104 E. L Kovalevekaja

[3] V.G 8prindiuk, On the Makler's conjeoture, Dokl. Akad, Naule 8381, 154(4)
(1964), pp. 783-786.
[81 — More on Maklers hypothesis, Dokl. Alkad. Nauk HESR 186(1) (1964),
pp. 45-56. ‘
[10] — Mahbler's problem in metric nuwmber theory, Amer. Matl. Soe. Trany, Mono-
graphs, v. 25 (1069).
[11] — The asymplotic behaviour of the number of solulions fo cerloin Diophanting
inequelities, Dokl Akad, Nuule SS3R 173(4) (1967).
[12] — New application of analytie wnd p-adic mebhods in IMophantine approvimations,
Actes Congrés intern. math., Towme I, pp. 505509, 1971
[13]1 — The trigonomelric sums method in the melrie theory of Mophantine approxi-
mtion o dependent vabwes, Tvudy Mat, Insic Akod. Nook 388K, The collsetion
of articles dedicated the 80-th anniversary of L. M, Vinogradowv, v. 2 (1072,
[14] 1. M. Vinegradov, The method of trigonomelricol swms in the thoory of numbers
(trang, K. F. Roth and A. Davenport), London 1953,

INSTITUTE OF MATHEMATICS
OF THRE ACADRMY OF SCIENCRS OF B.5.5.02.
Mingk, B3I

Recetved on 10, 11, 1972 {346)

ACTA ARITIIMEEICA
XXV (1973)

Investigations in the powersum theory II
15%

B, Danod and P, Tounin (Budapest)

To the memory of L. J. Mordell

1. The second named author, partly in collaboration with 8. Ena-
powski baged a number of applications on the following theorem. Let
be by, ..., by, complex numbers, m nonnegative integer, further

(1.1} - = o] 2 2. 2 2, > 0
and .
. o
(L.2) gy = 3 by
Fuml

Then the theorem in question asserts the existence of an integer », satis-
fying

(1.3 mt1l < vy mbn

for which fhe inequality

" L :
(1.4) g ()] > (Sc(mmy) min 1 oo

holds.

In (L.1) tho fact thot #] = 1 i of course only & normalization. It
meany Sossentinlly” {lhat |g{»)| is estimated for a proper choice of » in
a “marrow? dinterval from helow by ity maximal term (which explains
its wpplienbilitiy).

I the ease when the Iy numbers are in a half-plane then the appli-
ation of the above thoorem goes winoothly; this holds of course in the
important case when l b aye L. n the first paper of this series (*) (quoted
as I in the sequel) we have seen how one can reduce very considerably
the range of 1in (1.4) which helps a lot in the applications since it permits

n ) B ]
to raplace the last inconvenient factor essentially by | 3 . In many
‘ fe1

('“) J\]_l;l.- niv, Sci. Budapest. Botvis Seet. Math., to appear.
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cafes however sums of the form

or even the single b5 {e.g. when the b/’s are values of characters belonging
to the multiplieative group of reduced residue classes modk) ave hetber
tractable; to get such a theorem one hag to take the normalization |z = 1
with a & #1, ie
AN AN A R B Ot e

Then we assert the

THEOREM. Let m nonnegative integer and the indices Ty and by are
defined by .

m+2n

(1'5) [zll } e > Izlgl_1| >‘ W

,2 Iﬁkﬂ;...? izkl == 1} ‘ar

= o, | = > [Bygal 2 .- 2 (el

MW b
(3 mo such I, ewists let %oy = 1 and if no such Ty ewists Tel kb == n). Then
there is an integer v, with

. mtlLyy<mtn

such that the inequality

by
1 N n . %

1.6 Wz —|— min. b

(1.6) lg ) 7 (24e(m+%) ) Fog + 1l Ry ey “%1 ’”I

holds.

It is natural to ask whether or not the dependence of the xight side
of (1.6) can be replaced by [b;+ ... -+ b,| or by min|4|? In the case k == n
the second of us showed indeed the inequality 7

: " u
max vl>(~—m) Wyt ove 0]
m-}-lsn.;m+nlg( ) = 26(%4”%) 1 nlr
which had already several applications.
For 1 < k<< n—1 the trivial example
Bp=.o=g =l Gy mm w2y, =0,

b1=..n=bh=0, bk-}«lz“':":bn ..':::1

shows that the last factor in (1.6) cannot be replaced hy b, -+ ... b,
the example
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ghows that even for 1 <k
either,

As to the proof it ig algebraic in the sense of I, ie., avoiding
complex integration; using it one could make the proof somewhat shorter,
and instead of (1.6) could get the stronger inequality

hg

(L7) m(wl)f>1(—w—’l—m)” min | 37,/

%\ 8e(m 2n) Iy H1hy Shgechy

2. For the proof we shall need a lemma.
Let @,(2) = ay2®+4- ... + @, be an arbitrary polynomial and

2.1 A = H I

where &7s stand for the zeros of =, (
(throughout the whole paper!)
Then we have(®) the

Lmyia. We have the snequality

<4 it cannot be replaced by min|b
|

B=Fy

2) in |2} > 1 empty product meaning 1

max |m,{z)| > 4 i
: : — || .
—lgz<l = gn-T %0

Actually we shall need the following easy
COROLLARY. If a < b then the ineguality

b—ai\n '
>
max |z, (o) 2lao|( , )”
3

holds where the ny’s stand for all zevos of 7, (2) outside the dise

a%—bl bea
<L —

b—a

2 ——

2 2

3. We may suppose
2, v=w, i pte;

lot m and N > -1 be natural numbers and for abbreviation

i
3.1 == d,
(8-1) P4

The index g<n—1 be defined (if it exists) by

(3.2) Joal = [l 2 een 22 IRyl > 1402 Mol Z i 2 gl =12 0. 2 2,05

—

(*) P. Turén, On an inegualilty of Chebysher, Ann. Univ. Sei. Budapest.
Eotvos Sect. Matd, 1) (1968), pp. 15-18. ' '
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if not let ¢ = 0. Let further be

(3.3) 16 = H(—wl) f [ =

Jeqtl
and
N @ n
3.4 G (8) = — ——1)' {w—|zl).
(3.4) gl [_{(H ij] }

We apply the corollary to g,(x) in [1— 4, 1]. This gives an Ry with

(3.5) | 1—8< By <1

|, (Fy)] = 2 (—f-) ”’ |;L.-| ]Y _j

where the last product is extended to all g’y with

d b

1; we keep only those with |z = 1-- 8

such that

o
P=3

5

All factors in the lagt product are =

i.e.,
1—6/2 S\"f 3 \*
= i > 2] (=)
ol )1 2( H [ X ] (4) (1-1-6)
But this means evidently that on ’rhe circle 2| =

(3.6) el > 2 (%) (‘3‘*)

= Iy the inequality

1446
holds a fortiors.
Next we apply the corollary to g,(®) in [1, 14 6] This gives an J,
with

(8.7) 1< By 14 8

such thatb
n 5
TRENE (1) leln = (1 .».)f

where the last product is extended to all 27y with

d 4.
-t

g

5

icm
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Again as before
" 1+ 8/2 8\
90 (Ba)| > ( ) —’ = 2(w) B
I 4/ (1497
and a fortior] tho inequa,hty
) a\*
(5.8) 1) ;)(~) ot
4] (14 6)¢
holds on the circle |z| = E,.
4. With these R, and Ry let
n
(4.1) Py — N1 (z)} M
i f (zj)(g—z,) 2 BY e o —RY
Obviously
MR
(4.2) F(2) = d,2’
v=§-1
and for p==1,2, ..., 45
N
{4.3) F(z,) = NRE W sz v
By —z) =) —R!
Hence for po=1,2,..,n
w72 N 7
Z d, g, ——.—»w—ﬂ—_'lv‘)'2 —~mz’y .
w1 # ‘Rﬁv—"gg zN_RN ’

multiplying by b, and summation with respect to u we get the important
identity

N S o
(4.4) dog () :Zb# S S L
el prer B AR
Thus
j . J’r.‘nN Ed
. n " 1 '"'?,TN" ) ";\T_:I?‘T_
(4.5} . PO
LESTIRI 0 WO TR I 1% E |(1,,1
Pt L
3. Finally wo nesd the upper bound for
'mtl—'n,
(5.1 ' D) ldl = [P
Vet
Lot
(5:2) fle) =1,
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for v << g _ _ and for [ > ¢
. 2 2 ) F.(2) ”
3 — S
{5.3) (&) J !(% 1) | I fj(z) | f E (T4 12)) < (24 8"
g== : J=l4t
and for g <v<{n ’ we geb from (5.8)

a I

Hud &) — "f-*-- ; . ). i L — 1

(54 e[ [ e 69 @< Dot MIoE K
=1

f=1 g1 7 .
/ ’ ) B = o EY |

We need the identity . -
6. We have to estimate the absolute value of

(5.5) SR + e e U ) + -
e—gy  a—w  (E-a)leem) | (f—a)(e—a) (e—) (6.1) = Vi) B g
R (=) () - (2] et ful) By —o) & —RY
(#—z)(@—2) ... (#—2) 27
We introduce the f,(2)’s. Let first § <{¢q. Them Using the reprosentation (» = OXP( N ))
(5.6) 1 fuls) 1 A Tis fialz) L ==l B 1 ST . o
Coe—g [i(8) & fale) ¢ L@ (RY —2") (&N —BY) ""N(Rg*’—laf’);;( ! z~Rls”_R2 z—Rzep)

and for g <j<m . ,
= and reversing the order of summation we get

q o, *
(5.7} zjz ___:Z Jea{m) 1 ‘;‘“ + -1 fzml(‘zj . ‘. | . ]
< =1 f'i (2»") i tm g1 f‘!"( ) : (()2) U{! = hj"j-zv__RN {RI-‘MUI R-—mU }
Bince f,(z) == f(#) wo get from (4.1) ' whero ‘
[ N I3
Flo) = ﬁiﬂf)_(i)mu RY _ o L fraalz) 1 - (6.3) 7 e 1 T -om yfz (2) 1
e Jul2) \ 2 Ry —2 & —RY s fi(e) & _N:WI j:?; n(zj) R,&" —%
ik m- i, and :
Y Ju(2) (z) iRy g,jN frnl Iﬁd ) .
7 Iy N _ 1 - 1
ity In(2) Ry =4 & —RY P fil2) o (6.4) ' = E*Za"”mzﬁ 1) Ry
Pl Fei %) LA

G]l_anging the order of summations we gat
' ' Now let us observe that the inner sums in (6.3) resp. (6.4) are

—‘fn #) 2"t S‘fz 1(%) By zN“m"

5.8 F 2 .m
R A T & ) R -7 R T fialdhe) | fe )
Ju(l2ye®) U Tl
Z fn(“z—zm“ j'fzfl(z’) . Ry szmm~ and hoenee ' .
S ACE = B U FE (6.5) |U3] « ma flul(g).
- . Jied '-i‘.: nax. |——
Bince — with the notation (5. 1) ~ for 1 ¢ wo have 1 ity fa(2)
TOEP.
fole) &7 1 ' ,
T v T — r.r ~1l®
i) & n( -+ ) [[ (1*1*[3}[ (248t i (S)G—:r (6B.6) - \TY] < max J11(#) .
1) s By fn(z)
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7. We shall estimate |T7;] resp. |U;'| on using (3.6) resp. (3.8). Bvi-
dently for I < g4-1

-1
1
; L 9.4 §)i-1
mex (o< [ [ (i) < e
resp.

d
max {f;_; (8)| < 1[(1 i 1+ )«— (2 - &),

|2} =g =1

further for g+l <i<n

;E§MHWH3[[( )iz'H%@ (2 8

el F=g1
resp.
._q_ ‘{ [ ('j i1
max fial < [ [(145) [ [asssph<@+o
{7t=Tp j=1 . If F=g4

Hence from. (3.6) we have for 1 =1, ..., %

ft 1( 1 (4)"‘(1--{-6)‘1 ’ L1

7.1 U;| € max < = S (2 B)2,
(1 U smax [SES < S () @40)
resp. from (3.8)

4 fl—l(z) 1 (4)%
7.2y . U'l<m k==~ Y2 -
(7.2) 10y | g e 5] (L2 i
Thus from (6. ) (3.5) and (3.7) we havefor 7 =1,2,...,n

1 4\" ,RN 1 1 ‘l
7.3 =) @+ gl

(5.9) gives then

A" I —
[Iﬁ’(z)lisﬂ(i) (24 8" (L4 0)2 - B m{( 3 _.[.1}

214 BY e 1 (L= 8)™
24\" RY
_,\: = L Fy _‘._._MEWIMW..
o) Ao

Hence (4. 5) and (3.1} give, uging also (1-— §)" 2 ¢~ that

(7.4) max  |g{»)!
M legySm-a :

=~ 1 L
—_ -
“ 24de({m +n)

fa=]

Zb"RN ) ZfRN .
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8. Let us remark that R, and R, are independent of N. Let N go
to 4 oo. If the indices I, and 1, ave defined by

(8.1} lelz .ozl > By> g aul> .. 2 o, | > Ry >l 2 2 J2,
then (7.4) gives

1 n ks
(8.2) nax g0 > = ) > ]
e Lt gme L n \ 24e{m-+n) d
a=ly-1
Hinee
Y X - 20 wm
Byl = e B2l = ———
W -|- 1 m-4n
(1.5} gives ‘
ky=ily,  kyzly,
ie.,
: 12 sz
J 2 bH. = min 3 by
PRy Ty 1l Syl TR,
which proves Theoxer.
Hecelved on 13. 11. 1972 (348)
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