Table des matiéres du tome LXXVII, fascicule 3

Pages

J. B. Quigley, An exact sequence from the nth to the (n—1)-st funda-~

mental EIOUD . .« .« o 4 o e - e e e e e e e e e e e e e e e e 195-210
J. C. Nichols, The realization of dimension functiond,. . . . . . . . 211-217
C¢. F. Kelemen, Recursions with uniquely determined topologies . . . . 219-225
P. Holick§, A supplement to'the paper “Differentiable roads for real

funetions” by J. G Ceder . . . . . . . . oo e e e 227-234
M. Moszythska, On shape and fundamental deformation retracts IT . . . 235-240
R. H. Overton, Cech homology for movable compacta . . . . . . . . 241-251
W. White, A fixed-point theorem for homeomorphisms of E*. . . . . . 253-255
J. Ketonen, Ultrafilters over measurable cardinals . . . . . . . . . . 25'7-269
R. W. Heath and R.E. Hodel, Characterizations of o-spaces . . . . 271-275
D. W. Curtis, Total and absolute paracompactness T 277-283
E. D. Tymchatyn and J. H. V. Hunt, The theorem of Miss Mullikin-

Mazurkiewicz-van Est for unicoherent Peano spaces . . . . . . . . . 285287
M. M. Zuckerman, Natural sums of ordinals . . . . . . . « . . . . . 289-294
B. Weglorz, Some remarks on selem_ ........... 295-304

]

Les FUNDAMENTA MATHEMA’MWblient, en langues des congrés

internationaux, des travaux consacr(s & la Théorie des Ensembles, Topo-

logie, Fondements de Mathématiques, Fonciions Réelles, Algébre Abstraite
Chaque volume parait-en 3 fascicules

Adresse de la Rédaction et de I'Echange:
FUNDAMENTA MATHEMATICAE, Sniadeckich 8, Warszawa 1 (Pologne)

Le prix de ce fascicule est 4.35 §

Tous les volumes sont & obtenir par Pintermédiaire de
ARS POLONA-RUCH, Krakowskie Przedmieécie 7, Warszawa 1 (Pologne)

DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

icm

An exact sequence from the nth to the
(n—1)-st fundamental group

by
J. Brendan Quigley (Dublin)

0. Introductory remark. For each pointed compactum (X,z)
contained in the Hilbert cube we define, in each dimension n > 0, the
approaching group z,(X , x) and the inward group In(X, ). Using eategory
theory we show that (X, %) and I,(X, x) depend only on the homotopy
type of (X, #). We define an endomorphism from I,(X,x) to I.(X,x)
whose kernel is the nth fundamental group, (X, x) of Karol Borsuk.
There is an epimorphism from g, ,(X,z) to =z, (X, ) whose kernel
equals the coimage of the above endomorphism. Thus there is an exact
sequence of groups and homomorphisms '

0—>m,(X, 2) > I X, ) > I X, Z) =7 ( X, &) >m, (X, 2)>0.

We work out the above sequence in full when # = 1 and X is the 3-adic

solenoid ZXj. . .
Consider the system of neighbourhoods U of X in the Hilbert Cube

with inclusion mappings. It is known that m,(X, #) can also be obtained

by applying the nth homotopy functor =, to this system and passing
to the inverse limit, i.e.

(X, z) = limm, (U, z) .

1. Notation. B, R, R*,J,J*, I, 1% 8% " p, denote respectively,
the real numbers, Euclidean n-space, the non negative real numbers,
the integers, the non negative integers, the closed interval [0,1], the
Hilbert cube, the n-sphere, the n-ball and the point (1,0,0,..,0)
e 8" C B™,

For each n > 0 let ¢, be the identification mapping from Ix §" to
Ix 8™(Ix {po}) v ({0,1}x 8% to §**' and let h, be a homeomorphism
from I x 8™(Ix {po})w ({0,1}x 8 to 8"** such that

B o gu((I X {Bo}) v ({0, 1} x 8%) = {pg} C 8**1.

13 — Fundamenta Mathematicae, T. LXXVII


Artur


196 J.B. Quigley

Tor each n> 0, let 7, be the identification mapping from 8"X I to
S*x I/8"x {1} and let k. be a homeomorphism from 8"x I/8™x {1}
to B™' such that kyo (8" % {1}) = {a}, where a=(0,0,...,0,0) the
centre of E*t1, For each n > 1, let s, be a continuous mapping from E*
t0 8" such that s,(8") = {p,} and s, maps E"— §"~' homeomorphicaly
onto 8"—{py}.

We remark that, for each n > 1, (8% p,) is a homotopy cogroup
with a continuous comultiplication ma,ppmg y" from (8", p,) to (8™ ,po)v
v (8", p,) and a continuous homotopy inverse mapping ¢" from (8% p,)
to (8%, p,). We assume that for all #» > 1, +"** and ¢t are derived by
suspending »” and y™ In other words, for all n> 1, (¢,e) eI x 8™

(1.1) W10 by o gu(t, €) = ((hn °gn)y (hn o QN))(t; Vn(g)) ’
(1.2) Yo B o gu(ty €) = T o Gt v™(0)) -

If f, ¢ are continuous mappings from 8" to a topological space Y, then
fX g denotes the continuous mapping (f, ¢) c+" from 8" to ¥ and f!
the continuous mapping f ey, also from 8" to XY.

It Y and Z are sets, 6 a function from ¥ X Z to I” then for each
- ¥y ¥ we denote by 0, that function from Z to I® which carries each
zeZ to 0(y,2) eI” and for each ze¢Z we denote by 0 that function
from Y to I® which carries each 4 ¢ ¥ to 0(y,2) ¢ I°. As an example of
this notation, if ¢ is a continuous mapping from R* x 8”x I to I® then
for se R, tel, ps is that continuous mapping from 8" to I® which
carries ¢ ¢ 8* to ,p.(e) = (s, e,1) e I°.

Let P be a topological space. If » and 1 are continuous mappings
from Px 8" to- I” then we denote by x»+ 1 and A~ respectively the
continuous mappings from P x 8" to I? such that (x*A)p= %p* ip
and (A7) = (Ap)7% for all p e P.

I K is a category, the objects of K are denoted by ObXK, the
morphisms by Mor K and for X, ¥ ¢ ObK the morphisms of K with X as
domain and Y as codomain are denoted by Morg(X, ¥).

The set of compact neighbourhoods of the compactum X C I® are

denoted by Nhd(X).
2. DEFINITION. Three categories C, g, 0.
We will define 3 categories C, 0 and € which have the same objects

(21) ObC=0bC=0b(={(X,n)| veXCI% X is compact}.

The morphisms of ¢ are the set of base point preserving continuous
mappings between pointed compacta with the usual composition. The
identity continuous mapping at (X, «) is denoted Td x4 -

The objects of C are defined above. We define the morphisms and
composition in ¢ as follows. A continuous mapping f from R x I® to

icm®

An exact sequence from the n-th to the (n—1)-st fundamental group 197

I°isa member of Morg((X , %), (¥, )} and is referred to as an approaching
mapping from (X, ) to (¥,y) if

(2.2) FETx {a}) = {3},

(2.3) given any 'V ¢ Nhd(Y) there is a U ¢ Nhd(X) and an r ¢ R+ such
that f([r, co) X U)CV.

The composition gf in € of
feMorg((X, @), (¥, ) and g€ Morg((Y, 9), (Z,2))

is defined by gf(r, 1) = g(r (ryi ) )) for each (r, i) e R* X I° As gf is easily
seen to satisfy (2.2) and (2. ) above gfeMorC((X %), (Z,2). No con-
fusion will result if we denote by Idy,, “the 1dent1ty element of
Mory((X, #), (X, @)). Idxq (r,4) =1, for each (r,1) e R*x I°

‘The category C was first defined in [1] by K. Borsuk. We now de-
seribe € in a manner suited to our purposes. Ob 0 has been defined above.

Denoting by f| ;J* X I*—~I° the restriction of the continuous mapping
f; Bt x I°*>I°,

(2.4)  Morg((X, 2), (Y, ) = {f] ;5 eMorg((X, 2), (¥,9))}.

Compesition in ¢ is (g])(f]) = (gf)]. Clearly Id . is the identity element
of More((X; 2), (X, m)) and no confusion will be caused if we simply
denote this morphism by Idx,..

We will also find useful the original definition of Mor,((X, #), (X, )
given by K. Borsuk in [1]. A fundamental sequence f “from (X , &) to
Y, y) is a sequence f = {fn},5, of continuous mappings f, from I° to I®
such that fu(x) =y for all #» > 0 and such that given any V e« Nhd(Y)
there is & U ¢ Nhd(X) and a j e J* such that f(U) CV for all # > j. From
this point of view composition in C is defined

(2.5) v (gfin=gnofu.

3. DEFINITION. Homotopy in O, ¢ and C.

Two morphisms f, g e Mory((X, #), (¥,y)) are said to be pointed
homotopic if there is a continuous mapping H from X x I to ¥ such that
H=f H=y¢ and H({z}xI)={y}. In this case we write H;f~yg
Pointed homotopy is well known to be an equivalence relation on the
morphisms of ¢ compatible with composition in (. The class of f ¢ MorC
is denoted by [f]. There is therefore a category JC with ObJ( = Ob0
and morphisms classes of morphisms of €. Composition in J&0 is [¢] ° [f]
=[gof] and [Tdyx,] € Morgq((X, »), (X, z)) is the identity element.

13*
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Two morphisms f,geMorg((X,m)(Y,y)) are said to be wvointed

approaching homotopic if there is a continuous mapping H from Bt x I*x I
to I° such that

(3.1) H=Ff, H=y,
(3.2) H(R*x{z}xI) = {y},

(3.3) given any V e Nhd(¥) there is a U ¢ Nhd(X) and an 7 ¢ R+ such
that H([r o0) X U X Z)CV

In this case we write H; f~ ¢ (approaching). Pointed approaching homo-
topy is an equivalence relation on the morphisms of C. If ’

f € MOI‘S(”V, w): (Xa m))7 g, Te EIOI‘S((Xz ﬂ/‘), (Y’ y))7
k e Moro((Y, v), (Z, 2))

and H; g~ h (approaching), then Hf; gf = hf (approaching), and kH;
kg ~ kh (approaching) where Hf and kH are continuous mappings from
R*xI?xI to I* defined by «(Hf) = (:H)f and (kH) = k(:H), for each
tel. Thus the equivalence relation of pointed approaching homotopy
is compatible with composition in €. Denoting the pointed approaching
. homotopy class of f by [f] we may form a new catégory J0 whose objects
are the same as those of € and whose morphisms are classes of morphisms
of ¢. Composition in ¥C is [g] o [f]1=[gf]. The identity element of
Morm,((X z), (X, ) is [Tdxqyl 80 is called the pointed approaching
homotopy autegovy '

We next define homotopy on C and use this concept of homotopy
to describe the (pointed) fundamental category. These ideas were first
defined in [1] by K. Borsuk.

Two morphisms f, g« Morg((X,2)(¥,y)) are said to be poir
fundamentaly homotopic if there is. a continuous mapping H fr
JtxI*x I to I such that

(3.4) H=f, H=y,
(3.5) H(IJ* x {@}x I) = {y},

(3.6) given any V ¢Nhd(Y) there is a U eNhd(X) and j eJ* such
that Ho(U X I)CV, for each n > j.

In this case we write H; f~ ¢ (fundamental). Fundamental homotopy
is an equivalence relation on the morphisms of ¢ compatible with the
composition of ¢ and the class of f is denoted [f]. As above we get a new
category XC called the (pointed) fundamental category, Ob3C = ObC,
morphisms in JC are classes of morphisms in ¢ and eompositi-on in Je_g

is [g] < [f]=[af].
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Two equivalent objects of JC are said to have the same shape.

4. Remark. Comparison of B0, ¥ and KC.

If (X, ), (¥,y) e ObC and if f is a continuous mapping from R* x I°
to I® such that fr= @; I? 1%, for all » e R and ¢|x = 0 a continuous
mapping from (X, ) to (Y,y) then we say that fis generated by 6. Such
a mapping f is an approaching mapping from (X, ) to (¥,y) since
fR* X {&}) = {p(2)} = {y} and if V ¢ Nhd(Y) there is, by the continuity
of ¢, a U e Nhd(X) such that ¢(U) = f(R*xU)CV. Since any continu-
ous mapping 0 from (X, #) to (¥, y) can be extended to a continuous
mapping ¢ from I° to I® it follows that each 6 e Morg((X, #), (X, )
generates at least one f sMoro( (X, 2 (X, 9)

It is clear that Idx,e Mor ¢ genelates Idx ;) ¢ MorC and that if
6  Morg((X, 2)(X, %)), 0" e Mory((¥Y,y),(Z,2) generate feMorC((X »),

,J)) and ¢ eMorc((X #), (Y,y)) respectively then 6 e B e Mor C
genera.tes gf e Mor(. Moreover if a,feMorg((X,®),(Y,y)) generate
a,b eMorc((X x), ¥ ,y)) and if H; a~/3 then there is a continuous
mapping K from I°x I to I? such that K = ao, K = b, and K|x,; = H.
Defining the mapping T from R* x I°x I to I® by Ly = K, for all r ¢ R*,
then using the compactness of X it is easy to see that L; a ~b (approaching).

From the above observations it follows that there is a functor JE
from JeC to Je(C taking (X, x) e ObJl to XE(X, )= (X, z)e Ob(X0)
and [B]eMorJCC' to JE([0]) = [f]eMoriel, where XE( [6] [f1 is
well defined to be the approaching homotopy class of any mapping f
generated by 6.

Tt is immediate from definition 2 above that there is a functor R
from ¢ to C carrying (X,2)eObg to R(X,x) = (X,2)eObC and
feMorC to R (f)y=f| eMor(C. By the definition of Mor( in (2. 4) above
it is clear that R considered as a function from the set “Mor 0 to the set
Mor C is surjective.

Tt H; 5T~ ¢ (approaching), then denoting by H| the restriction of H
to J+><I“’><I it is clear that H|;f|~ g| (fundamental). Thus there is
a funetor JeR from JQ to B( taking (X,2)e Ob¥d to ¥R(X, )

= (X,2)eOb3C and taking [f} eMorde( to XR([f])= R(fN =11
e MorjeC. The sur;ectweness of R above implies that JR cons1dered as
function from the set MordeC to the set MordeC is surjective.

5. DEFINITION. The approaching functor.

A continuous mapping & from R*x 8* to I® is said to be an ap-
proaching n-mapping of (X, x) e ObdeQ iff
(5.1) E(RT X {po}) = {u}.
(5.2) given V e Nha(X) there is an r ¢ B such that £([r, oo) X s CV.
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If £ and & are approaching »-mappings of (X, #) then we say that & is
approaching homotopic to & iff there is a continuous mapping & from
R¥x §*x I to I such that

(5.3) @ =&, DP=¢,

(5.4) ' DR x {po}x I) = {z},

(5.5) given V e Nhd(X) there is an r ¢ RY such that &([r, co) X 8"x
xI)CV. '

TIn this case we write @; £ ~ & (approaching). Approaching homotopy is an -

equivalance relation on the set of all approaching n-mappings of (X, z)
and the class of £ will be written <£). The set of classes of approaching
n-mappings of (X, #) will be denoted m.(X,z),n > 0.

We denote by ¢ the approaching »-mapping of (X, ) such that
¢(RT*x 8™ = {a}. If £ and 7 are approaching n-mappings of (X, x)
then &' and £ % % are also approaching n-mappings of (X, ). If &~ &
(approaching) and 5~ n' (approaching) then ¢ * n=~ & * 5 (approaching).
Thus, when » > 1, we can compose classes of approaching mappings as
follows, (&) * {n)> = <Exn). If £ & and &’ are approaching #-mappings
of (X, z) the following remarks are easily proven.

(5:6) - Ey* (o) = <&, nzl,
B0 EFED ==, n=l,
{8.8) « (KO *LED)* EHY = * KEX*ED), n=1,
(8.9). Eyx Y =& *<E, . n2.

Thus n,;(X m) is a set. group or abelian group according as n=20,1
or n > 2.

If £ is an approaching »-mapping of (X, ) and f 5 Moro((X xz), (Y. ))
there is & continuous mapping f& from R* x 8" to I¢ defined by. ff(r a)
= flr, &(r, a)), for each (v, a) ¢ R* x 8*. We observe that if V e Nhd(Y)
there is a U « Nhd(X) and 7, « Rt such that J ([, o0) X V) CV and there
is an r, e RY such that &([r,, co)x 8§ C U. Thus

f&([ri+rs, o0 XS”)CJ"(DU 00) X &([rz, o0) X 8")) Cf([ry, ) x V) C V.

From these 2 obServatlons it follows that f€ is an approachlng 7 -mapping
of (Y, y).

It is easy to see that if £ and 5 are approaching #-mappings of (X, w),
fsg sMOlC( (X, o)(X,9), k eMorC((Y, ¥), (Z, 2)); then
(5.10) . F(E*m) = (f&) = (fn).

C(11) &£~ n (approaching) implies ¥;f&é~ fn, where ¥ is defmecl
by ¥ = f(;®), for each e I.
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(5.12) H;f~g (approaching) implies that y;f&~ g& (approaching)
where y is defined by e = f(:H), for each teI.

(5.13) (hf)& = R(fE) .

From the above it follows that z, is a functor from J¢ to the
category of sets, groups or abelian groups according as n =0, 1 or n 3> 2.
For [f] eMOI‘g@g((X %) (Y7 J)) & €EH(X m):

an([fD(KED) = {fE) e mn(Y, 9)

Since ms is a functor from KL it follows that m.(X, #) is invariant
up to equivalence of objects in the approaching category. Composing
the functor m, with the functor J6E of 4 above to obtain the functor
7y o JOH from JeC we see that (a fortiori) ma(X,x)= @ RE(X, ) is
invariant up to homotopy type of pointed compacta.

6. DEFINITION. The inward funcior.
A continuous mapping £ from JT x §* to I is said to be an inward
n-mapping of (X, ») e Ob3C iff
(6.1) EWJT X {po}) = {=},
(6.2) given V e Nhd(X) there is a j, e J* such that £,(8")CV, for all
; J=do- h
Tf £ and & are inward n-mappings of (X, «) then we say that £ is

inward homotopic to & iff there is a continuous @ from Jtx 8"x I to I®
such that

(6.3) B=E, BO=¢,

(6.4) : D (JF X {poy X I) = {a},

6.8) given V e Nhd(X) there is & jo eJ*+ such that @;(8"x I)CV, for
all § 2 Jo-

In this case we write @; &~ £ (inwardly). :
The set of clagses of inward n-mappings will be denoted by In(X, #),
for each » 3 0. As in B ’LbOVG I(X, @) is a set group or abelian group
according as n = 0, 1 or # 3= 2. The identity element of I,(X, #) is depoted
by <¢) where ¢(j, €) = a, fo: r1411 (j, €) e J* x 8™ Multiplication in I X, »)
is (&) * == (& * ).
<I>f E<717s> an <1nw;71d n-mapping of (X, ) and f e Moro((X, »), (¥, 9))
there is an inward n-mapping f¢ of (¥,y) defined by (f€)n = fn o &n,
for each n > 0. Thus proceeding as in 5 above we see that for each n > 0
there iy a functor I, from the category JeC to the category of gets, groups
or abelian groups according as n= 0, 1 or n =2, where I.([f])(K&)
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= (f& for each [f]eMorgg((X, @), (¥,y)), <& ¢In(X,s). Since I, is
a functor from JC we see that I.(X, z) is shape invariant.

7. DEFINITION. The fundamental functor.

The concept of approximative n-mapping of (X, #) or approximative
sequence of (8", p,) towards (X, #) was defined as follows by K. Borsuk
“A sequence of maps &; (8% po)— (1%, 2) will said to be an approximative
sequence of (87, p,) towards (X, o) iff, for each neighbourhood V of X
the homotopy &x ~-£xy, in (V, 2) holds for almost all %” (see [1], (13.1)).
Clearly each approximative sequence of (8", p,) towards (X, @), (or ap-

- proximative n-mapping) is an inward #-mapping and in [1] it is shown
that =~

(71) & is an approximative n-mapping of (X, #) and &~ £ (inwardly) )

implies that & is an approximative n-mapping,

(7.2) £ is an approximative n-mapping of (X, x) and f eMorc((_X y &)y

(¥, y)) implies f¢ is an approximative »-mapping of (¥, y),

(1.3)  &,7n are approximative n-mappings of (X,#), n>1 implies
that &+ 9 is an approximative n-mapping of (X , @),

Thus there is a functor m, from O to the category of sets, groups
or abelian groups according as n = 0,1 or n>> 2 where for each n=0
and each (X,s) eOb(l, mu(X, ) is that subset of I,(X , ) such that
& emn(X, ) iff £ is an approximative n-mapping of (X , %), and for
each feMoro_((X,w),(Y,y)), 7n([f]) is In([f]) restricted to ma(X, ).
@y is called the n-th fundamental functor (see [1]).

TIn [1] it is remarked that 7ty being a functor from JeQ (X , %) is
shape invariant. . -

An equivalent useful method of defining the concept of approximative.
n-mapping is as follows.

(74) An inwa..rd n-mapping & of (X, ) is said to be an approvimative
n-mapping of (X,#) iff there is an approaching n-mapping
7 of (X, x) such that Npexgn = &

In [3] it is s}mwn that, for all #> 0, #,(X, #) is the inverse limit
of the system with objects {m(U, )}y ennaxy and morphisms, induced

by inclusion between neighbourhoods. An indication of this proof is given
in Appendix 21. »

8. Bemark. From now on (X, ) denotes a fixed compactum with
base point, contained in I
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9. DEFINITION. The homomorphism in; mn(X , @)+ I4(X, 7).
For all »> 0 we denote by ¢, the inclusion mapping iy; X, x)
CIu(X,®). When n 3> 1 this is a homomorphism between groups.
10. DEFINITION. Advancing a function.

Let X and Y be sets and f a function from J+ x X to Y. Then there
is a function A (f) also from J* X X to ¥ which takes (n,t) eJ* x X to
A(f)(n, )= fln+1,t) e ¥. A(f) is called the advancement of f.

11. DEFINITION. The advancing endomorphism, Ay; InX, 2)~ I(X , z).

Let £ and n be inward n-mappings of (X, ). We observe that,
when n 2 1, A(&xn)= A ()% A(n), and, forall n > 0, if @; & ~ 5 (inwardly)

then A (D); 4 (&) ~ A(n) (inwardly). Thus, for each n .0, there is a func-

tion Aq, from I,(X,») to I.(X, ), which takes each (&) eIn(X,x) to
An(CEY) = (A(E)Y e In(X, ) and which when »>1 is an endomorphism
called the n-th advancing endomorphism of (X, z).

12. Remark. For each n > 0 we denote by Id, the identity function
from I (X, x) to I(X, 2), Idu({E)) = (&, for (&) e In(X, x). In the case
n'> 2, In(X, ) is abelian and 80 Id,— 4, is 2 homomorphism from I,(X, x)
to In(X, @).

In the case #n = 1 there is a function which we denote by Id, » A;*
from I,(X,#) to I,(X, ) which takes (&) eI,(X,x) to Id, * ATY(<(E))
= (& * (AKE) e I(X, ). Since I,(X, #) may not be an abelian group
Id, « A7 is not in general a homomorphism.

13. DEFINITION. The homomorphism On; In(X , ) >z, (X, ).

Let & be an inward #-mapping where # > 1. Denote by B(¢) the
continuous mapping from B+ x 8" to I° which, for all j eJ* a‘nd (r,€)
e[j, j+1]x 8" takes (r,e) to B(E)(r,e) =& o by © gualr—js€) € I"
By the definition of h,_; and ¢, _,, in notational remark 1, there is no

ambiguity in this definition of B(£). By (6.5), B(£) is an approaching ’

(n—1)-mapping of (X, »).

Let & and 7 be inward n-mappings for n > 2, then, by 1.1, B(£ * u)
= B(£) x B(n). Again if £ and » are inward n-mappings for » > 1 and
®; £~ 7 (inwardly) then defining the continuous mapping ¥ from R* X
X8I I by W= B(®), 0<t<1, we gee that ¥, B(§)~B(n) (ap-
proaching). Thus there is, for each # > 1, a function d, from I,(X, z)
to m, (X,s) which takes each <& eI (X,2) to 8((E) = <(B(£)>
egn:l(X ,®). Moreover, when n > 2, 0, is a homomorphism between
groups.

14, DEFINITION. The homomorphism yu from my(X, @) lo z(X, ).
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Tor each n 3> 0, there is a function y, from (X, @) t0 (X, )
which assigns 0 each (&> € (X, @), Elrrxgn) € TlX, ©). By (7.4) yy i
surjective, 3> 0. For n > 1, yx is a homomorphism between groups.

15. LeMMA. When n > 2, Kernel (Idn— An) = ma(X, ). Also, Kernel
{Id, * A7) = m(X, ).

Proof. When 2 > 2,

(&Y e Kernel (Idy— An)

(Ey = An(<E))-

£~ A (&) (inwardly).

There i 2 continuous mapping @ from J* x §*x I to I* 8.t (@ = §,
& = A(£) and given V ¢ Nhd (X) there is an ¥ ¢ J* 5.5. §4(8" x I) CV,
for all j = V. .
iff  Given ¥V ¢ Nhd(X), there is an N e J* s.t. & is homotopic to (4(£))
=g, in V, for all j > N.

& is an approximative n-mapping (see 8 above).

(&Y emn( X, ).
The case n = 1 is dealt with in a similar fashion, Q.E.D.

==

16. LumwmA. Kernel(y, ,) = Image(d,), for all n = 1.
Proof. Let (&) e Iy(X, ). Then

P 0 <ED) = PacalCB(E)Y) = B(&)rexsns-
But

B} X 8" =& o hpy o o a({f— 5} x 8"7)
= &0 hy_g 0 g 1({0} X 8"71) = &({pe}) = {#}-

Thus B(&)|pxga=1¢ and yp, ;o 0u(<E>) = (> =0 em, (X, ). This
shows that Image(d,) C Kernel(y,_,).

On the other hand, let (£) ¢ Kernel(y,_,). Then v, _,({&>) = (& exgn-1
= {¢) em, (X, »). Thus there is a continuous mapping @ from J* X
X8I to I° 8.4 @; &|puygna~ ¢ (inwardly). For each j = 0 let g
be a retraction from [j,j+11xI to ([j,j+1]x{0}) v ({j,j+1}xI).
Let o e that refraction from R* X I'to (Bt x {0}) v (J* x I) 8.5 @lyspuxs
=gy, for all 0. Let p be that retraction from R*x & *xI to
LR* X 8 % {0}) u (J* x 8*7*x I) which takes (s, ¢,1) e RY X 8 x I to
3(s,0,0) = (', £,1') € (B* X 8" {0}) w (J* X §"x I) where (5', ') = o(s, 1)
Now let ¥ be that continuous mapping from (R x 8 'x {0}) v
v XETIRI) 0 1P 8b. Plpicgnngg= £ and Pl gy = 0. Let
I'=Wop, Then, denoting ,I" by %, I'; é~ 7 (approaching). Thus (&)
= em, (X, 2).

icm®
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Next we will define an inward n;mapping n' of (X, x) 8.b. B(y') = 1.
Since  7lpixgrr = llrxenr = Fo @lpygiayg = Plrixsaxm =@ = ¢
there is, for each j>>0, an unique continuous mapping 6, from
Ix S Ix {po} v {0,1}x 8"* to I° st for each (f,¢)eIX8, ,,
6, ° 4a(t; €) = n(t4+], ¢). Define the continuous mapping »’ from J+ x §»
to I® by nj= 0; o hyt;, for all j eJ*. Since 5 is an approaching (n—1)-
mapping of (X, #) it follows from (5.2) that ' is an inward 7-mapping
of (X, ). Moreover, for each jedJ¥, given (r,e)e[],j+1]1x R LanR

B(n')(r, €)

=1y hyy © Guy(r—1J, €) by definition of B(n') (see 13),
= 0;0 Rty e hyy o g a(r—F,€), by" definition of %', above
= 00 guafr—1J, €)
=n(r—j+j,e,
= q(r,e).

Thus B(n') = 7.

Therefore 0a(<n'>) = <B(n')) = {n> = (&). Therefore Kernel(y,,)

C Image(dy). Combining this with it’s converse above, we have our
result. Q.E.D.

by definition of 6, above

. 17. LemmA. For all n3> 2, Kernel(s,) = Image(Id,—A4,). Also,
Kernel (8;) = Image(Id, * A7™).
Proof. Let <& eIn(X,x), n>1. In all cases we will show that,
it = &4 (&)™, then du({(nd)= <B(n)> =0 e, (X, 2). Now ;= &; = &7}y,
for all j > 0. Thus B(z) is that continuous mapping from R* x 8§~ such
that, for all j eJ ™, '

(17.1) Bn)(r,e)= Ei o hyyy © ’(ln..;(z("'—“j), B) , for (r,e) elj,j+31x 8

and

(7.2) B(n)(r, €)= &y 0 hyy o Qn_l(z,(jﬂwl), ¢,
for (rye) e[j+ %, +1]x 8"

Let {Vi}pes+ be a sequence of neighbourhoods of X in I such, that

Visa C Vi, for all ke J* and such that () Vi = X. Since ¢ is an inward
keJt .

n-mapping of (X, x) we can find a sequence of integers {j}yes+ tending
to infinity such that, for each keJ* and all 3> ju, £({j}x 8" CVi.
By 17.1 and 17.2,

(17.3)  B(y)([i—3,i+3IX 8")CVy, for all ke, i>Jk.
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Denoting the set {j+3| jeJ*} by Jt+4, we define a continuous
mapping @ from (R* x 87 u ((J*+3) X B") to I” by Blgixgns = B(y)
and ®((J++13) X B") = {#} CI°. By 17.3
(174) B([i—3, i+ 3x 8o {i—1, i+ PXE)CVe,  for all ixj.

Now the pair ([i—%, 4+ 31X B [i—§, i+ X 8" o {i—%, i+ 3} x BY

is homotopically equivalent to the pair (B, 8™). By 17.1 and 17.2 and
the definition of @, Dlj;_1 s 11x8m1 U fi— et Bixan corresponds to the continu-
ous mapping &' & from 8" to Vi, for all ¢ > jz. But &' % &, being
homotopic to the constant mapping from 8™ to Vi for all 4 = ji can he
extended to a mapping from E™* to Vi, for all ¢ > ji. Thus for each > 1
Oli g irfinsr1 0 (i—hi+Pxme CA0 DO extended to a continuous mapping ¥*
from [i—%, i+ 31X B* to I%, such that
(17.5) Pili—1, i+ 51X B CVy, for all i>jz.
Since [0, 31x 8" 1w {3} X E" is a retract of [0, 3]1x B, |, L1x8n-1 G GxEr
can be extended to a mapping ¥° from [0, {]x E™ to I°. Define the
continuous mapping ¥ from Rt X E" to I® by YPlggxan = P° and
Pliicpishixes = P for all > 1. Note that

(17.6) Pligrxsny o @rrhixam= P -

Let a, p, denote the set {(1—1)a-+ip,| 0 < t < 1} i.e. the line segment
from the center a=1(0,0,..,0) of E"to p,y ¢ S" . Let T be any continu-
ous mapping from R x E" to R*x E™ guch that

(A7.7)  Tlpexgn1o grepxpn 18 the identity continuous mapping.
(17.8)  TI([0, }]xX E") = [0, }]1x E",

T([i—%,i+ 31X E)=[i—%,i+3Ix B forallix>1
(17.9) - Tlopixam, 18 & retraction from [0y 3]xa, p, o

[0, $1x {po} v {3} X-GI—,—ZTO and Tl[i—-},i+}]xﬁ§

is a retraction from [i—},i+3}]Xxa, p, to

[i—%, i+ 31x {p} v {i—%, i+ 3} xa,p,, foralliz1.

Now

(17.10)  ¥o T(R*x {a}) o
CP(R*x b v (I +1)xa,p,)), by (17.9)
CO(B* X {po}) © (T +3) x B, by (17.6), (17.7)
=B)(R*X {p}) vO(J"+3)x B, by definition of &
= {a}, by definition of

B(n) and @ .
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Thus we may, without ambiguity, define a continuous mapping I

‘from RYx 8" I to I° by I'(s,e,t)=¥oT(s,k 1° Tasley 1)), for

) n~1

each (s,6,1) € Rt x 8" 'x I (#,_4, k,_, defined in notational remark 1).
By (17.6) and (17.7) and the definition of @, JJ'= ¥|pig11= B|piygna
= B(n). By (17.10) oI"= c. By (17.4), (17.8), I'[ji, o0) x 8 x I) C V.
Thus I B(n) =~ ¢ (approaching). Therefore & ({(n>) = B(n) = () =0
em, (X, a). Thus, Tmage(Tds—4,), in the case 7>2, and Tmage

(Idy * A7Y), in the case » =1, are both contained in Kernel (dx).
On the other hand, let (&) ¢ Kernel(dn), then there is a continuous
mapping @ from Rt x 8"x I to I* 8., @; B(&)~ ¢ (approaching). Since
O(R* X gt {1}) = {#} CI* we may deime a continuous mapping ¥
from Rt xE* to I® as follows. For each (p,e,?)eRtx 8" xI,
Wp, by © Tnales 1)) = P(p, €, 1). By (5.5), ¥ has the following property,

(17.11) given Ve Nhd(X), there is an ¥ eJ T s.t. ¥([§,j +1]1x BY CV,
for all j = N.
Since
P XA = BT X S {0) = B(E) (T X 8= E(T X {po}) = {3},

there is for each j e JJT a continuous mapping 7; from 8" to I® 8.5. 7j0 8,
= ¥, (see notational remark 1, for definition of s,). The pair ([j,j-+1]x E",
{7, §+11x 8" v {j,j+1} x B") is homotopicaly equivalent to-the pair
(@, 8 and  WPlyspnwen- o gi+yxge €an be considered to be the
mapping 77t * & * 7, from §” to I, for all j eJ*. Then, if V and N are
ag in (17, 11) by (17.11) w7* * & % 74, can be extended to a mapping of
B to V, for all j = N, 1 & 77t % & % 7, is homotopic to the constant
mapping of §”, to V, in V, for a]l j > N. Compounding the v;, j > 0, we
get an inward n-mapping v of (X, x) s.b. v7'« & % A(7) =~ ¢ (inwardly).
Therefore (™% &% A(T)> = <€), (£ = <) * (A (7)) = (Tda— An)({ED),
in the case n > 2, or (Id,* A7) ({z)), in the case n=1.
Therefore Kernel (3,) C Image (Idy— 4q) when 2 > 2 and is contained
in Image(Id, # A7) when = = 1. This remark with its converse above
proves the lemma., Q.H.D.

18. Tumorum. Let (X, x) be a pointed compactum contained in the
Hilbert cube. Then, for all n =2,

0 nl X, 1) Tp(X, 1)L (X ) > gy o Xy 0)2> 1, (X, @) 0

8 an exvact sequence of ‘(/woupswmd homomorphisms, and also

Id;[*/[ 2 .
0—>m (X, ’fl”)““—>lr1(-t1 w)—>I,(X, ‘/X")—'}—>£0(Xa ) J“’l‘O(X’ )0

i an ewact sequence, where m (X, ) and I(X,z) are groups, and i, s
a homomorphism.

.
%

2
-
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Proof. From it's definition, 4, is a monomorphism, for all » > 1
and by 14 above y,. is surjective for all n > 0. The theorem now follows
directly from these remarks and lemmas 15, 16 and 17. Q.E.D.

19. Exampre, If X, is the 3-adic solenoid of van-Dantzig and ¢ ¢ X,
we will show that in the exact sequence

0->9,(Zs, 0)>1,(Zs, )= I1,(Z5, o) 920(23; 0)—~>my( Ly, 0)->0

o Zy, o) and m( %y, o) are both trivial but that the other 3 objects in the
gequence are non trivial.

Tt is convenient and there is no essential difference so we work this
example in R® ingtead of I®. We start by giving a description of an
embedding of %, in R® and of a sequence {U,},, of neighbourhoods of X,

o0

sb. Upys C Ua, for all n >0, and such that () Up= Z;.

0

In R® consider the dise D = {(#y+2)>+ 2> 1, 2, = 0} and the solid
torus U, obtained by revolving D around the z,-axis. In D congider the
dise Dy = {{#,+2)*+ 23 < .01, 2, = 0} and the dises D, and D, obtained
from D, by revolving D around its cenfer by the angles 2#/3 and 4=/3
respectively. Dy, Dy and D, are disjoint since .01 is small. Now assume
as D; revolves around the #,-axis it also revolves around its own cer
in such a way that as one revolution around the z-axis is complete
becomes Dy, D, becomes D, and D, becomes D,. Then the discs Dy, Dy, oy
sweep out a solid torus U, which rung 3 times around the ingide of the
solid torus U;. Let 0 be any continuous mapping from U, to U, which
takes U, homeomorphically onto U,C U,. Then U,= 6(U;). Define
Uy=0¢206(U,) and in general U,= 6"YU,). Define U,= k. Then

U1 C Uy for all >0 and () Up= .
” 0
Let o ¢ Z;. Denote by ine, the inclusion mapping U,.,C Uy, for

all n>0, j > 0, denote by mj(inc,) the function induced by ine, from
7l Unt1s 0) 10 7 Un, 0).

Now U, is a homotopy 1-sphere and since 0 is a homeomorphism
from U.1 onto U,= 0(U,) it follows that U, and by induction each Uy,
7> 1, is a homotopy 1-sphere. Theorefore each object of the system

{molinen); ml Upyry 0) = 7o Ua, ()
is trivial and therefore the inverse limit of this system, which by ap-
pendix 21 is my( X, o) is trivial. Again each object of the system

{m(inca); m( Uiy 0)=>7y( Uy, 0)}nz1

equals nl({S”, Po) = Z, the group of integers under addition, and for each
%> 1, m(ine,) is the homeomorphism from o,( U,i1s0)=Z %0 7y(Uh, 0)

& ©
Imn An exact sequence from the n-th to the (n—1)-st fundamental group 209

=7, which takes j € Z to 3j € Z. Therefore the inverse limit of the latter
system, which by appendix 21 is m(Zy, o) is [ 3"Z which is frivial.

We take the point of view that =,(Uy, ¢) = 0 and #,(U,, o) = 3717
C ay(Uy,y 0) = Z, for all > 1. An inward 1-mapping £ of (X, o) is
a sequence {£;};5o of continuous mappings & from 8 to R® such that
given any N eJ*t, £(8") C Uy for almost all j and thus the homotopy
dlass, <& of & in Uy is an integer a; divisible by 8% for almost all j.
Consider the set of sequences {a};., of integers a; which for each N ¢J™,
are divisible by 3%, for almost all j. There is an equivalence relation on
this set, {@;};50 = {bj}sz0 iff there is an M e J¥ s.b. ay = by, for all j > M.
Denote the class of {a;};5, by {{as}>. After partitioning inward 1-mappings
Dby the inward homotopy relation we see that I,(2;, o) is the set of classes

of such sequences of integers with addition <{{as}>+ {{b}> = (ay+b;}).

Since Iy(X;, 0) is abelian Id,* A7 can be written Id,—A4; and
Tm(Jd,—4,) is a subgroup of I,(25, o) and so in this particular case
7o Zs, 0) = Ii(Zy, 0)/Im (Id,— A4;) is also a group. To show that I,(X;, o)

* and my( Zy, o) are both non. trivial it is necessary only to show that my( ), o)

is non trivial. :

We will show that there does not exist ({a;}> e I;(Z;, o) such that
(Td—4y) ({far}y) = (o= aya}> = (8"} e (%, 0). Suppose such an
({as}> does exist then we can find M eJ* 8.t ay—ay,, = 3/, for all j > M.
Then for all p—1 > M we get, :

Pp—1 »—-1
ay— = (ay—ayy,) = D)8 = 3(37—3").
J=M j=M

Thus 37— 2ap = 2ay,-+ 3%, for all p > M1, and 2a, -+ 3" # 0 since 3 is
not divisible by 2. Chose N eJ*t st. 2am+3" is not divisible by 3.
Let p be so large that p > N and a, is divisible by 3%. Then 3% divides
3P —2a, = 2a,,+ 3%, which is a contradiction.

To sum up we have shown that, m(Z;, o) = 0 and m(Z;, 0) = 0 bub
none of the other three terms in the low dimensional sequence of theorem 30
is trivial. We remark that if a e 87X, the n’th suspension of Zj, then
the exact sequence of theorem 30 beginning with z,,,(8"%;, a) is the
sequence we have just described.

20. Remark. If (X, 4, ) is a pointed pair of compacta contained
in I°, then we can develop 3 long sequences m(X, A, ), I(X,4,2)
and #(X, 4, 2).

> (X, A, #)>ma( A, @) ->a(X, 2) (X, 4, ®)—>
—*In-l«l(Xy —A-: .’L‘)-—>I»,,,(A, m)-—>In(X, w)+I7I(X’ 'A" w)%

>0y (X, A, &) >mn( A, 2) gl X, w)>mn(X, 4, €)>

o

DR S
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and then, as in theorem 18, we can develop a 5 term exact sequence of
long sequences and commutative ladders.

0on(X, A, 2)>I(X, 4,2)~I(X, A, 0)>85(X, 4,2)~7(X, 4, 2)>0

where if € is a graded module then 8°C is that graded module with (8°C),
= (, 4. (X, 4, x) is exact (see [3]) and it is easy to show that T(X, 4, »)
is exact. Using this set up it is possible to prove that if (X, 4, ) is
a movable pointed pair of compacta then z(X, 4, «) is exact. The concept
of movable compactum was defined by K. Borsuk in [2].

21. APPENDIX. For each n =0, m,(X, %) is the inverse limit L of
the system {mq(ine(U, U")); mal U, w)—>m,,(U w)}UcU,,U’U,Eth(X) where for
U C U’ both neighbourhoods of X inc(U, U’) is the inclusion mapping UC U’,

Proof. If f is a continuous mapping from (8, p,) to (U, z) denote
its homotopy class by [f] € (U, #), then L is the set of lists {{apl}yennam
where for each U ¢ Nhd(X), [ay] e (U, ) and if UC U’, U, U’ ¢ Nhd (X),
n,,(mc U,U ))([“U]) [ay].

It {U,}n>0 is @ nested sequence of nelghbourhoods of X such that
) Up= X there is a morphism

n=0

W; L—>§n(X, w) ’ {[C”U]}‘_> <{aUn}>
which has as 2 sided inverse the morphism

O (X, 2) =L, {an}>—>{byl}

where b;; is defined as follows. Given U e« Nhd(X) there is an N (U) eJ*
such that @, is homotopic to a,,, in U, for all »> N(U), define
by = - Q.ED.
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The realization of dimension function 4, *

by
J. C. Nichols (Radford, Virginia)

K. Nagami and J. H. Roberts [6] introduced the metric-dependent
dimension function d, and posed the following question, which we will
call the Realization Question. Let (X, ¢) be a metric space with dyX, p)
< dimX and let % be an integer with dy(X, ) < k¥ < dimX. Does there
exist a topologically equivalent metric o for X .with dyX, ¢) = k¥ For
each Cantor #-manifold (K, ¢) with # > 3, Nagami and Roberts de-
scribed a subset (Xu, ¢) with the property that dy(X,, o) = [n/2] and
dim X, > n—1. This paper answers the above question in the affirmative
for these spaces (Xu, o) where K, = I" (n-cube). The question remains
unanswered for arbitrary metric spaces.

DEFINITION. Let (X, o) be a non-empty metric space and let » be
a non-negative integer. dy(X, o) < n if (X, p) satisfies the condition:
For any collection C= {(C:, 0;): i =1, ..,n+1} of n+41 pairs of
closed sets with o(Ci, 0;) > 0 for each ¢ =1, ..., n+1, there exist closed

sets By, ¢ =1, ..., n+1, such that ( ) Bg separates X between C; and: C;

for each i=1, ..., n-+1 and (i) ﬂ B;=
i=1
If d,(X, o) < and the statement dy(X, o) < n—1 is false, we set
dy(X, 0) = n. The empty set @ has dy(@) = —1.

DeriviTION. Let X be a topological space, g: X x X —~R a real valued
function, and let 4 and B be two subsets of X. Let
g(A, B) = inf{|g(2,y)|: we 4, y ¢ B}.

This real number g(4, B) will be called the g-distance between A and B.

DeriniTioN. Let I"™ denote the Buclidean n-cube, let p, geI” and
let ACI" We define Join(p, g) to be the collection of all the points

(*) This work is taken from the author’s doctoral dissertation at Duke Un.iversity.
I would like to thank Dx. J. H. Roberts for his guidance in the preparation of this paper.
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