Table des matières du tome LXXVII, fascicule 3 | | | Pages | |---------------|---|-----------| | J. | B. Quigley, An exact sequence from the n th to the $(n-1)$ -st funda- | | | • | mental group | 195-210 | | J. | C. Nichols, The realization of dimension function $d_1 \ldots \ldots$ | 211-217 | | C. | F. Kelemen, Recursions with uniquely determined topologies | 219-225 | | Ρ. | Holický, A supplement to the paper "Differentiable roads for real | | | | functions" by J. G. Ceder | 227-234 | | Μ. | Moszyńska, On shape and fundamental deformation retracts II | 235-240 | | $\mathbf{R}.$ | H. Overton, Čech homology for movable compacta | 241-251 | | W | . White, A fixed-point theorem for homeomorphisms of R^{2n} | 253 - 255 | | | Ketonen, Ultrafilters over measurable cardinals | | | R. | W. Heath and R. E. Hodel, Characterizations of σ -spaces | 271-275 | | D. | W. Curtis, Total and absolute paracompactness | 277 - 283 | | Ε. | D. Tymchatyn and J. H. V. Hunt, The theorem of Miss Mullikin- | | | | Mazurkiewicz-van Est for unicoherent Peano spaces | 285-287 | | | M. Zuckerman, Natural sums of ordinals | 289-294 | | В. | Weglorz, Some remarks on selectors as a selector of the selectors and the selectors are selectors as a selector of the selectors are selectors. | 295-304 | | | | | Les FUNDAMENTA MATHEMATICAE publient, en langues des congrès internationaux, des travaux consacrés à la Théorie des Ensembles, Topologie, Fondements de Mathématiques, Fonctions Réelles, Algèbre Abstraite Chaque volume paraît en 3 fascicules Adresse de la Rédaction et de l'Échange: FUNDAMENTA MATHEMATICAE, Śniadeckich 8, Warszawa 1 (Pologne) Le prix de ce fascicule est 4.35 \$ Tous les volumes sont à obtenir par l'intermédiaire de ARS POLONA-RUCH, Krakowskie Przedmieście 7, Warszawa 1 (Pologne) # An exact sequence from the *n*th to the (n-1)-st fundamental group by #### J. Brendan Quigley (Dublin) **0.** Introductory remark. For each pointed compactum (X,x) contained in the Hilbert cube we define, in each dimension n>0, the approaching group $\underline{x}_n(X,x)$ and the inward group $I_n(X,x)$. Using category theory we show that $\underline{x}_n(X,x)$ and $I_n(X,x)$ depend only on the homotopy type of (X,x). We define an endomorphism from $I_n(X,x)$ to $I_n(X,x)$ whose kernel is the nth fundamental group, $\underline{x}_n(X,x)$ of Karol Borsuk. There is an epimorphism from $\underline{x}_{n-1}(X,x)$ to $\underline{x}_{n-1}(X,x)$ whose kernel equals the coimage of the above endomorphism. Thus there is an exact sequence of groups and homomorphisms $$0 \to \underline{\pi}_n(X, x) \to I_n(X, x) \to I_n(X, x) \to \underline{\pi}_{n-1}(X, x) \to \underline{\pi}_{n-1}(X, x) \to 0.$$ We work out the above sequence in full when n=1 and X is the 3-adic solenoid Σ_3 . Consider the system of neighbourhoods U of X in the Hilbert Cube with inclusion mappings. It is known that $\underline{\pi}_n(X,x)$ can also be obtained by applying the nth homotopy functor π_n to this system and passing to the inverse limit, i.e. $$\underline{\pi}_n(X, x) = \lim \pi_n(U, x).$$ 1. Notation. R, R^n , R^+ , J, J^+ , I, I^ω , S^n , E^n , p_0 denote respectively, the real numbers, Euclidean n-space, the non negative real numbers, the integers, the non negative integers, the closed interval [0,1], the Hilbert cube, the n-sphere, the n-ball and the point $(1,0,0,\ldots,0)$ $\in S^{n-1} \subset E^n$. For each $n \ge 0$ let q_n be the identification mapping from $I \times S^n$ to $I \times S^n/(I \times \{p_0\}) \cup (\{0,1\} \times S^n)$ to S^{n+1} and let h_n be a homeomorphism from $I \times S^n/(I \times \{p_0\}) \cup (\{0,1\} \times S^n)$ to S^{n+1} such that $$h_n \circ q_n((I \times \{p_0\}) \cup (\{0, 1\} \times S^n)) = \{p_0\} \subset S^{n+1}.$$ DRUKARNIA UNIWERSYTETU JAGIELLOŃSKIEGO W KRAKOWIE 197 For each $n \ge 0$, let r_n be the identification mapping from $S^n \times I$ to $S^n \times I/S^n \times \{1\}$ and let k_n be a homeomorphism from $S^n \times I/S^n \times \{1\}$ to E^{n+1} such that $k_n \circ r_n(S^n \times \{1\}) = \{a\}$, where a = (0, 0, ..., 0, 0) the centre of E^{n+1} . For each $n \ge 1$, let s_n be a continuous mapping from E^n to S^n such that $s_n(S^{n-1}) = \{p_0\}$ and s_n maps $E^n - S^{n-1}$ homeomorphically onto $S^n - \{p_0\}$. We remark that, for each $n \ge 1$, (S^n, p_0) is a homotopy cogroup with a continuous comultiplication mapping v^n from (S^n, p_0) to $(S^n, p_0) \lor \lor (S^n, p_0)$ and a continuous homotopy inverse mapping v^n from (S^n, p_0) to (S^n, p_0) . We assume that for all $n \ge 1$, v^{n+1} and v^{n+1} are derived by suspending v^n and v^n . In other words, for all $n \ge 1$, $(t, e) \in I \times S^n$. $$(1.1) v^{n+1} \circ h_n \circ q_n(t, e) = ((h_n \circ q_n), (h_n \circ q_n))(t, v^n(e)),$$ If f, g are continuous mappings from S^n to a topological space Y, then $f \times g$ denotes the continuous mapping $(f, g) \circ r^n$ from S^n to Y and f^{-1} the continuous mapping $f \circ v^n$, also from S^n to Y. If Y and Z are sets, θ a function from $Y \times Z$ to I^{ω} then for each $y \in Y$ we denote by θ_y that function from Z to I^{ω} which carries each $z \in Z$ to $\theta(y,z) \in I^{\omega}$ and for each $z \in Z$ we denote by z^{ω} that function from Y to I^{ω} which carries each $y \in Y$ to $\theta(y,z) \in I^{\omega}$. As an example of this notation, if φ is a continuous mapping from $R^+ \times S^n \times I$ to I^{ω} then for $s \in R^+$, $t \in I$, $t\varphi_s$ is that continuous mapping from S^n to I^{ω} which carries $e \in S^n$ to $t\varphi_s(e) = \varphi(s,e,t) \in I^{\omega}$. Let P be a topological space. If \varkappa and λ are continuous mappings from $P \times S^n$ to I^{ω} then we denote by $\varkappa * \lambda$ and λ^{-1} respectively the continuous mappings from $P \times S^n$ to I^{ω} such that $(\varkappa * \lambda)_p = \varkappa_p * \lambda_p$ and $(\lambda^{-1})_p = (\lambda_p)^{-1}$, for all $p \in P$. If K is a category, the objects of K are denoted by $\operatorname{Ob} K$, the morphisms by $\operatorname{Mor} K$ and for X, $Y \in \operatorname{Ob} K$ the morphisms of K with X as domain and Y as codomain are denoted by $\operatorname{Mor}_K(X,Y)$. The set of compact neighbourhoods of the compactum $X \subset I^{\omega}$ are denoted by Nhd(X). **2.** Definition. Three categories C, \underline{C} , \underline{C} . We will define 3 categories C, C and C which have the same objects $$(2.1) \quad \text{Ob } C = \text{Ob } \underline{C} = \text{Ob } \underline{C} = \{(X, x) | x \in X \subset I^{\omega}, X \text{ is compact} \}.$$ The morphisms of C are the set of base point preserving continuous mappings between pointed compacta with the usual composition. The identity continuous mapping at (X, x) is denoted $\mathrm{Id}_{(X,x)}$. The objects of $\underline{\underline{C}}$ are defined above. We define the morphisms and composition in $\underline{\underline{C}}$ as follows. A continuous mapping f from $R^+ \times I^{\infty}$ to I^{ω} is a member of $\operatorname{Mor}_{\underline{C}}((X, x), (Y, y))$ and is referred to as an approaching mapping from (X, x) to (Y, y) if $$(2.2) f(R^+ \times \{x\}) = \{y\},$$ (2.3) given any $V \in \text{Nhd}(Y)$ there is a $U \in \text{Nhd}(X)$ and an $r \in R^+$ such that $f([r, \infty) \times U) \subseteq V$. The composition gf in C of $$f \in \operatorname{Mor}_{\underline{C}}((X, x), (Y, y)) \text{ and } g \in \operatorname{Mor}_{\underline{C}}((Y, y), (Z, z))$$ is defined by $gf(r,i)=g\bigl(r,f(r,i)\bigr)$ for each $(r,i)\in R^+\times I^o$. As gf is easily seen to satisfy (2.2) and (2.3) above $gf\in \mathrm{Mor}_{\underline{C}}\bigl((X,x),(Z,z)\bigr)$. No confusion will result if we denote by $\mathrm{Id}_{(X,x)}$ the identity element of $\mathrm{Mor}_{C}\bigl((X,x),(X,x)\bigr)$. $\mathrm{Id}_{(X,x)}$ (r,i)=i, for each $(r,i)\in R^+\times I^o$. The category \underline{C} was first defined in [1] by K. Borsuk. We now describe \underline{C} in a manner suited to our purposes. Ob \underline{C} has been defined above. Denoting by $f| ; J^+ \times I^\omega \to I^\omega$ the restriction of the continuous mapping $f; R^+ \times I^\omega \to I^\omega$, $$(2.4) \qquad \operatorname{Mor}_{\underline{C}} \bigl((X \, , \, x) \, , \, (Y \, , \, y) \bigr) = \bigl\{ f | \ ; f \in \operatorname{Mor}_{\underline{C}} \bigl((X \, , \, x) \, , \, (Y \, , \, y) \bigr) \bigr\} \, .$$ Composition in \underline{C} is (g|)(f|) = (gf)|. Clearly $\mathrm{Id}_{(X,x)}|$ is the identity element of $\mathrm{Mor}_{\underline{C}}((X,x),(X,x))$ and no confusion will be caused if we simply denote this morphism by $\mathrm{Id}_{(X,x)}$. We will also find useful the original definition of $\operatorname{Mor}_{\underline{C}}((X,x),(Y,y))$ given by K. Borsuk in [1]. A fundamental sequence f from (X,x) to (Y,y) is a sequence $f=\{f_n\}_{n\geqslant 0}$ of continuous mappings f_n from I^{ω} to I^{ω} such that $f_n(x)=y$ for all $n\geqslant 0$ and such that given any $V\in\operatorname{Nhd}(Y)$ there is a $U\in\operatorname{Nhd}(X)$ and a $j\in J^+$ such that $f_n(U)\subset V$ for all $n\geqslant j$. From this point of view composition in C is defined $$(2.5) (gf)_n = g_n \circ f_n.$$ ### 3. DEFINITION. Homotopy in C, \underline{C} and \underline{C} . Two morphisms $f, g \in \text{Mor}_{\underline{C}}((X, x)(Y, y))$ are said to be pointed approaching homotopic if there is a continuous mapping H from $R^+ \times I^o \times I$ to I^o such that $$_{0}H=f,\quad _{1}H=g,$$ (3.2) $$H(R^+ \times \{x\} \times I) = \{y\},$$ (3.3) given any $V \in \text{Nhd}(Y)$ there is a $U \in \text{Nhd}(X)$ and an $r \in
\mathbb{R}^+$ such that $H([r, \infty) \times U \times I) \subset V$. In this case we write $H; f \simeq g$ (approaching). Pointed approaching homotopy is an equivalence relation on the morphisms of C. If $$f \in \operatorname{Mor}_{\underline{C}}((W, w), (X, x)), \quad g, h \in \operatorname{Mor}_{\underline{C}}((X, x), (Y, y)), \\ k \in \operatorname{Mor}_{\underline{C}}((Y, y), (Z, z))$$ and $H;g\simeq h$ (approaching), then $Hf;gf\simeq hf$ (approaching), and $kH;kg\simeq kh$ (approaching) where Hf and kH are continuous mappings from $R^+\times I^\omega\times I$ to I^ω defined by $\iota(Hf)=(\iota H)f$ and $\iota(kH)=k(\iota H)$, for each $\iota\in I$. Thus the equivalence relation of pointed approaching homotopy is compatible with composition in \underline{C} . Denoting the pointed approaching homotopy class of f by [f] we may form a new category \mathscr{BC} whose objects are the same as those of \underline{C} and whose morphisms are classes of morphisms of \underline{C} . Composition in \mathscr{BC} is $[g]\circ [f]=[gf]$. The identity element of $\mathsf{Mor}_{\mathscr{BC}}((X,x),(X,x))$ is $[\mathsf{Id}_{(X,x)}]$. \mathscr{BC} is called the pointed approaching homotopy category. We next define homotopy on \underline{C} and use this concept of homotopy to describe the (pointed) fundamental category. These ideas were first defined in [1] by K. Borsuk. Two morphisms $f, g \in \mathrm{Mor}_{\mathcal{O}}((X, x)(Y, y))$ are said to be *poin* fundamentally homotopic if there is a continuous mapping H fr $J^+ \times I^\omega \times I$ to I^ω such that $$_{0}H=f,\quad _{1}H=g,$$ $$(3.5) H(J^+ \times \{x\} \times I) = \{y\},$$ (3.6) given any $V \in \text{Nhd}(X)$ there is a $U \in \text{Nhd}(X)$ and $j \in J^+$ such that $H_n(U \times I) \subset V$, for each $n \ge j$. In this case we write $H; f \simeq g$ (fundamental). Fundamental homotopy is an equivalence relation on the morphisms of \underline{C} compatible with the composition of \underline{C} and the class of f is denoted [f]. As above we get a new category $\Im \underline{C}$ called the (pointed) fundamental category, $\mathrm{Ob}\,\Im \underline{C} = \mathrm{Ob}\,\underline{C}$, morphisms in $\Im \underline{C}$ are classes of morphisms in \underline{C} and composition in $\Im \underline{C}$ is $[g] \circ [f] = [gf]$. Two equivalent objects of RC are said to have the same shape. 4. Remark. Comparison of RC, RC and RC. If (X, x), $(Y, y) \in \operatorname{Ob} C$ and if f is a continuous mapping from $R^+ \times I^\omega$ to I^ω such that $f_r = \varphi$; $I^\omega \to I^\omega$, for all $r \in R^+$ and $\varphi|_X = \theta$ a continuous mapping from (X, x) to (Y, y) then we say that f is generated by θ . Such a mapping f is an approaching mapping from (X, x) to (Y, y) since $f(R^+ \times \{x\}) = \{\varphi(x)\} = \{y\}$ and if $V \in \operatorname{Nhd}(Y)$ there is, by the continuity of φ , a $U \in \operatorname{Nhd}(X)$ such that $\varphi(U) = f(R^+ \times U) \subset V$. Since any continuous mapping θ from (X, x) to (Y, y) can be extended to a continuous mapping φ from I^ω to I^ω it follows that each $\theta \in \operatorname{Mor}_C((X, x), (Y, y))$ generates at least one $f \in \operatorname{Mor}_C((X, x), (Y, y))$. It is clear that $\mathrm{Id}_{(X,x)} \in \mathrm{Mor}\, C$ generates $\mathrm{Id}_{(X,x)} \in \mathrm{Mor}\, \underline{C}$ and that if $\theta \in \mathrm{Mor}_{C}((X,x),(Y,y)), \ \theta' \in \mathrm{Mor}_{C}((Y,y),(Z,z))$ generate $f \in \mathrm{Mor}_{C}((X,x),(Y,y))$ and $g \in \mathrm{Mor}_{C}((X,x),(Y,y))$ respectively then $\theta' \circ \overline{\theta} \in \mathrm{Mor}\, C$ generates $gf \in \mathrm{Mor}\, \underline{C}(X,x),(Y,y)$ moreover if $\alpha,\beta \in \mathrm{Mor}_{C}((X,x),(Y,y))$ generate $\alpha,b \in \mathrm{Mor}_{\underline{C}}((X,x),(Y,y))$ and if $H;\ \alpha \simeq \beta$ then there is a continuous mapping \overline{K} from $I^{\omega} \times I$ to I^{ω} such that ${}_{0}K = a_{0}, {}_{1}K = b_{0}$ and $K|_{X \times I} = H$. Defining the mapping L from $R^{+} \times I^{\omega} \times I$ to I^{ω} by $L_{r} = K$, for all $r \in R^{+}$, then using the compactness of X it is easy to see that $L;\ \alpha \simeq b$ (approaching). From the above observations it follows that there is a functor $\Re E$ from $\Re C$ to $\Re \underline{C}$ taking $(X,x) \in \operatorname{Ob} \Re C$ to $\Re E(X,x) = (X,x) \in \operatorname{Ob} (\Re \underline{C})$ and $[\theta] \in \operatorname{Mor} \Re C$ to $\Re E([\theta]) = [f] \in \operatorname{Mor} \Re \underline{C}$, where $\Re E([\theta]) = [f]$ is well defined to be the approaching homotopy class of any mapping f generated by θ . It is immediate from definition 2 above that there is a functor R from $\underline{\underline{C}}$ to $\underline{\underline{C}}$ carrying $(X,x) \in \mathrm{Ob}\,\underline{\underline{C}}$ to $R(X,x) = (X,x) \in \mathrm{Ob}\,\underline{\underline{C}}$ and $f \in \mathrm{Mor}\,\underline{\underline{C}}$ to $R(f) = f \mid \epsilon \, \mathrm{Mor}\,\underline{\underline{C}}$. By the definition of $\mathrm{Mor}\,\underline{\underline{C}}$ in (2.4) above it is clear that R considered as a function from the set $\mathrm{Mor}\,\underline{\underline{C}}$ to the set $\mathrm{Mor}\,\underline{C}$ is surjective. If $H; f \simeq g$ (approaching), then denoting by H| the restriction of H to $J^+ \times I^w \times I$ it is clear that $H|; f| \simeq g|$ (fundamental). Thus there is a functor $\mathcal{R}R$ from $\mathcal{R}\underline{C}$ to $\mathcal{R}\underline{C}$ taking $(X, x) \in \mathrm{Ob}\,\mathcal{R}\underline{C}$ to $\mathcal{R}R(X, x) = (X, x) \in \mathrm{Ob}\,\mathcal{R}\underline{C}$ and taking $[f] \in \mathrm{Mor}\,\mathcal{R}\underline{C}$ to $\mathcal{R}R([f]) = [R(f)] = [f]$ $\in \mathrm{Mor}\,\mathcal{R}\underline{C}$. The surjectiveness of R above implies that $\mathcal{R}R$ considered as function from the set $\mathrm{Mor}\,\mathcal{R}\underline{C}$ to the set $\mathrm{Mor}\,\mathcal{R}\underline{C}$ is surjective. 5. DEFINITION. The approaching functor. A continuous mapping ξ from $R^+ \times S^n$ to I^ω is said to be an approaching n-mapping of $(X,x) \in \mathrm{Ob}\,\mathcal{R}\underline{C}$ iff (5.1) $$\xi(R^+ \times \{p_0\}) = \{x\} .$$ (5.2) given $V \in \text{Nhd}(X)$ there is an $r \in \mathbb{R}^+$ such that $\xi([r, \infty) \times S^n) \subset V$. An exact sequence from the n-th to the (n-1)-st fundamental group 201 If ξ and ξ' are approaching n-mappings of (X, x) then we say that ξ is approaching homotopic to ξ' iff there is a continuous mapping Φ from $R^+ \times S^n \times I$ to I^{ω} such that $$_{0}\Phi = \xi , \quad _{1}\Phi = \xi',$$ $$\Phi(R^+ \times \{p_0\} \times I) = \{x\},\,$$ given $V \in \mathrm{Nhd}(X)$ there is an $r \in \mathbb{R}^+$ such that $\Phi([r, \infty) \times S^n \times$ (5.5) $\times I) \subset V$. In this case we write Φ ; $\xi \simeq \xi'$ (approaching). Approaching homotopy is an equivalence relation on the set of all approaching n-mappings of (X, x)and the class of ξ will be written $\langle \xi \rangle$. The set of classes of approaching *n*-mappings of (X, x) will be denoted $\underline{\pi}_n(X, x), n \ge 0$. We denote by c the approaching n-mapping of (X, x) such that $e(R^+ \times S^n) = \{x\}$. If ξ and η are approaching n-mappings of (X, x)then ξ^{-1} and $\xi * \eta$ are also approaching n-mappings of (X, x). If $\xi \simeq \xi'$ (approaching) and $\eta \simeq \eta'$ (approaching) then $\xi * \eta \simeq \xi' * \eta'$ (approaching). Thus, when $n \ge 1$, we can compose classes of approaching mappings as follows, $\langle \xi \rangle * \langle \eta \rangle = \langle \xi * \eta \rangle$. If ξ , ξ' and ξ'' are approaching n-mappings of (X, x) the following remarks are easily proven. $$\langle \xi \rangle * \langle c \rangle = \langle \xi \rangle, \qquad n \geqslant 1,$$ $$(5.7) \langle \xi \rangle * \langle \xi^{-1} \rangle = \langle c \rangle = \langle \xi^{-1} \rangle * \langle \xi \rangle, n \geqslant 1,$$ $$(5.8) = (\langle \xi \rangle * \langle \xi' \rangle) * \langle \xi'' \rangle = \langle \xi \rangle * (\langle \xi' \rangle * \langle \xi'' \rangle), \quad n \geqslant 1,$$ $$(5.9) \langle \xi \rangle * \langle \xi' \rangle = \langle \xi' \rangle * \langle \xi \rangle, n \geqslant 2.$$ Thus $\underline{\pi}_n(X,x)$ is a set group or abelian group according as n=0,1or $n \geqslant 2$. If ξ is an approaching n-mapping of (X, x) and $f \in \mathrm{Mor}_{\mathcal{C}}((X, x), (Y, y))$ there is a continuous mapping $f\xi$ from $R^+ \times S^n$ to I^ω defined by $f\xi(r, \alpha)$ $=f(r,\xi(r,a)),$ for each $(r,a) \in \mathbb{R}^+ \times S^n$. We observe that if $V \in \mathrm{Nhd}(Y)$ there is a $U \in \mathrm{Nhd}(X)$ and $r_1 \in \mathbb{R}^+$ such that $f([r_1, \infty) \times U) \subset V$ and there is an $r_2 \in \mathbb{R}^+$ such that $\xi([r_2, \infty) \times S^n) \subset U$. Thus $$f\xi([r_1+r_2,\ \infty)\times S^n)\subset f([r_1,\ \infty)\times \xi([r_2,\ \infty)\times S^n))\subset f([r_1,\ \infty)\times U)\subset V.$$ From these 2 observations it follows that $f\xi$ is an approaching n-mapping of (Y, y). It is easy to see that if ξ and η are approaching n-mappings of (X, x), $f, g \in \mathrm{Mor}_{\mathcal{C}}((X, x)(Y, y)), h \in \mathrm{Mor}_{\mathcal{C}}((Y, y), (Z, z)), \text{ then}$ (5.10) $$f(\xi * \eta) = (f\xi) * (f\eta).$$ (5.11) Φ ; $\xi \simeq \eta$ (approaching) implies Ψ ; $f\xi \simeq f\eta$, where Ψ is defined by $_t\Psi=f(_t\Phi)$, for each $t \in I$. $H: f \simeq g$ (approaching) implies that $\chi: f \xi \simeq g \xi$ (approaching) (5.12)where χ is defined by $t\chi = f(tH)$, for each $t \in I$. $$(5.13) (hf)\xi = h(f\xi).$$ From the above it follows that $\underline{\pi}_n$ is a functor from $\Re C$ to the category of
sets, groups or abelian groups according as n = 0, 1 or $n \ge 2$. $\text{For } [f] \in \text{Mor}_{\mathcal{B}\underline{C}} \big(\!(X,x)\,,\,(Y,y)\!\big), \ \langle \xi \rangle \in \underline{\pi}_{n}\!(X,x),$ $$\underline{\pi}_n([f])(\langle \xi \rangle) = \langle f \xi \rangle \in \underline{\underline{\pi}}_n(Y, y)$$. Since $\underline{\pi}_n$ is a functor from $\Re \underline{C}$ it follows that $\underline{\pi}_n(X,x)$ is invariant up to equivalence of objects in the approaching category. Composing the functor $\underline{\pi}_n$ with the functor $\Re E$ of 4 above to obtain the functor $\pi_n \circ \Re E$ from $\Re C$ we see that (a fortiori) $\underline{\pi}_n(X,x) = \underline{\pi}_n \circ \Re E(X,x)$ is invariant up to homotopy type of pointed compacta. 6. DEFINITION. The inward functor. A continuous mapping ξ from $J^+ \times S^n$ to I^ω is said to be an inward n-mapping of $(X, x) \in \text{Ob} \mathcal{H}C$ iff $$\xi(J^{+} \times \{p_{0}\}) = \{x\},\,$$ given $V \in \mathrm{Nhd}(X)$ there is a $j_0 \in J^+$ such that $\xi_j(S^n) \subset V$, for all (6.2) $j \geqslant j_0$. If ξ and ξ' are inward n-mappings of (X, x) then we say that ξ is inward homotopic to ξ' iff there is a continuous Φ from $J^+ \times S^n \times I$ to I^ω such that $${}_{0}\Phi = \xi \;, \quad {}_{1}\Phi = \xi',$$ $$\Phi(J^+ \times \{p_0\} \times I) = \{x\},\,$$ given $V \in \mathrm{Nhd}(X)$ there is a $j_0 \in J^+$ such that $\Phi_i(S^n \times I) \subseteq V$, for (6.5)all $i \geqslant j_0$. In this case we write Φ ; $\xi \simeq \xi'$ (inwardly). The set of classes of inward n-mappings will be denoted by $I_n(X, x)$, for each $n \geqslant 0$. As in 5 above $I_n(X, x)$ is a set group or abelian group according as n=0, 1 or $n \geqslant 2$. The identity element of $I_n(X, x)$ is denoted by $\langle e \rangle$ where c(j,e)=x, for all $(j,e)\in J^+\times S^n$. Multiplication in $I_n(X,x)$ is $\langle \xi \rangle * \langle \eta \rangle = \langle \xi * \eta \rangle$. If ξ is an inward n-mapping of (X, x) and $f \in \text{Moro}((X, x), (Y, y))$ there is an inward n-mapping $f\xi$ of (Y,y) defined by $(f\xi)_n = f_n \circ \xi_n$, for each $n \ge 0$. Thus proceeding as in 5 above we see that for each $n \ge 0$ there is a functor I_n from the category $\Re C$ to the category of sets, groups or abelian groups according as n = 0, 1 or $n \ge 2$, where $I_n([f])(\langle \xi \rangle)$ $=\langle f\xi \rangle$ for each $[f] \in \text{Mor}_{\mathcal{R}G}((X,x),(Y,y)), \langle \xi \rangle \in I_n(X,x)$. Since I_n is a functor from $\mathcal{R}C$ we see that $I_n(X, x)$ is shape invariant. #### 7. Definition. The fundamental functor. The concept of approximative n-mapping of (X, x) or approximative sequence of (S^n, p_0) towards (X, x) was defined as follows by K. Borsuk "A sequence of maps ξ_k ; $(S^n, p_0) \rightarrow (I^\omega, x)$ will said to be an approximative sequence of (S^n, p_0) towards (X, x) iff, for each neighbourhood V of Xthe homotopy $\xi_k \simeq \xi_{k+1}$ in (V, x) holds for almost all k" (see [1], (13.1)). Clearly each approximative sequence of (S^n, p_0) towards (X, x), (or approximative n-mapping) is an inward n-mapping and in [1] it is shown that - ξ is an approximative *n*-mapping of (X, x) and $\xi \simeq \xi'$ (inwardly) (7.1)implies that ξ' is an approximative *n*-mapping. - ξ is an approximative n-mapping of (X, x) and $f \in \mathrm{Mor}_{\mathcal{C}}((X, x), x)$ (Y, y) implies $f\xi$ is an approximative n-mapping of (Y, y), - ξ, η are approximative n-mappings of $(X, x), n \ge 1$ implies that $\xi * \eta$ is an approximative n-mapping of (X, x). Thus there is a functor π_n from C to the category of sets, groups or abelian groups according as n = 0, 1 or $n \ge 2$ where for each $n \ge 0$ and each $(X, x) \in \text{Ob } C$, $\pi_n(X, x)$ is that subset of $I_n(X, x)$ such that $\langle \xi \rangle \in \pi_n(X,x)$ iff ξ is an approximative n-mapping of (X,x), and for each $f \in \text{Mor}_{\mathcal{C}}((X, x), (Y, y))$, $\underline{\pi}_{n}([f])$ is $I_{n}([f])$ restricted to $\underline{\pi}_{n}(X, x)$. π_n is called the *n*-th fundamental functor (see [1]). In [1] it is remarked that π_n being a functor from $\Re C$ $\pi_n(X, x)$ is shape invariant. An equivalent useful method of defining the concept of approximative n-mapping is as follows. (7.4) An inward n-mapping ξ of (X, x) is said to be an approximative n-mapping of (X, x) iff there is an approaching n-mapping η of (X, x) such that $\eta|_{J^+ \times S^n} = \xi$. In [3] it is shown that, for all $n \geqslant 0$, $\pi_n(X, x)$ is the inverse limit of the system with objects $\{\pi_n(U,x)\}_{U\in \mathrm{Nhd}(X)}$ and morphisms induced by inclusion between neighbourhoods. An indication of this proof is given in Appendix 21. 8. Remark. From now on (X, x) denotes a fixed compactum with base point, contained in I^{ω} . **9.** DEFINITION. The homomorphism i_n ; $\pi_n(X, x) \to I_n(X, x)$. For all $n \ge 0$ we denote by i_n the inclusion mapping i_n ; $\pi_n(X, x)$ $\subset I_n(X,x)$. When $n \geqslant 1$ this is a homomorphism between groups. 10. Definition. Advancing a function. Let X and Y be sets and f a function from $J^+ \times X$ to Y. Then there is a function A(f) also from $J^+ \times X$ to Y which takes $(n,t) \in J^+ \times X$ to $A(f)(n,t) = f(n+1,t) \in \mathcal{Y}$. A(f) is called the advancement of f. 11. DEFINITION. The advancing endomorphism, A_n ; $I_n(X, x) \rightarrow I_n(X, x)$. Let ξ and η be inward n-mappings of (X, x). We observe that, when $n \ge 1$, $A(\xi * \eta) = A(\xi) * A(\eta)$, and, for all $n \ge 0$, if $\Phi : \xi \simeq \eta$ (inwardly) then $A(\Phi)$; $A(\xi) \simeq A(\eta)$ (inwardly). Thus, for each $n \ge 0$, there is a function A_n , from $I_n(X, x)$ to $I_n(X, x)$, which takes each $\langle \xi \rangle \in I_n(X, x)$ to $A_n(\langle \xi \rangle) = \langle A(\xi) \rangle \in I_n(X, x)$ and which when $n \geqslant 1$ is an endomorphism called the n-th advancing endomorphism of (X, x). 12. Remark. For each $n \ge 0$ we denote by Id_n the identity function from $I_n(X,x)$ to $I_n(X,x)$, $\mathrm{Id}_n(\langle \xi \rangle) = \langle \xi \rangle$, for $\langle \xi \rangle \in I_n(X,x)$. In the case $n \geqslant 2$, $I_n(X, x)$ is abelian and so $\mathrm{Id}_n - A_n$ is a homomorphism from $I_n(X, x)$ to $I_n(X,x)$. In the case n=1 there is a function which we denote by $\mathrm{Id}_1*A_1^{-1}$ from $I_1(X,x)$ to $I_1(X,x)$ which takes $\langle \xi \rangle \in I_1(X,x)$ to $\mathrm{Id}_1 * A_1^{-1}(\langle \xi \rangle)$ $=\langle \xi \rangle * (A_1 \langle \xi \rangle)^{-1} \in I_1(X,x)$. Since $I_1(X,x)$ may not be an abelian group $Id_1 * A_1^{-1}$ is not in general a homomorphism. 13. DEFINITION. The homomorphism δ_n ; $I_n(X, x) \to \pi_{n-1}(X, x)$. Let ξ be an inward n-mapping where $n \ge 1$. Denote by $B(\xi)$ the continuous mapping from $R^+ \times S^{n-1}$ to I^{ω} which, for all $j \in J^+$ and (r, e) $\epsilon[j,j+1] \times S^{n-1}$ takes (r,e) to $B(\xi)(r,e) = \xi_j \circ h_{n-1} \circ q_{n-1}(r-j,e) \in I^{\omega}$. By the definition of h_{n-1} and q_{n-1} , in notational remark 1, there is no ambiguity in this definition of $B(\xi)$. By (6.5), $B(\xi)$ is an approaching (n-1)-mapping of (X, x). Let ξ and η be inward n-mappings for $n \ge 2$, then, by 1.1, $B(\xi * \eta)$ $=B(\xi)*B(\eta)$. Again if ξ and η are inward n-mappings for $n\geqslant 1$ and $\Phi; \xi \simeq \eta$ (inwardly) then defining the continuous mapping Ψ from $R^+ \times$ $\times S^{n-1} \times I$ by $_t \Psi = B(_t \Phi), \ 0 \le t \le 1$, we see that $\Psi, B(\xi) \simeq B(\eta)$ (approaching). Thus there is, for each $n \ge 1$, a function δ_n from $I_n(X, x)$ to $\underline{\pi}_{n-1}(X,x)$ which takes each $\langle \xi \rangle \in I_n(X,x)$ to $\delta_n(\langle \xi \rangle) = \langle B(\xi) \rangle$ $\epsilon \underline{\pi}_{n-1}(X,x)$. Moreover, when $n \ge 2$, δ_n is a homomorphism between groups. 14. DEFINITION. The homomorphism γ_n from $\underline{\pi}_n(X, x)$ to $\underline{\pi}_n(X, x)$. An exact sequence from the n-th to the (n-1)-st fundamental group 205 For each $n \ge 0$, there is a function γ_n from $\underline{\pi}_n(X, x)$ to $\underline{\pi}_n(X, x)$ which assigns to each $\langle \xi \rangle \in \underline{\pi}_n(X, x)$, $\langle \xi |_{J+\times S^n} \rangle \in \underline{\pi}_n(\overline{X}, x)$. By (7.4) γ_n is surjective, $n \ge 0$. For $n \ge 1$, γ_n is a homomorphism between groups. 15. Lemma. When $n \ge 2$, Kernel (Id_n-A_n) = $\underline{\pi}_n(X, x)$. Also, Kernel (Id₁ * A_1^{-1}) = $\underline{\pi}_1(X, x)$. Proof. When $n \geqslant 2$, $\langle \xi \rangle \in \operatorname{Kernel} (\operatorname{Id}_n - A_n)$ iff $\langle \xi \rangle = A_n(\langle \xi \rangle)$. iff $\xi \simeq A(\xi)$ (inwardly). iff There is a continuous mapping Φ from $J^+ \times S^n \times I$ to I^ω s.t. ${}_0\Phi = \xi$, ${}_1\Phi = A(\xi)$ and given $V \in \operatorname{Nhd}(X)$ there is an $N \in J^+$ s.t. $\Phi_j(S^n \times I) \subseteq V$, for all $j \geqslant N$. iff Given $V \in \text{Nhd}(X)$, there is an $N \in J^+$ s.t. ξ_j is homotopic to $(A(\xi))_j = \xi_{j+1}$ in V, for all $j \ge N$. iff ξ is an approximative n-mapping (see 8 above). iff $\langle \xi \rangle \in \pi_n(X, x)$. The case n=1 is dealt with in a similar fashion, Q.E.D. 16. Lemma. Kernel $(\gamma_{n-1}) = \text{Image}(\delta_n)$, for all $n \ge 1$. **Proof.** Let $\langle \xi \rangle \in I_n(X, x)$. Then $$\gamma_{n-1} \circ \delta_n(\langle \xi \rangle) = \gamma_{n-1}(\langle B(\xi) \rangle) = \langle B(\xi)|_{J+\times S^{n-1}} \rangle.$$ But $$\begin{split} B(\xi)(\{j\} \times S^{n-1}) &= \xi_j \circ h_{n-1} \circ q_{n-1}(\{j-j\} \times S^{n-1})
\\ &= \xi_j \circ h_{n-1} \circ q_{n-1}(\{0\} \times S^{n-1}) = \xi_l(\{p_0\}) = \{x\}. \end{split}$$ Thus $B(\xi)|_{J+\times S^{n-1}}=c$ and $\gamma_{n-1}\circ\delta_n(\langle\xi\rangle)=\langle c\rangle=0$ ϵ $\underline{\pi}_{n-1}(X,x)$. This shows that $\mathrm{Image}(\delta_n)\subset\mathrm{Kernel}(\gamma_{n-1})$. On the other hand, let $\langle \xi \rangle \in Kernel(\gamma_{n-1})$. Then $\gamma_{n-1}(\langle \xi \rangle) = \langle \xi|_{J+\times S^{n-1}} \rangle = \langle c \rangle \in \underline{\pi}_{n-1}(X,x)$. Thus there is a continuous mapping Φ from $J^+ \times \times S^{n-1} \times I$ to I^{ω} s.t. Φ ; $\xi|_{J+\times S^{n-1}} \simeq c$ (inwardly). For each $j \geqslant 0$ let ϱ_j be a retraction from $[j,j+1] \times I$ to $([j,j+1] \times \{0\}) \cup (\{j,j+1\} \times I)$. Let $\tilde{\varrho}$ be that retraction from $R^+ \times I$ to $(R^+ \times \{0\}) \cup (J^+ \times I)$ s.t. $\varrho|_{[j,j+1] \times I} = \varrho_I$, for all $j \geqslant 0$. Let $\tilde{\varrho}$ be that retraction from $R^+ \times S^{n-1} \times I$ to $(R^+ \times S^{n-1} \times \{0\}) \cup (J^+ \times S^{n-1} \times I)$ which takes $(s,e,t) \in R^+ \times S^{n-1} \times I$ to $\tilde{\varrho}(s,e,t) = (s',e,t') \in (R^+ \times S^n \times \{0\}) \cup (J^+ \times S^n \times I)$ where $(s',t') = \varrho(s,t)$. Now let Ψ be that continuous mapping from $(R^+ \times S^{n-1} \times \{0\}) \cup (J^+ \times S^{n-1} \times I)$ to I^{ω} s.t. $\Psi|_{R^+ \times S^{n-1} \times \{0\}} = \xi$ and $\Psi|_{J^+ \times S^{n-1} \times I} = \Phi$. Let $I = \Psi \circ \tilde{\varrho}$. Then, denoting ${}_1I$ by η , I^* ; $\xi \simeq \eta$ (approaching). Thus $\langle \xi \rangle = \langle \eta \rangle \in \underline{\pi}_{n-1}(X,x)$. Next we will define an inward n-mapping η' of (X,x) s.t. $B(\eta')=\eta$. Since $\eta|_{J+\times S^{n-1}}={}_1I'|_{J+\times S^{n-1}}=\Psi\circ\widetilde{\varrho}|_{J+\times S^{n-1}\times\{1\}}=\Psi|_{J+\times S^{n-1}\times\{1\}}={}_1\varPhi=c$, there is, for each $j\geqslant 0$, an unique continuous mapping θ_j from $I\times S^{n-1}/I\times \{p_0\}\cup \{0,1\}\times S^{n-1}$ to I^ω s.t. for each $(t,e)\in I\times S_{n-1},$ $\theta_j\circ q_{n-1}(t,e)=\eta(t+j,e).$ Define the continuous mapping η' from $J^+\times S^n$ to I^ω by $\eta'_j=\theta_j\circ h_{n-1}^{-1}$, for all $j\in J^+$. Since η is an approaching (n-1)-mapping of (X,x) it follows from (5.2) that η' is an inward n-mapping of (X,x). Moreover, for each $j\in J^+$, given $(r,e)\in [j,j+1]\times S^{n-1}$, $$\begin{split} &B(\eta')(r,e)\\ &=\eta_j'\circ h_{n-1}\circ q_{n-1}(r-j,e)\;, & \text{by definition of }B(\eta')\;\text{(see 13)}\;,\\ &=\theta_j\circ h_{n-1}^{-1}\circ h_{n-1}\circ q_{n-1}(r-j,e)\;, & \text{by definition of }\eta',\;\text{above}\\ &=\theta_j\circ q_{n-1}(r-j,e)\\ &=\eta(r-j+j,e)\;, & \text{by definition of }\theta_j,\;\text{above}\\ &=\eta(r,e)\;. \end{split}$$ Thus $B(\eta') = \eta$. Therefore $\delta_n(\langle \eta' \rangle) = \langle B(\eta') \rangle = \langle \eta \rangle = \langle \xi \rangle$. Therefore Kernel (γ_{n-1}) \subset Image (δ_n) . Combining this with it's converse above, we have our result. Q.E.D. 17. LEMMA. For all $n \ge 2$, Kernel $(\delta_n) = \operatorname{Image}(\operatorname{Id}_n - A_n)$. Also, Kernel $(\delta_1) = \operatorname{Image}(\operatorname{Id}_1 * A_1^{-1})$. Proof. Let $\langle \xi \rangle \in I_n(X, x)$, $n \geqslant 1$. In all cases we will show that, if $\eta = \xi^*(A(\xi))^{-1}$, then $\delta_n(\langle \eta \rangle) = \langle B(\eta) \rangle = 0$ $\epsilon_{\underline{x}_{n-1}}(X, x)$. Now $\eta_j = \xi_j * \xi_{j+1}^{-1}$, for all $j \geqslant 0$. Thus $B(\eta)$ is that continuous mapping from $\mathbb{R}^+ \times \mathbb{S}^{n-1}$ such that, for all $j \in J^+$, $$(17.1) \quad B(\eta)(r,e) = \xi_j \circ h_{n-1} \circ q_{n-1} \big(2(r-j), \, e \big), \quad \text{for } (r,e) \, \epsilon[j,j+\tfrac{1}{2}] \times S_{n-1}$$ and $$\begin{split} (17.2) \quad B(\eta)(r,\,e) &= \, \xi_{j+1} \circ h_{n-1} \circ q_{n-1} \! \big(2 \, (j-r+1),\, e \big) \,, \\ & \quad \text{for } (r,\,e) \, \epsilon \, [j+\tfrac{1}{2},j+1] \times S^{n-1}. \end{split}$$ Let $\{V_k\}_{k \in J^+}$ be a sequence of neighbourhoods of X in I^{ω} such that $V_{k+1} \subset V_k$, for all $k \in J^+$ and such that $\bigcap_{k \in J^+} V_k = X$. Since ξ is an inward *n*-mapping of (X, x) we can find a sequence of integers $\{j_k\}_{k \in J^+}$ tending to infinity such that, for each $k \in J^+$ and all $j \geqslant j_k$, $\xi(\{j\} \times S^n) \subseteq V_k$. By 17.1 and 17.2, (17.3) $$B(\eta)(\lceil i-\frac{1}{2}, i+\frac{1}{2}\rceil \times S^{n-1}) \subset V_k$$, for all $k \in J^+$, $i \geqslant j_k$. Denoting the set $\{j+\frac{1}{2}|\ j\in J^+\}$ by $J^++\frac{1}{2}$, we define a continuous mapping Φ from $(R^+\times S^{n-1})\cup ((J^++\frac{1}{2})\times E^n)$ to I^ω by $\Phi|_{R^+\times S^{n-1}}=B(\eta)$ and $\Phi((J^++\frac{1}{2})\times E^n)=\{x\}\subset I^\omega$. By 17.3 $$(17.4) \quad \Phi(([i-\frac{1}{2},i+\frac{1}{2}]\times S^{n-1}) \cup (\{i-\frac{1}{2},i+\frac{1}{2}\}\times E^n)) \subset V_k, \quad \text{ for all } i \geqslant j_k.$$ Now the pair $([i-\frac{1}{2},i+\frac{1}{2}]\times E^n,[i-\frac{1}{2},i+\frac{1}{2}]\times S^{n-1}\cup\{i-\frac{1}{2},i+\frac{1}{2}\}\times E^n)$ is homotopically equivalent to the pair (E^{n+1},S^n) . By 17.1 and 17.2 and the definition of Φ , $\Phi|_{\{i-\frac{1}{2},i+\frac{1}{2}\}\times S^{n-1}\cup\{i-\frac{1}{2},i+\frac{1}{2}\}\times E^n}$ corresponds to the continuous mapping $\xi_i^{-1}*\xi_i$ from S^n to V_k , for all $i\geqslant j_k$. But $\xi_i^{-1}*\xi_i$, being homotopic to the constant mapping from S^n to V_k for all $i\geqslant j_k$ can be extended to a mapping from E^{n+1} to V_k , for all $i\geqslant j_k$. Thus for each $i\geqslant 1$ $\Phi|_{\{i-\frac{1}{2},i+\frac{1}{2}\}\times S^{n-1}\cup\{i-\frac{1}{2},i+\frac{1}{2}\}\times E^n}$ can be extended to a continuous mapping Ψ^i from $[i-\frac{1}{2},i+\frac{1}{2}]\times E^n$ to I^ω , such that (17.5) $$\mathcal{Y}^{i}([i-\frac{1}{2},i+\frac{1}{2}]\times E^{n})\subset V_{k}, \quad \text{for all } i\geqslant j_{k}.$$ Since $[0,\frac{1}{2}]\times S^{n-1}\cup\{\frac{1}{2}\}\times E^n$ is a retract of $[0,\frac{1}{2}]\times E^n,\Phi|_{[0,\frac{1}{2}]\times S^{n-1}\cup\{\frac{1}{2}\}\times E^n}$ can be extended to a mapping $\mathcal{\Psi}^0$ from $[0,\frac{1}{2}]\times E^n$ to I^ω . Define the continuous mapping $\mathcal{\Psi}$ from $R^+\times E^n$ to I^ω by $\mathcal{\Psi}|_{[0,\frac{1}{2}]\times E^n}=\mathcal{\Psi}^0$ and $\mathcal{\Psi}|_{[i-\frac{1}{2},i+\frac{1}{2}]\times E^n}=\mathcal{\Psi}^i$, for all $i\geqslant 1$. Note that (17.6) $$\Psi|_{(R^+ \times S^{n-1}) \cup ((J^+ + \frac{1}{6}) \times E^n)} = \Phi.$$ Let $\overline{a,p_0}$ denote the set $\{(1-t)a+tp_0|\ 0\leqslant t\leqslant 1\}$ i.e. the line segment from the center a=(0,0,...,0) of E^n to $p_0\in S^{m-1}$. Let T be any continuous mapping from $R^+\times E^n$ to $R^+\times E^n$ such that - (17.7) $T|_{R^{+}\times S^{n-1}\cup (J^{+}+\frac{1}{2})\times E^{n}}$ is the identity continuous mapping. - (17.8) $T([0, \frac{1}{2}] \times E^n) = [0, \frac{1}{2}] \times E^n,$ $T([i - \frac{1}{2}, i + \frac{1}{2}] \times E^n) = [i - \frac{1}{2}, i + \frac{1}{2}] \times E^n, \text{ for all } i \ge 1,$ - $\begin{array}{lll} (17.9) & T|_{[0,\frac{1}{2}]\times\overline{a,p_0}} \text{ is a retraction from } [0,\frac{1}{2}]\times\overline{a,p_0} \text{ to} \\ & [0,\frac{1}{2}]\times\{p_0\}\cup\{\frac{1}{2}\}\times\overline{a,p_0} \text{ and } T|_{[i-\frac{1}{2},i+\frac{1}{2}]\times\overline{a,p_0}} \\ & \text{is a retraction from } [i-\frac{1}{2},i+\frac{1}{2}]\times\overline{a,p_0} \text{ to} \\ & [i-\frac{1}{2},i+\frac{1}{2}]\times\{p_0\}\cup\{i-\frac{1}{2},i+\frac{1}{2}\}\times\overline{a,p_0} \text{,} & \text{for all } i\geqslant 1 \text{.} \end{array}$ Now $$(17.10) \quad \Psi \circ T(R^{+} \times \{a\})$$ $$\subset \Psi\left((R^{+} \times \{p_{0}\}) \cup \left((J + \frac{1}{2}) \times \overline{a, p_{0}}\right)\right), \quad \text{by (17.9)}$$ $$\subset \Phi\left((R^{+} \times \{p_{0}\}) \cup (J^{+} + \frac{1}{2}) \times E^{n}\right), \quad \text{by (17.6), (17.7)}$$ $$= B(\eta)(R^{+} \times \{p_{0}\}) \cup \Phi\left((J^{+} + \frac{1}{2}) \times E^{n}\right), \quad \text{by definition of } \Phi$$ $$= \{x\}, \quad \text{by definition of } B(\eta) \text{ and } \Phi.$$ Thus we may, without ambiguity, define a continuous mapping Γ from $R^+ \times S^{n-1} \times I$ to I^ω , by $\Gamma(s,e,t) = \Psi \circ T(s,k_{n-1} \circ r_{n-1}(e,t))$, for each $(s,e,t) \in R^+ \times S^{n-1} \times I$ $(r_{n-1},k_{n-1} \text{ defined in notational remark 1})$. By (17.6) and (17.7) and the definition of Φ , ${}_0\Gamma = \Psi|_{R+\times S^{n-1}} = \Phi|_{R+\times S^{n-1}} = B(\eta)$. By (17.10) ${}_1\Gamma = c$. By (17.4), (17.8), $\Gamma([j_k,\infty) \times S^{n-1} \times I) \subset V_k$. Thus $\Gamma; B(\eta) \simeq c$ (approaching). Therefore $\delta_n(\langle \eta \rangle) = B(\eta) = \langle c \rangle = 0$ $\epsilon \underbrace{\pi_{n-1}(X,x)}_{I}$. Thus, Image (Id_n $-A_n$), in the case $n \geq 2$, and Image (Id_n $+A_1^{-1}$), in the case n = 1, are both contained in Kernel (δ_n) . On the other hand, let $\langle \xi \rangle \epsilon$ Kernel (δ_n) , then there is a continuous mapping Φ from $R^+ \times S^n \times I$ to I^ω s.t. Φ ; $B(\xi) \simeq c$ (approaching). Since $\Phi(R^+ \times S^{n-1} \times \{1\}) = \{x\} \subset I^\omega$ we may define a continuous mapping Ψ from $R^+ \times E^n$ to I^ω as follows. For each $(p,e,t) \in R^+ \times S^{n-1} \times I$, $\Psi(p,k_{n-1} \circ r_{n-1}(e,t)) = \Phi(p,e,t)$. By (5.5), Ψ has the following property, (17.11) given $V \in
\mathrm{Nhd}(X)$, there is an $N \in J^+$ s.t. $\Psi([j,j+1] \times E^n) \subset V$, for all $j \geqslant N$. Since $$\begin{split} & \Psi(J^+ \times S^{n-1}) = \Phi(J^+ \times S^{n-1} \times \{0\}) = B\left(\xi\right)(J^+ \times S^{n-1}) = \xi(J^+ \times \{p_0\}) = \{x\}\,, \\ & \text{there is for each } j \in J^+ \text{ a continuous mapping } \tau_j \text{ from } S^n \text{ to } I^m \text{ s.t. } \tau_j \circ s_n \\ & = \Psi_j \text{ (see notational remark 1, for definition of } s_n). \text{ The pair } ([j,j+1] \times E^n, \\ & [j,j+1] \times S^{n-1} \cup \{j,j+1\} \times E^n) \text{ is homotopically equivalent to the pair } (E^{n+1},S^n) \text{ and } \Psi|_{[j,j+1] \times S^{n-1} \cup \{j,j+1\} \times E^n} \text{ can be considered to be the mapping } \tau_j^{-1} * \xi_j * \tau_{j+1} \text{ from } S^n \text{ to } I, \text{ for all } j \in J^+. \text{ Then, if } V \text{ and } N \text{ are as in } (17.11), \text{ by } (17.11) \text{ } \tau_j^{-1} * \xi_j * \tau_{j+1} \text{ can be extended to a mapping of } E^{n+1} \text{ to } V, \text{ for all } j \geq N, \text{ i.e. } \tau_j^{-1} * \xi_j * \tau_{j+1} \text{ is homotopic to the constant mapping of } S^n, \text{ to } V, \text{ in } V, \text{ for all } j \geq N. \text{ Compounding the } \tau_j, j \geq 0, \text{ we get an inward } n\text{-mapping } \tau \text{ of } (X,x) \text{ s.t. } \tau^{-1} * \xi * A\left(\tau\right) \simeq c \text{ (inwardly)}. \\ \text{Therefore } \langle \tau^{-1} * \xi * A\left(\tau\right) \rangle = \langle c \rangle, \quad \langle \xi \rangle = \langle \tau \rangle * (A\left(\tau\right))^{-1} = (\text{Id}_n - A_n)(\langle \xi \rangle), \\ \text{ in the case } n \geq 2, \text{ or } (\text{Id}_1 * A_1^{-1})(\langle \tau \rangle), \text{ in the case } n = 1. \end{split}$$ Therefore Kernel $(\delta_n) \subset \operatorname{Image}(\operatorname{Id}_n - A_n)$ when $n \geq 2$ and is contained in $\operatorname{Image}(\operatorname{Id}_1 * A_1^{-1})$ when n = 1. This remark with its converse above proves the lemma. Q.E.D. **18.** THEOREM. Let (X, x) be a pointed compactum contained in the Hilbert cube. Then, for all $n \ge 2$, $$0 \to \underline{\pi_n}(X, x) \xrightarrow{i_n} I_n(X, x) \xrightarrow{\mathrm{Id}_n - A_n} I_n(X, x) \xrightarrow{\widehat{\vartheta_n}} \underline{\pi_{n-1}}(X, x) \xrightarrow{\gamma_{n-1}} \underline{\pi_{n-1}}(X, x) \to 0$$ is an exact sequence of groups and homomorphisms, and also $$0 \rightarrow \underline{\pi}_1(X, x) \xrightarrow{i_1} I_1(X, x) \xrightarrow{\mathrm{Id}_1 * A_1^{-1}} I_1(X, x) \xrightarrow{\hat{\sigma}_1} \underline{\pi}_0(X, x) \xrightarrow{\gamma_0} \underline{\pi}_0(X, x) \rightarrow 0$$ is an exact sequence, where $\underline{\pi}_1(X, x)$ and $I_1(X, x)$ are groups, and i_1 is a homomorphism. 209 Proof. From it's definition, i_n is a monomorphism, for all $n \ge 1$ and by 14 above y_n is surjective for all $n \ge 0$. The theorem now follows directly from these remarks and lemmas 15, 16 and 17. Q.E.D. 19. Example. If Σ_3 is the 3-adic solenoid of van-Dantzig and $\sigma \in \Sigma_3$ we will show that in the exact sequence $$0 \rightarrow \pi_1(\Sigma_3, \sigma) \rightarrow I_1(\Sigma_3, \sigma) \rightarrow I_1(\Sigma_3, \sigma) \rightarrow \underline{\pi}_0(\Sigma_3, \sigma) \rightarrow \underline{\pi}_0(\Sigma_3, \sigma) \rightarrow 0$$ $\underline{\pi}_0(\Sigma_3, \sigma)$ and $\underline{\pi}_1(\Sigma_3, \sigma)$ are both trivial but that the other 3 objects in the sequence are non trivial. It is convenient and there is no essential difference so we work this example in R^3 instead of I^w . We start by giving a description of an embedding of Σ_3 in R^3 and of a sequence $\{U_n\}_{n\geq 0}$ of neighbourhoods of Σ_3 s.t. $U_{n+1}\subset U_n$, for all $n\geqslant 0$, and such that $\bigcap U_n=\Sigma_3$. In R^3 consider the disc $D=\{(x_1+2)^2+x_2^2\geqslant 1,\,x_3=0\}$ and the solid torus U_1 obtained by revolving D around the x_1 -axis. In D consider the disc $D_0=\{(x_1+\frac{5}{2})^2+x_2^2\leqslant .01,\,x_3=0\}$ and the discs D_1 and D_2 obtained from D_0 by revolving D around its center by the angles $2\pi/3$ and $4\pi/3$ respectively. D_0 , D_1 and D_2 are disjoint since .01 is small. Now assume as D_1 revolves around the x_1 -axis it also revolves around its own cer in such a way that as one revolution around the x_1 -axis is complete becomes D_1 , D_1 becomes D_2 and D_2 becomes D_0 . Then the discs D_0 , D_1 , D_2 sweep out a solid torus D_2 which runs 3 times around the inside of the solid torus D_1 . Let D_2 be any continuous mapping from D_2 to D_2 which takes D_2 homeomorphically onto $D_2 \subset D_1$. Then $D_2 = D_1$. Define $D_3 = D_2 \cap D_1$ and in general $D_3 = D_1 \cap D_2$. Define $D_3 = D_2 \cap D_3$. Then Let $\sigma \in \Sigma_3$. Denote by inc_n the inclusion mapping $U_{n+1} \subset U_n$, for all $n \geq 0$, $j \geq 0$, denote by $\pi_j(\operatorname{inc}_n)$ the function induced by inc_n from $\pi_j(U_{n+1}, \sigma)$ to $\pi_j(U_n, \sigma)$. Now U_1 is a homotopy 1-sphere and since θ is a homeomorphism from U_1 onto $U_2 = \theta(U_1)$ it follows that U_2 and by induction each U_n , $n \ge 1$, is a homotopy 1-sphere. Theorefore each object of the system $$\{\pi_0(\text{inc}_n); \ \pi_0(U_{n+1}, \ \sigma) \to \pi_0(U_n, \ \sigma)\}_{n \ge 1}$$ is trivial and therefore the inverse limit of this system, which by appendix 21 is $\underline{\pi}_0(\Sigma_3, \sigma)$ is trivial. Again each object of the system $$\{\pi_1(\operatorname{ine}_n); \ \pi_1(U_{n+1}, \ \sigma) \rightarrow \pi_1(U_n, \ \sigma)\}_{n \geqslant 1}$$ equals $\pi_1(S^1, p_0) = Z$, the group of integers under addition, and for each $n \ge 1$, $\pi_1(\operatorname{inc}_n)$ is the homeomorphism from $\pi_1(U_{n+1}, \sigma) = Z$ to $\pi_1(U_n, \sigma)$ = Z, which takes $j \in Z$ to $3j \in Z$. Therefore the inverse limit of the latter system, which by appendix 21 is $\underline{\pi}_1(\Sigma_3, \sigma)$ is $\bigcap_{n \geqslant 1} 3^n Z$ which is trivial. We take the point of view that $\pi_1(U_0, \sigma) = 0$ and $\pi_1(U_n, \sigma) = 3^{n-1}Z$ $\subset \pi_1(U_1, \sigma) = Z$, for all $n \ge 1$. An inward 1-mapping ξ of (Σ_3, σ) is a sequence $\{\xi_j\}_{j\geqslant 0}$ of continuous mappings ξ_j from S^1 to R^3 such that given any $N \in J^+$, $\xi_j(S^1) \subset U_N$ for almost all j and thus the homotopy class, $\langle \xi_j \rangle$ of ξ_j in U_1 is an integer a_j divisible by 3^N for almost all j. Consider the set of sequences $\{a_j\}_{j\geqslant 0}$ of integers a_j which for each $N \in J^+$, are divisible by 3^N , for almost all j. There is an equivalence relation on this set, $\{a_j\}_{j\geqslant 0} \simeq \{b_j\}_{j\geqslant 0}$ iff there is an $M \in J^+$ s.t. $a_j = b_j$, for all $j \ge M$. Denote the class of $\{a_j\}_{j\geqslant 0}$ by $\langle \{a_j\} \rangle$. After partitioning inward 1-mappings by the inward homotopy relation we see that $I_1(\Sigma_3, \sigma)$ is the set of classes of such sequences of integers with addition $\langle \{a_j\} \rangle + \langle \{b_j\} \rangle = \langle \{a_j + b_j\} \rangle$. Since $I_1(\Sigma_3, \sigma)$ is abelian $\mathrm{Id}_1 * A_1^{-1}$ can be written $\mathrm{Id}_1 - A_1$ and $\mathrm{Im}(\mathrm{Id}_1 - A_1)$ is a subgroup of $I_1(\Sigma_3, \sigma)$ and so in this particular case $\underline{x}_0(\Sigma_3, \sigma) = I_1(\Sigma_3, \sigma)/\mathrm{Im}(\mathrm{Id}_1 - A_1)$ is also a group. To show that $I_1(\Sigma_3, \sigma)$ and $\underline{x}_0(\Sigma_3, \sigma)$ are both non trivial it is necessary only to show that $\underline{x}_0(\Sigma_3, \sigma)$ is non trivial. We will show that there does not exist $\langle \{a_j\} \rangle \in I_1(\Sigma_3, \sigma)$ such that $(\mathrm{Id}-A_1)(\langle \{a_j\} \rangle) = \langle \{a_j-a_{j+1}\} \rangle = \langle \{3^j\} \rangle \in I_1(\Sigma_3, \sigma)$. Suppose such an $\langle \{a_j\} \rangle$ does exist then we can find $M \in J^+$ s.t. $a_j-a_{j+1}=3^j$, for all $j \geqslant M$. Then for all p-1>M we get, $$a_M - a_p = \sum_{j=M}^{p-1} (a_j - a_{j+1}) = \sum_{j=M}^{p-1} 3^j = \frac{1}{2} (3^p - 3^M) \ .$$ Thus $3^p - 2a_p = 2a_M + 3^M$, for all p > M + 1, and $2a_M + 3^M \neq 0$ since 3^M is not divisible by 2. Chose $N \in J^+$ s.t. $2a_M + 3^M$ is not divisible by 3^N . Let p be so large that p > N and a_p is divisible by 3^N . Then 3^N divides $3^p - 2a_p = 2a_M + 3^M$, which is a contradiction. To sum up we have shown that, $\underline{\pi}_0(\Sigma_3, \sigma) = 0$ and $\underline{\pi}_1(\Sigma_3, \sigma) = 0$ but none of the other three terms in the low dimensional sequence of theorem 30 is trivial. We remark that if $a \in S^n \Sigma_3$, the *n*'th suspension of Σ_3 , then the exact sequence of theorem 30 beginning with $\underline{\pi}_{n+1}(S^n \Sigma_3, a)$ is the sequence we have just described. **20.** Remark. If (X, A, x) is a pointed pair of compacts contained in I^{ω} , then we can develop 3 long sequences $\underline{\pi}(X, A, x)$, I(X, A, x) and $\underline{\pi}(X, A, x)$. icm[©] and then, as in theorem 18, we can develop a 5 term exact sequence of long sequences and commutative ladders. $$0 \rightarrow \pi(X,A,x) \rightarrow I(X,A,x) \rightarrow I(X,A,x) \rightarrow S^3\underline{\pi}(X,A,x) \rightarrow S^3\underline{\pi}(X,A,x) \rightarrow 0$$ where if C is a graded module then S^3C is that graded module with $(S^3C)_n = C_{n-3}$. $\underline{\pi}(X, A, x)$ is exact (see [3]) and it is easy to show that I(X, A, x) is exact. Using this set up it is possible to prove that if (X, A, x) is a movable pointed pair of compacta then $\underline{\pi}(X, A, x)$ is exact. The concept of movable compactum was defined by K. Borsuk in [2]. **21.** APPENDIX. For each $n \ge 0$, $\underline{\pi}_n(X, x)$ is the inverse limit L of the system
$\{\pi_n(\operatorname{inc}(U, U')); \pi_n(U, x) \to \pi_n(U', x)\}_{U \subset U', U, U' \in \operatorname{Nhd}(X)}$ where for $U \subset U'$ both neighbourhoods of X inc (U, U') is the inclusion mapping $U \subset U'$. Proof. If f is a continuous mapping from (S^n, p_0) to (U, x) denote its homotopy class by $[f] \in \pi_n(U, x)$, then L is the set of lists $\{[a_U]\}_{U \in \text{Nhd}(X)}$ where for each $U \in \text{Nhd}(X)$, $[a_U] \in \pi_n(U, x)$ and if $U \subset U'$, U, $U' \in \text{Nhd}(X)$, $\pi_n(\text{inc}(U, U'))([a_U]) = [a_{U'}]$. If $\{U_n\}_{n\geqslant 0}$ is a nested sequence of neighbourhoods of X such that $\bigcap U_n=X$ there is a morphism $$\Psi; L \rightarrow \pi_n(X, x), \{[a_U]\} \rightarrow \langle \{a_{U_n}\} \rangle$$ which has as 2 sided inverse the morphism $$\Phi$$; $\underline{\pi}_n(X, x) \rightarrow L$, $\langle \{a_n\} \rangle \rightarrow \{[b_U]\}$ where b_U is defined as follows. Given $U \in \operatorname{Nhd}(X)$ there is an $N(U) \in J^+$ such that a_n is homotopic to a_{n+1} in U, for all $n \geqslant N(U)$, define $b_U = a_{N(U)}$. Q.E.D. #### References - K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), pp. 223-254. - [2] On movable compacta, Fund. Math. 66 (1969), pp. 137-146. - [3] J. B. Quigley, Shape Theory, Approaching Theory and a Hurewicz Theorem, Thesis, Indiana University, Bloomington 1970. - [4] Equivalence of Fundamental and Approaching Groups of Movable Pointed Compacta, to appear. DEPARTMENT OF MATHEMATICS UNIVERSITY COLLEGE Dublin Reçu par la Rédaction le 22. 12. 1970 ## The realization of dimension function $d_2(*)$ by #### J. C. Nichols (Radford, Virginia) K. Nagami and J. H. Roberts [6] introduced the metric-dependent dimension function d_2 and posed the following question, which we will call the Realization Question. Let (X, ϱ) be a metric space with $d_2(X, \varrho) < \dim X$ and let k be an integer with $d_2(X, \varrho) \leq k \leq \dim X$. Does there exist a topologically equivalent metric σ for X with $d_2(X, \sigma) = k$? For each Cantor n-manifold (K_n, ϱ) with $n \geq 3$, Nagami and Roberts described a subset (X_n, ϱ) with the property that $d_2(X_n, \varrho) = [n/2]$ and $\dim X_n \geq n-1$. This paper answers the above question in the affirmative for these spaces (X_n, ϱ) where $K_n = I^n$ (n-cube). The question remains unanswered for arbitrary metric spaces. DEFINITION. Let (X, ϱ) be a non-empty metric space and let n be a non-negative integer. $d_2(X, \varrho) \leqslant n$ if (X, ϱ) satisfies the condition: For any collection $C = \{(C_i, C'_i): i = 1, ..., n+1\}$ of n+1 pairs of closed sets with $\varrho(C_i, C'_i) > 0$ for each i = 1, ..., n+1, there exist closed sets B_i , i = 1, ..., n+1, such that (i) B_i separates X between C_i and C'_i for each i = 1, ..., n+1 and (ii) $\bigcap_{i=1}^{n+1} B_i = \emptyset$ for each $$i = 1, ..., n+1$$ and (ii) $\bigcap_{i=1}^{n+1} B_i = \emptyset$. If $d_2(X, \varrho) \leq n$ and the statement $d_2(X, \varrho) \leq n-1$ is false, we set $d_2(X, \varrho) = n$. The empty set O has $d_2(O) = -1$. DEFINITION. Let X be a topological space, $g: X \times X \to R$ a real valued function, and let A and B be two subsets of X. Let $$g(A, B) = \inf\{|g(x, y)|: x \in A, y \in B\}.$$ This real number g(A, B) will be called the g-distance between A and B. DEFINITION. Let I^n denote the Euclidean n-cube, let $p, q \in I^n$ and let $A \subset I^n$. We define Join(p, q) to be the collection of all the points ^(*) This work is taken from the author's doctoral dissertation at Duke University. I would like to thank Dr. J. H. Roberts for his guidance in the preparation of this paper. ^{14 -} Fundamenta Mathematicae, T. LXXVII