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Simultaneous gquadratic equations II
by
E. J. Coox (Cardiff)

L. Imtreduetion. Tet
13
(1) f'h(m) = Zaz}ﬁjgr
. =1

bfz diagonal quadratic forms with integer coefficients. We obtain suffi-
cient conditions for the equations

i=1,2,3,

(2) . Jul#) = fo(o) = fo(m) = ©

to have & non-trivial solution in integers. The method used here is a simple,
extension of that wsed in a previous papsr [2]. An essential preliminary
to the proof is a recent result of Mrs Ellison [5] on the golvability of the
equations (2) in p-adic fields. I am grateful to Prof. D. J. Lewis for telling
me of Mrs Bllison’s wotrk, and to Mrs Ellison for sending me a copy of
her work.

THEOREM. Sujapose that

. (i) For all real A, u, v, not all zero, ﬁ,fl—[—,uf2+vf3 conlwins at loast ll
variables ewplicitly;

(11) There ewist non-singular soliutions of the eguatmns (2) 1w the wa.l
and Z-adic fields:
Then the equations (2) have o non-trivial solmion i integers.

While 1t is known thati 183 varidbles is bc% pmsﬂ:ale in this contextl
for example the equations

.fz_:¢+y;-dz§——3£§ =0, ¢=1,23,

have no non-trivial integer solutions, it iz wnlikely that condition (1)

of the Theorem is best possible. Homeyg
For example,

e R

; 28 =0,
Wy +ys 3y —3y; = 0,
Jof bal 822 — 32 = 0

— o5+ 205 —
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have non-singular real solutions but have no non-frivial solution in integers.
Similarly, the equations

Bt oo A @R g2y 20 =0,
Yi4-ys—3ys —3y; = ¢

have non-singular real solutions but mo non-trivial integer solutions,
thus providing a counter-example to a Theorem of Swinnerton-Dyer {8].

2. Notation and preliminary lemymas.

Lemma 2.1, Let p be an odd prime, thew the eqmmom (2) hawe a non-
trivial solution in the p-adic field.

Proof. This result is due to Mrs Elligon [3].

Tmvma 2.2. Let p be an odd prime, then the equations (2) have o non-
singular solution in the p-adic field. .

Proof. This can. readily be deduced from Lemma 2.1 and condition
- (1) of the Theorem by the method of Theorem 4 of Davenport and Liewis [4].

LEMMA 2.3, The equations (2) have a non-singular real. solution with
none of the variables vanishing.

Proof. This can be deduced from condl’rmn (i1} of the Theorem by
a simple variational principle.

From such a real solution of (2} we have a solution y of the Linear
equaﬂslons

Gpp+ oo F gy =0,
such that x; > 6 for j = 1, ..., 13, Then, chooging a suitable linear multi-

ple of this solution, we may suppose that x> 1 for j =1, ..., 13. We
now choose ¢ > 1 so that '

@'21,2,3,

(3) 1< g< O for j=1,..,13.
Let '
- (4) gy = ayag b agataga,  §=1,...,13,
and
ar .
(5} Tly) = Zpecyjmz), jo=1,..,13
=

where P iy a large positive nwmber, e(f) = exp(2wif) and ¢,(0) = e(0/g).
Then the number of integer solutions of (2} in the box. {x: P —" < @€ 0P}
is L
' o1y

H_[Tw

i=1

® N(P) =

where the integral is threefold.

Simultencous guadratic equations IT 3

Let & be a small positive congtant. We take the major arc M(A4, By
to consist of those a which have rational approximations

(7) lag— A, [R| < P73

for IS RSP, 1< A, <R where (4,, d,, A,, R) =1. We denote the
union of the major arcs by M, the minor ares 7 consist of the rest of the
unit cube. We use Vinogradov’'s < notation where the implicit constants
are independent of P.

3. The minor ares.

Leyma 3.1 (Dirichlet). For any real numbers y, P 1 there exist
wntegers a, g with .

(8) {(4,9) =1,

Proof. See, for example, Theorem 185 of Hardy and Wright [6].
Lenya 3.2 (Weyl). Suppose that

<g< P and  |gy—a| < P10,

(9) ly—al < P70 PTUS g P, (o) =1 ‘.
then 4
(20) 27} < P

: i
Proof. See, for example, Lemma 1 of Davenport [3].

Lenma 3.3. If (a, ) =1, 1< g < P70, vy = afg+o and |gp| < P
then :
{11) Ty} < ¢ " min(P, P p|7").

Proof. This follows from the corollary to Lemma 9 of Birch and
Davenport [1].

LeMMA 3.4. If vy, v, and , are mdepmdem linear forms and gemn
then

(12) . H ITpa)] < PO

Proof. Thig follows from Lemmas 3.2 and 3.3 by using the method
of Lemuma 19 of Davenport and Lewis [4].

Lomma 3.5. dny 12 of the forms y; can be arranged inio 4 sels of 3
independent forms.

Proof. Condition (i) of the theorem implies that any 3 distinet forms
v; 4re linearly independent so this result follows immediately.

Lemya 3.6. Let yq, ya, vs be indenendent linear forms. Then

1 3
(13) S 17l de < P+
b i=1
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Proof. Since y, ys, ¥, are independent the deferminant of their
coefficlents is non-zero, and bounded. In the range of integration for «
each y, is bounded. Changing the variables of integration o vy, ¥a, ¥4
we have

1
fH T (yaitdn < f”lT sl ndndry = [] [ 17001 ay, < 2

2=1 i=1 d=1 0

by a lemma of Hua [7].
Timmpra 3.7,

13
(14) f” [T () de <€ pre-a

1 f=1 .
Proof. The forms y,, va, v, are independent go from Lemma 3.4
ma.xmian(y,)l & PP

nt

and any 12 of the forms y; can be a,rr&nwed a8 in Lemma 3.5. The result
now follows from Lemma 3.6.

4. The major arcs. Since fhe treatment of the major arecs eclosely
follows that in Davenport and Lewis [4} only outline details arc given.
Tor ae M4, R) let

- {18) & =god(da;+ A0+ A0, R); §j=1,...,13,

(_16) . R=Rjdj, j :1?---,13,

L . o = —4;[R, &= 1,2,3,

and

(18) By = @1+ Bogpst-Gyipa, - j =1, e 13.

We choose O; so that (C}, B;) =1 and

(19) : Oy By == (Ayo;-+ Ay Ayay) (R,

We take .

(20) Sa,q) = Dleawr) \
w=1

and _. .

. _ _ op
(21) Ig) = [ elpeyac.

B
LeMwa 4.1, The contribution of the M(A, B) to N(P) is

122) o G(PY T (P) -+ 0P+

icm
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where
(23) G(P%) = Z ZHR; 8(C;, B;)
R<P? T 5=
and
(24) I = | H I(8;)de
the integration being over |p;] < P*%, j =1, 13.

Proof. This can be proved in the same way as Lemma 28 of Daven-
port and Lewis [4].
Limvva 4.2.
(25) J(P) ~ EP* _
Proof. This ¢an be proved in the same way as Lemma 30 of Daven-
port and Lewis [4].
Lmamvia 4.3.
(26) G(P%) = G+o(l)

Proof. This follows from Lemma 2.2 using arguments similar to
Lemmas 29 and 31 of Davenport and Lewis [4]. -
Thus

as P — oo where K > 0.

as P—oo where G > 0.

N(P) = KGP'+0(P") ag P-rco

where K¢ > (, and the theorem has been proved.
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