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1. In a recent paper by Pourchet [4], he showed that évery pbsi~
tive definite polynomial in Q[X] is a sum of at most five squares of

polynomials. Sinee the polynomial f(X) = X417 needs no fewer than

five squares to represent it, Pourchet’s bound for @ (X) is the best possible.
This result drastically improves an earlier result due to Landau [3] (which
asserted that zeight squares would serve g an upper bound). We have
in [2] extended Pourchet’s work by explicitly determining the best possible
bound for the representation in sums of squares for definite functions
in one variable over an algebraic number field. The application to the
class of cyelotomic polynomials over the rationals was dealt with in [4] (see
Théoréme 3). This note extends the investigation to algebraic number fields.

If X is an algebraic number field, let Dy dencte the (tinite) set of
dyadic spots (i.c. those primes containing 2) on K, and sg = Max s (K,)
where $(K,) it the Stufe of E, and p running through the set of all non-
archimedean gpots on K. Thug, if K is totally imaginary, then sg is
just the Stufe of K. It iy well known that sg is either 1, 2, or 4 (Siegel’s
theoram, [6]). As in [2], we call the reduced height of a field F —denoted.
by m(F)--the minimal positive integer (or infinity) such that every smn
of squares in I is alveady a sum of m(F) number of squares. The next two
gtatoments can be Lfound in [2]: ‘ - ‘ '

1.1. The reduced height of @ formally reol algebraic mumber ficld bid
ix always 8 or 4. T14s 4 if ond only if s = 4. '

1.2, If K is & formally non-real algebraio number field, then m{K (X )
w= S -t L o ' S
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116 J. 8. Wyia

Denote by ¢,(X) the nth cyclotomic polynomial, and £, & fixed pri-
mitive #th root of unity. For # > 2, ¢,(X) is positive definite (& rational
funetion f(X)eH& (X) is called positive definite if ae kK and f(a) iz defined,
then f{a) = 0 for all orderings on I7). Since ¢, (X) is a separable polynomial,
it is never a2 square. From [4] we know that if 4]n, then ¢, () Is o som
of two squares in @[ X, and 80 o fertéori a sum. of two squares in K{X)
for any extension field K of @. On the other hand, for any positive odd
integer » > 1, @5(X) = g (—2X). Therefove, in T}Im remaining of this
article we may asswme the following: n 48 an edd integer greater han 1.
We shall be needing the following lemmas:

1.3. LmvMA. Let K be o number field with sy =
never o sum of three squares in K[X).

Proof. If ¢,(X) were a sum of threo squares in KX, then for
every sealar be X, we would have p,(8) a sumn of three squares in K, Since
$x = 4 here, there is a dyadic prime peDy for which the Stufe s(K,)
of K, equals 4. But, in @ we have ¢,(2} = —1 (mod 8) which meany
(2} belonws to the same square class as —I1 inside @y == the ficld of

SR

2-adic numbers, and 5o & foriiori inside also K,. A contradiction,

o Then ¢, (X)) 1

1.4, LevMA. If G is a divect product of t components of cydie groups
each of which has even order, then there emist exactly 2' -1 number of sub-
groups of indez 2.

Proof. Writing G = 4 x B, where 4 is u group of odd order and B
a direct product of ¢ components of eyelic groups each of which hay for
its order a 2-power. If H is a subgroup of index 2 in @, it iy then clear
that 4 is contained in H. Thus, we have: H = A x (BAl/) so that the
problem is reduced fo onme where @ iz itself elementary Z-abelian, say:
G =2y % ... %X Zygy, a; > 1. The Frattini subgroup f(&) of G is: Z -1 %
X Zg-1 50 that reduction modulo f(&) further reduces to the ease
where G is a direct product of ¢ copies of Z,; i.e. G I8 just a f-dimensional
vector space over Z,, which iy known to have 2f—1 distinet copios of
hyperplanes.

1.5. Cororrany. Tet n be an ofdd integer > 1, and m = Pl opit
The eyclotomic fwlcl Q(2,) has 2'—1 distinet quadratio subficlds eooh qf

the type:

Qe e Dy, .- 2%,.):
where gy = -F1 or —1 according to- Py == loor 1 (mod 4) respectively,
and L€ dy <. <4, 1.

Proof. The cy’elotomlc extension G ({,) /0 lm,s, for its Galois group
G = Gal(@ (¢ al /@)% ... x Gal{Q(C o }/Q) each component of which is

eyclic of order p(pf*). Therefore, Q(Cp?z.) containg o wnigue quadreatic
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subtield Ly = Q@(Vep,). Clearly, the eomposibn Ly oo Iy for 1<

< gyt b are all distinet quadiatio subfields of O{(;‘ ), each of Wth‘h
cmrusp(mda, by Galois theory, fo a distinet subgroup of index 2 in @.
Lemma 1.4 says these are then all the quadratic subfields of Q).

1.6, (i) 9, (X) ds @ sum of two sgiores in KX if and only 4f V-1
eI0(L,). (i) 0, (X) i8 @ sum of four squares in K [X] if and only if the Stufe
S(IC (L)) s Tess or oqual to two.

Proof. Bee Propositions 7 and 8, [2].

2. Quadrutic extemsions. Lol K = Q(VE with & square-free, d
a (P oo Po- Denote by N (d) the nomber of prime factors of @ which are
c'ong,lrmmt 08 (mod 4), Liet ny dispose with the non-real case first.

2.1, Tomowese. (1) When s,e == 1, every g, (X) is a sum of two squares ;

(2) when s = 2, ¢, (X) &5 always a sum of three squares; however, il is
@ s of two .s'g,{mm"e.? ff'f and only if: {1) din and (i) ¥ (d) is an even integer;

(3) when sy = 4y @, (X) is never o sum of three squares — hence also
never a suin of two squares (rocall the basic assumption that n is odd); ¢, (X)
8 alwairs a sum of five squares; ¢,(X) is a sum of four squares if and only
if the order of 2 (mod n) is even (this occurs if and only if there is a prime
Sactor p of w for which the order of 2 (mod p) is even).

Proot. Statement (1) follows from 1.2, and so does the first part
of statement (2). The second part follows from Corollary 1.5 and 1.6 (i).
“&‘l‘,a.‘t‘mlullf (:3) couisty of three parts; the first is & consequence of
Lemma 1.3, the second of 1.2. Thus, only the last part of (3). needs to be
(ﬁmch.ud Frmn 1.6(i1), we need to defermine the Stute s{(K(Z,)). This
value 18 two or less it and only if the loeal degrees of K (£,) at all the primes
i D,y wre even, see [L]. On the other hand, s, = 4 here implies the
rational prime 24 splits completely in K. Since » is an odd integer, 22
iy unramified in Q(£,). Therefore, 22 is unvamitied in K (¢,) and the
local degrees of K(£,) ot all the primes in Dy, have the same value
andl g, in faeh, the swme value s the local degrae of @(Z,) at & prime in
@Q-(,;_”., il Bhis s well Jnowi to Do simply the order of 2 (mod »). Finally,
i q -ty then the ordee of 2 (mod. ») 1§ the least apper bhound
of the order of & (mod #5), eneh of which is the product of the order of
2 (mod ) thnes aopower of g0 This eompletes the proof:

Tn the remwinder of this seetion, asyume K = Q( I/d with d> 0
and seuaro-dfroe, d = py ... p,. This time we observe that V' =1 Dbelongs
bo K (£,) if and ondy if: (i) din and (i) N (d) is odd. Hence, if d = 1 {mod 4)
7, () ean never be a sum (:f‘Lwn sequares in K [A]. So, letd = 2 or 3 (mod 4).
But, # 18 odd and dln; Vol e (¢,) implies @ == 3 (mod 4). Summarizing,
wo gob: :
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3.2, TuronnM, Lel K = @V d)
is o sum of two squares in K [X] if end only 4f: (i)
d =3 (mod 4). _

K= Q(l/ dy with @ == 1 (mod 8), then 2Z splits completely in I
g0 that g4 = 4, and according to Lemma 1.3, ¢,(X) can never be a sam
of three squares in K[X]. We kuow from [2] that m(.‘[(f(;k’)) == . Tut,
here we have N(d) is even (zoro ig considered aldo even), so that K ig
linearly disjoint from €(Z,) if and only if d1n. IE dln then A iy alvoady
confiained in @(Z,) so that ¢{@(Z,)) is even il and only if thoe ovder of
2 (mod ®) is even. If dfm, the Galois group of K({,) iy isomorphic to
Gal({K/Q) % Gal(Q(Z,)/@) and ono sees fhat s{&(Z,)) = 2 if and only
if 5(@(L,)) = 2. Thus, we obtain:

2.3. TumormM. Let K = Q(Vd) with d> 0 and squarefree, amd
d@ =1 (mod 8). Then, p,(X)} i never a sum of three squares dn KX @, (X)
is always a sum of five squares; it 4s, however, a sum of four squares vf wnd
only 4f the order of 2 (mod n) is even.

2.4, COROLLARY. Tet K = Q(Vd) with d > 0 and square-free. Then,
o (X)) s always a sum of four squares in K[X] cweept when d == 1 (mod §)
and the order of 2 (mod n) 4s odd In the orceplional case ¢, ( \') I8 A sum
of five squares.

Proof. From the results thus far, wo need only to deal with the
cages: d = 2 (mod 4) and d =5 {mod 8). In the fiest eato, 22 ramifies
in K, and in the second case 2Z extends to a prime in K so that by virtue
of the multiplicative behaviour of loeal degress with respoct to field exten-
sions, we see the Stufe s(K (&) of K (£,) will be lexs than or equal to two

-in both eases. Hence, 1.6(il) finishes the proof.

with d > 0 and square-free. o, (X)
din and (i)

3. 0dd extensions. In this section JC iz o (formally real) algebraic
number field with abseclute field degreo [K : @] == d an odd integer. It
follows from a result in [2] that the reduced height m(lf (A )) for K(X)
is five. Since $x equals four heve, Leming 1.3 implies that vo o, (X) %
is still 0dd of course —can he a sum of three squares in K[|, Thevefore,
the only issue at hand is to charactovize those ¢, (X) that are sums of
exactly four squares. In order to aceommodate the other (possibly non-
roal) number fields, weo prove the 'Eo'ilc}wing~

3.1. ProposerioN. Let K be an algebraio number fioli such that 8, « 4.
Then, ¢, (X) is o sum of five squares in K [X1; i i a sum of omactly f«m
Sguares @f and only if for every g)mme peDy ab which the local deyres

w(pl2) = [H,:0,]

of K at p 4s odd, the order of Bf“"”(moa n) 48 even --here, f(p[2) denotes
the residue class degree of I at p.
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Proof. Since » is 0dd, 2Z is wnramified in @(Z,). T peDy has odd
local degree, then both the ramification index e(p|2) as well as the residue
class degree f(p[2) of K at p are odd. Therefore, p is unramified in K (Z,).
Write: p = Py ... Py with PBls in Dy y — sinee K (,)/K is Galois.
The local degrees »(%;|2) are even integers it an only if the relative residue
class degrees f(P;lp) are also even. But, these are just the order of 2/®1»
(mod n) —sgee Proposition 3-2-12(iil), [6]. Now, the rest is talten care of
by 1.6(ii), and the fact that sk, , = 2 if and only if the local degrees
of IC(Z,} at each of the spots in Dy y are even.

4. Some concluding remarks. Let K be an arbitvary number field
with, abgsolute field degree an oven integer. Suppose K is complex (i.e.
totally imaginary), then m (K (X)) is always sx+1.by 1.2. When sz = 1,
every ¢, (X) is a sum of two squares. When sp = 2, p,(X) i3 a sum of three
squares, but it is a sum of two squareg if and only if V—1eE(Z,). The
cade of s = 4 is freated in Proposition 3.1. If K is formally real, then
m(E (X)) =4 or 5 according respectively to m(K) =3 or 4, and pre-
cise characterizations are given in [2]. However, m(EK) = 4 if and only
if 8z = 4, which case is again handled by Proposition 3.1. For m{X) =3,
every ¢,(X} is a sum of four squares; it is a sum of two squares if and
only it ¥ —1 belongs to K(L,) as before. Note that when K is linearly
digjoint from Q(Z,)—this occurs, for example, if the discriminant of
IL/Q is relatively prime to #—and that E/Q s a galois extension, then
the Galois group Gal{E((,)/Q) oz Gal(K/Q) x Gal(Q(L,)/@). In such
cases, Lemma 1.4 and Corollary 1.5 may be particulatly useful to defer-
mine a8 to whether or not ¥ —1 lies inside K (£,). More specially, it K/Q
is a cyclic extension, one needs to look only at the unique quadratic sub-
field then, say, Q(l/q The discussion given in §2 above prowdes the
AnIWer.

TFinally, there remains the tonchy question of sums of three squares
in K[X7]. Alveady in the real quadratic case difficulties abound. Of course,
Theorem 2.3 gays that if K = Q(VE) with d =1 (mod 8) then there
ean bo no p,(X) that is a sum of three squares. On the other hand, inside
Q(VE), for ingtance, ¢,(X) can be a.sum of precisely three squares (e.g.
o X) == (X +1/2)%-- (1/V2)-+(1/2)2 and gy X) = (X24- X [2)1 (X /2 +1)2 +
+(X/V2)3 ebe.). The gencral answer of which ¢,(X) i3 exactly a sum of
three squares in A [X], for already real quadratio fields X, is not known

to me. One difficulty with the problem of sums of three squares in K[X]

ig ihat the local-global principle fails o hold. Indeed, if K = O 1/—)
with @ > 0, square-free, and d = 1 (mod 8), then for cach finite spot p, K.

hag Stufe < 2 so that every polynomial in K, {X]is a sum of three squames,
and if p is a real spot then every positive deflmtg polynomial in J,[X]
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is a sum of two squares. Thus, a polynomial guch as f{X) = X24-3 iy
locally everywhere o swn of at most three sguares and yel globally it
is a sum of four (and no fewer) squares. :
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