying 7'
performs certain operations on M and MY, Specitieally for (3) it multi-
plies

APy .
[ I 21] and [ " ,:i on. the right by T.
Pa s Py P '

By what we proved above, the new M* can be formed by multiplying
the new M on the lgft by a wnimodular aatomorph, of £ Since the right and
left operations commute, we can apply U to f again and have Theorem 3
for f,f'Y, f7. Similarly we can replace 7 by f'7 Pioally, replacing f
by fY, we first apply U™ to fU thus multiplying M on the left by U,
then by a unimodular automorph W of f, then by U~'; in oIl wo have
thos multiplied M on the left by U'W 7, which is any unimodulay auto-

morph of fY.

CororLAwry. The change in M due to applying o wiimodular automorph
to f* or ' con be oblained instead by multiplying on the left by some
wnimodular automorph of f.

To prove that composition is asgsocintive choose in classoes ¢, (g, U
with diseriminant d and divisors coprime in paivs, forins ["m“ by agaye],
[, B, thyage], [ag, b, aqape]. Cleadly, both (O, ¢, and O {C.() contain
[@y gy, b, ], One sees casily that the primitive classes of dseriminant @
form a group, and those of all the disaiminants dys* (d, fundamental,
ranging over the positive integers) o semigroup,

4. Multiplication or factorization of r opmmmtai‘iﬂns. In (3) wo can
regard iy, Ya a8 0 representation of some nomber 2" by [, 2, @, w8 0 repre-
b@nmtwn of some number #'' by £, and @y, @, a8 & product representation
of »'n'" by f. By an autoset (automorphic set) of n by f we ruean the ket
of representations obtained by applying to one the unimodular automorphs
of f. Corresponding antomorphic sets (by £ and /), the divisor of a autoset
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(g.e.d. of @y, @), primdtive — have obvious meanings. The fivst thing
Ganss did on binary quadratic forms (See. V of the D. A.) was to give
an  algorithm which associates with corresponding primitive autosefs
of m by the formg of a class a solution % modulo 2n of ¥2 = d (moddn);
or with the ecorresponding antoset containing L%, by [n, 2, ...0.

We may designate the autoset by f eontmmng @y, @ by the symbol
Ny, wy3 ), and may rveplace it by S(&, t,; g if f and ¢ are in the same
class and the reprosentations corrospond. We may write

(14) Ny a5 [y = Sy yas )-8 (51 203 77

to indieate that [ is o Gaussian compound of £ and f, and that under
any Gaussinn substitution which makes f = f'f*, the autoset on the left
i the produet of the reprosentations on the right.

We ngsume hereaftor that all forms are primitive and of diseriminant d.

Toxormy 4. Let the primitive representation y,, vy of #' by f' belong
(under Gauss’s algovithm) to w' (mod.2n’), and let the primitive representation
2y oy of 07 by f'7 belong to ' (mod2n”). Then the product representation
has the good. ¢ = (0", 9", 3w - u”)).

Prool. If we use (14) to Lind the Gaussian oompound of [n',u', -]
and [0, w”, -, and put w, oy, @,y =1, 0,1,0, we get 1”7 =g, y'* = 0.
(The notations need adjusting,)

We muy refer to the number represented as the norm of the represen-
tation. Considey o primitive representation of norm # belonging to wu,
and the ecorresponding S(1, 05 [%, u, k). If » = n,n,, the two forms
[y, %, ktey| and [ny, %, kn,] will De primitive if and only if (#,,%,) has
no bad prime factor p, ie., such that d/p* is a discriminant. Assnming
that they have no bad prime factor,

(200 S, 05 [Ryng, 2, B == 8(L, 05 [0y, 1w, nok])-8(1, 03 [0y, u, 5y k]).

Tunorkm B, The divisor of norm ny of o primitive representation of
HOPIR HiyFon 48 WViqaoly d(’bm'mme wp to equivalence if (ny, n,) has no bad
i foetor,

Prool. We necd only show bha;t we

(2L)  S(L, 05 [ngirg, e, &]) == S(1, 0

annot have
3 [0y %y, (’1]) -8 (1, 0_5 [Tryy 2y o)),

exeept whoen wy e e (od290,) and . == @ (Mod2a,). Since by (21) the
g.e.d. off the produet representation 8 1L, (my, 7, (s + ) = 1. Hence
g = Lin (14, my = mm, Ry == ', and (1) gives o = uy (Mod 2n4), 4 = u,
(maod 2n,}, :

Repeated application of this shows that a pmmtwa representation ean
be erpressed wniquely as a product of represeniations of prime norm, except
that powers of bad primes must be left unbroken.
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One can proceed at this point to define prime representations by the
primitive forms of diseriminant d, and obtain & theory of unigue factop-
ization into primes, very much like theory of leals in quadratic orders.
T will not go into this here, hut will merely remaric that this could hawve
bheen dene on the bagiz of Gaussian composition long before ideals were
actually discovered.

5. Application of Gaussian composition to writing formulas giving
all solutions of certain diophantine cquations, often with no sclution
oceurring more than once. Our principal tool for thix purpose is Theorem 5.
First, lot us consider Mordell’s equation #2--¢ == 2% A fivst step in solving
this equation is to write the solutions of w¥- a;aﬂ 28 with (w, 97) - 1. There
are methods in the Mteratuve which hive been wsed for thik prrpose,
but none {the author believes) ave as good as whit shoukl Tiwve been
the original method: Ganssian composition.

Let us congider rather the equation

ke

(22) et -buy vy tovs = af, (v, 0y =1, (ay b)) oo L, R L,

where the variables are »,, vy, and n. The cate where # hag Dud prime
factors can be reduced to cases where it does not, and we will here assume
it does not. Notico that (22} asserts that the primitive aontoset §{ng, vy f)
(where f == [a, b, ¢]) has norm a% and by Theorem. 5 the divisors of norm »
can all be taken cqual. Tind first the primitive elasses S ol diseriming uut d
such that L* = # (the class of £). Tn each such. clasy Tr ehoosa o foim [v, -, -
with  prime to d, and then by a franslation oblain o form [, s, 9"‘ 1.',.|.
For each ¢ (=1,...,k-1),

(23) (P43 (s —i—r’ﬁ)m} (g4 4 (s AV d)2g) = 71y - s -+ Vel)

is easily seen fo De o Ganssian 1)1'0(111(:11. Flenee we ean solve

(24) Moy - 3 (s -Vl = (rey - (s ¥ d) ity

for wy and %, to obtain a family of solutions of

(25)

At this point we showld apply 0 4, and wy the onimodalar a Lororpls
of the form [#% s, ¢|. Tf ¢ is a positivo nongigaseo integer the nomber of
these is intinite, ]Jut. wo nood only use the powers up to the (ke-1)th
power of the f’lm'(ilmnuntn.‘l antomorph, and their negatives. We oan find
& unimodular transformation carveying [, & #] into [a, b, ¢], and thus
obtain eorresponding formulas for o, v, in terms of #,, x,. To obbkain
coprime vy, 9,, we need only restrict a,, @, 1o be coprim o i to hoe sueh
that » in (25) is prime to d. (If p|d, powers of & represendation Wlljh nom
divisible by p ave imprimitive (Thwrem 4) )

PO b st g end o w®, with omo red s R M,

icm

(3]
f4]

{5l

Home ospeets of Gauseian eomposition

409

References

Hubert 8. Butte and Bill J. Dulin, Composition af binary quadratic forms over
integral demains, Acta Arith. 20 (1972), pp. 228-261.

Lo L. Dickson, History of the Theory of Numbers, vol. 3, pp. 60-79. References
to F. Arndt, Dedekind, Diriehlet, T. Pepin, and H. J. 8. Smith may be found
heve. Also, of course, Carl Friedvich Gauss.

—Indroduction to the Theory of Numbers, Chicago 1929; reprinted by Dover, 1957,
I. Kaplausky, Composition of binary quadratic forms, Studia Math. 31 (1968),
pp. 523-530.

G. B, Mathows, Theory of Numbers (reprint), Now York 1927.

Teeeived on &, 12, 1972 (359)

B — Acta Arlthmetica XXIV.4



