Table des matières du tome LXXVII, fascicule 3

		Pages
J.	B. Quigley, An exact sequence from the n th to the $(n-1)$ -st funda-	
•	mental group	195-210
J.	C. Nichols, The realization of dimension function $d_1 \ldots \ldots$	211-217
C.	F. Kelemen, Recursions with uniquely determined topologies	219-225
Ρ.	Holický, A supplement to the paper "Differentiable roads for real	
	functions" by J. G. Ceder	227-234
Μ.	Moszyńska, On shape and fundamental deformation retracts II	235-240
$\mathbf{R}.$	H. Overton, Čech homology for movable compacta	241-251
W	. White, A fixed-point theorem for homeomorphisms of R^{2n}	253 - 255
	Ketonen, Ultrafilters over measurable cardinals	
R.	W. Heath and R. E. Hodel, Characterizations of σ -spaces	271-275
D.	W. Curtis, Total and absolute paracompactness	277 - 283
Ε.	D. Tymchatyn and J. H. V. Hunt, The theorem of Miss Mullikin-	
	Mazurkiewicz-van Est for unicoherent Peano spaces	285-287
	M. Zuckerman, Natural sums of ordinals	289-294
В.	Weglorz, Some remarks on selectors as a selector of the selectors and the selectors are selectors as a selector of the selectors are selectors.	295-304

Les FUNDAMENTA MATHEMATICAE publient, en langues des congrès internationaux, des travaux consacrés à la Théorie des Ensembles, Topologie, Fondements de Mathématiques, Fonctions Réelles, Algèbre Abstraite Chaque volume paraît en 3 fascicules

Adresse de la Rédaction et de l'Échange: FUNDAMENTA MATHEMATICAE, Śniadeckich 8, Warszawa 1 (Pologne)

Le prix de ce fascicule est 4.35 \$

Tous les volumes sont à obtenir par l'intermédiaire de ARS POLONA-RUCH, Krakowskie Przedmieście 7, Warszawa 1 (Pologne)

An exact sequence from the *n*th to the (n-1)-st fundamental group

by

J. Brendan Quigley (Dublin)

0. Introductory remark. For each pointed compactum (X,x) contained in the Hilbert cube we define, in each dimension n>0, the approaching group $\underline{x}_n(X,x)$ and the inward group $I_n(X,x)$. Using category theory we show that $\underline{x}_n(X,x)$ and $I_n(X,x)$ depend only on the homotopy type of (X,x). We define an endomorphism from $I_n(X,x)$ to $I_n(X,x)$ whose kernel is the nth fundamental group, $\underline{x}_n(X,x)$ of Karol Borsuk. There is an epimorphism from $\underline{x}_{n-1}(X,x)$ to $\underline{x}_{n-1}(X,x)$ whose kernel equals the coimage of the above endomorphism. Thus there is an exact sequence of groups and homomorphisms

$$0 \to \underline{\pi}_n(X, x) \to I_n(X, x) \to I_n(X, x) \to \underline{\pi}_{n-1}(X, x) \to \underline{\pi}_{n-1}(X, x) \to 0.$$

We work out the above sequence in full when n=1 and X is the 3-adic solenoid Σ_3 .

Consider the system of neighbourhoods U of X in the Hilbert Cube with inclusion mappings. It is known that $\underline{\pi}_n(X,x)$ can also be obtained by applying the nth homotopy functor π_n to this system and passing to the inverse limit, i.e.

$$\underline{\pi}_n(X, x) = \lim \pi_n(U, x).$$

1. Notation. R, R^n , R^+ , J, J^+ , I, I^ω , S^n , E^n , p_0 denote respectively, the real numbers, Euclidean n-space, the non negative real numbers, the integers, the non negative integers, the closed interval [0,1], the Hilbert cube, the n-sphere, the n-ball and the point $(1,0,0,\ldots,0)$ $\in S^{n-1} \subset E^n$.

For each $n \ge 0$ let q_n be the identification mapping from $I \times S^n$ to $I \times S^n/(I \times \{p_0\}) \cup (\{0,1\} \times S^n)$ to S^{n+1} and let h_n be a homeomorphism from $I \times S^n/(I \times \{p_0\}) \cup (\{0,1\} \times S^n)$ to S^{n+1} such that

$$h_n \circ q_n((I \times \{p_0\}) \cup (\{0, 1\} \times S^n)) = \{p_0\} \subset S^{n+1}.$$

DRUKARNIA UNIWERSYTETU JAGIELLOŃSKIEGO W KRAKOWIE

197

For each $n \ge 0$, let r_n be the identification mapping from $S^n \times I$ to $S^n \times I/S^n \times \{1\}$ and let k_n be a homeomorphism from $S^n \times I/S^n \times \{1\}$ to E^{n+1} such that $k_n \circ r_n(S^n \times \{1\}) = \{a\}$, where a = (0, 0, ..., 0, 0) the centre of E^{n+1} . For each $n \ge 1$, let s_n be a continuous mapping from E^n to S^n such that $s_n(S^{n-1}) = \{p_0\}$ and s_n maps $E^n - S^{n-1}$ homeomorphically onto $S^n - \{p_0\}$.

We remark that, for each $n \ge 1$, (S^n, p_0) is a homotopy cogroup with a continuous comultiplication mapping v^n from (S^n, p_0) to $(S^n, p_0) \lor \lor (S^n, p_0)$ and a continuous homotopy inverse mapping v^n from (S^n, p_0) to (S^n, p_0) . We assume that for all $n \ge 1$, v^{n+1} and v^{n+1} are derived by suspending v^n and v^n . In other words, for all $n \ge 1$, $(t, e) \in I \times S^n$.

$$(1.1) v^{n+1} \circ h_n \circ q_n(t, e) = ((h_n \circ q_n), (h_n \circ q_n))(t, v^n(e)),$$

If f, g are continuous mappings from S^n to a topological space Y, then $f \times g$ denotes the continuous mapping $(f, g) \circ r^n$ from S^n to Y and f^{-1} the continuous mapping $f \circ v^n$, also from S^n to Y.

If Y and Z are sets, θ a function from $Y \times Z$ to I^{ω} then for each $y \in Y$ we denote by θ_y that function from Z to I^{ω} which carries each $z \in Z$ to $\theta(y,z) \in I^{\omega}$ and for each $z \in Z$ we denote by z^{ω} that function from Y to I^{ω} which carries each $y \in Y$ to $\theta(y,z) \in I^{\omega}$. As an example of this notation, if φ is a continuous mapping from $R^+ \times S^n \times I$ to I^{ω} then for $s \in R^+$, $t \in I$, $t\varphi_s$ is that continuous mapping from S^n to I^{ω} which carries $e \in S^n$ to $t\varphi_s(e) = \varphi(s,e,t) \in I^{\omega}$.

Let P be a topological space. If \varkappa and λ are continuous mappings from $P \times S^n$ to I^{ω} then we denote by $\varkappa * \lambda$ and λ^{-1} respectively the continuous mappings from $P \times S^n$ to I^{ω} such that $(\varkappa * \lambda)_p = \varkappa_p * \lambda_p$ and $(\lambda^{-1})_p = (\lambda_p)^{-1}$, for all $p \in P$.

If K is a category, the objects of K are denoted by $\operatorname{Ob} K$, the morphisms by $\operatorname{Mor} K$ and for X, $Y \in \operatorname{Ob} K$ the morphisms of K with X as domain and Y as codomain are denoted by $\operatorname{Mor}_K(X,Y)$.

The set of compact neighbourhoods of the compactum $X \subset I^{\omega}$ are denoted by Nhd(X).

2. Definition. Three categories C, \underline{C} , \underline{C} .

We will define 3 categories C, C and C which have the same objects

$$(2.1) \quad \text{Ob } C = \text{Ob } \underline{C} = \text{Ob } \underline{C} = \{(X, x) | x \in X \subset I^{\omega}, X \text{ is compact} \}.$$

The morphisms of C are the set of base point preserving continuous mappings between pointed compacta with the usual composition. The identity continuous mapping at (X, x) is denoted $\mathrm{Id}_{(X,x)}$.

The objects of $\underline{\underline{C}}$ are defined above. We define the morphisms and composition in $\underline{\underline{C}}$ as follows. A continuous mapping f from $R^+ \times I^{\infty}$ to

 I^{ω} is a member of $\operatorname{Mor}_{\underline{C}}((X, x), (Y, y))$ and is referred to as an approaching mapping from (X, x) to (Y, y) if

$$(2.2) f(R^+ \times \{x\}) = \{y\},$$

(2.3) given any $V \in \text{Nhd}(Y)$ there is a $U \in \text{Nhd}(X)$ and an $r \in R^+$ such that $f([r, \infty) \times U) \subseteq V$.

The composition gf in C of

$$f \in \operatorname{Mor}_{\underline{C}}((X, x), (Y, y)) \text{ and } g \in \operatorname{Mor}_{\underline{C}}((Y, y), (Z, z))$$

is defined by $gf(r,i)=g\bigl(r,f(r,i)\bigr)$ for each $(r,i)\in R^+\times I^o$. As gf is easily seen to satisfy (2.2) and (2.3) above $gf\in \mathrm{Mor}_{\underline{C}}\bigl((X,x),(Z,z)\bigr)$. No confusion will result if we denote by $\mathrm{Id}_{(X,x)}$ the identity element of $\mathrm{Mor}_{C}\bigl((X,x),(X,x)\bigr)$. $\mathrm{Id}_{(X,x)}$ (r,i)=i, for each $(r,i)\in R^+\times I^o$.

The category \underline{C} was first defined in [1] by K. Borsuk. We now describe \underline{C} in a manner suited to our purposes. Ob \underline{C} has been defined above. Denoting by $f| ; J^+ \times I^\omega \to I^\omega$ the restriction of the continuous mapping $f; R^+ \times I^\omega \to I^\omega$,

$$(2.4) \qquad \operatorname{Mor}_{\underline{C}} \bigl((X \, , \, x) \, , \, (Y \, , \, y) \bigr) = \bigl\{ f | \ ; f \in \operatorname{Mor}_{\underline{C}} \bigl((X \, , \, x) \, , \, (Y \, , \, y) \bigr) \bigr\} \, .$$

Composition in \underline{C} is (g|)(f|) = (gf)|. Clearly $\mathrm{Id}_{(X,x)}|$ is the identity element of $\mathrm{Mor}_{\underline{C}}((X,x),(X,x))$ and no confusion will be caused if we simply denote this morphism by $\mathrm{Id}_{(X,x)}$.

We will also find useful the original definition of $\operatorname{Mor}_{\underline{C}}((X,x),(Y,y))$ given by K. Borsuk in [1]. A fundamental sequence f from (X,x) to (Y,y) is a sequence $f=\{f_n\}_{n\geqslant 0}$ of continuous mappings f_n from I^{ω} to I^{ω} such that $f_n(x)=y$ for all $n\geqslant 0$ and such that given any $V\in\operatorname{Nhd}(Y)$ there is a $U\in\operatorname{Nhd}(X)$ and a $j\in J^+$ such that $f_n(U)\subset V$ for all $n\geqslant j$. From this point of view composition in C is defined

$$(2.5) (gf)_n = g_n \circ f_n.$$

3. DEFINITION. Homotopy in C, \underline{C} and \underline{C} .

 Two morphisms $f, g \in \text{Mor}_{\underline{C}}((X, x)(Y, y))$ are said to be pointed approaching homotopic if there is a continuous mapping H from $R^+ \times I^o \times I$ to I^o such that

$$_{0}H=f,\quad _{1}H=g,$$

(3.2)
$$H(R^+ \times \{x\} \times I) = \{y\},$$

(3.3) given any $V \in \text{Nhd}(Y)$ there is a $U \in \text{Nhd}(X)$ and an $r \in \mathbb{R}^+$ such that $H([r, \infty) \times U \times I) \subset V$.

In this case we write $H; f \simeq g$ (approaching). Pointed approaching homotopy is an equivalence relation on the morphisms of C. If

$$f \in \operatorname{Mor}_{\underline{C}}((W, w), (X, x)), \quad g, h \in \operatorname{Mor}_{\underline{C}}((X, x), (Y, y)), \\ k \in \operatorname{Mor}_{\underline{C}}((Y, y), (Z, z))$$

and $H;g\simeq h$ (approaching), then $Hf;gf\simeq hf$ (approaching), and $kH;kg\simeq kh$ (approaching) where Hf and kH are continuous mappings from $R^+\times I^\omega\times I$ to I^ω defined by $\iota(Hf)=(\iota H)f$ and $\iota(kH)=k(\iota H)$, for each $\iota\in I$. Thus the equivalence relation of pointed approaching homotopy is compatible with composition in \underline{C} . Denoting the pointed approaching homotopy class of f by [f] we may form a new category \mathscr{BC} whose objects are the same as those of \underline{C} and whose morphisms are classes of morphisms of \underline{C} . Composition in \mathscr{BC} is $[g]\circ [f]=[gf]$. The identity element of $\mathsf{Mor}_{\mathscr{BC}}((X,x),(X,x))$ is $[\mathsf{Id}_{(X,x)}]$. \mathscr{BC} is called the pointed approaching homotopy category.

We next define homotopy on \underline{C} and use this concept of homotopy to describe the (pointed) fundamental category. These ideas were first defined in [1] by K. Borsuk.

Two morphisms $f, g \in \mathrm{Mor}_{\mathcal{O}}((X, x)(Y, y))$ are said to be *poin* fundamentally homotopic if there is a continuous mapping H fr $J^+ \times I^\omega \times I$ to I^ω such that

$$_{0}H=f,\quad _{1}H=g,$$

$$(3.5) H(J^+ \times \{x\} \times I) = \{y\},$$

(3.6) given any $V \in \text{Nhd}(X)$ there is a $U \in \text{Nhd}(X)$ and $j \in J^+$ such that $H_n(U \times I) \subset V$, for each $n \ge j$.

In this case we write $H; f \simeq g$ (fundamental). Fundamental homotopy is an equivalence relation on the morphisms of \underline{C} compatible with the composition of \underline{C} and the class of f is denoted [f]. As above we get a new category $\Im \underline{C}$ called the (pointed) fundamental category, $\mathrm{Ob}\,\Im \underline{C} = \mathrm{Ob}\,\underline{C}$, morphisms in $\Im \underline{C}$ are classes of morphisms in \underline{C} and composition in $\Im \underline{C}$ is $[g] \circ [f] = [gf]$.

Two equivalent objects of RC are said to have the same shape.

4. Remark. Comparison of RC, RC and RC.

If (X, x), $(Y, y) \in \operatorname{Ob} C$ and if f is a continuous mapping from $R^+ \times I^\omega$ to I^ω such that $f_r = \varphi$; $I^\omega \to I^\omega$, for all $r \in R^+$ and $\varphi|_X = \theta$ a continuous mapping from (X, x) to (Y, y) then we say that f is generated by θ . Such a mapping f is an approaching mapping from (X, x) to (Y, y) since $f(R^+ \times \{x\}) = \{\varphi(x)\} = \{y\}$ and if $V \in \operatorname{Nhd}(Y)$ there is, by the continuity of φ , a $U \in \operatorname{Nhd}(X)$ such that $\varphi(U) = f(R^+ \times U) \subset V$. Since any continuous mapping θ from (X, x) to (Y, y) can be extended to a continuous mapping φ from I^ω to I^ω it follows that each $\theta \in \operatorname{Mor}_C((X, x), (Y, y))$ generates at least one $f \in \operatorname{Mor}_C((X, x), (Y, y))$.

It is clear that $\mathrm{Id}_{(X,x)} \in \mathrm{Mor}\, C$ generates $\mathrm{Id}_{(X,x)} \in \mathrm{Mor}\, \underline{C}$ and that if $\theta \in \mathrm{Mor}_{C}((X,x),(Y,y)), \ \theta' \in \mathrm{Mor}_{C}((Y,y),(Z,z))$ generate $f \in \mathrm{Mor}_{C}((X,x),(Y,y))$ and $g \in \mathrm{Mor}_{C}((X,x),(Y,y))$ respectively then $\theta' \circ \overline{\theta} \in \mathrm{Mor}\, C$ generates $gf \in \mathrm{Mor}\, \underline{C}(X,x),(Y,y)$ moreover if $\alpha,\beta \in \mathrm{Mor}_{C}((X,x),(Y,y))$ generate $\alpha,b \in \mathrm{Mor}_{\underline{C}}((X,x),(Y,y))$ and if $H;\ \alpha \simeq \beta$ then there is a continuous mapping \overline{K} from $I^{\omega} \times I$ to I^{ω} such that ${}_{0}K = a_{0}, {}_{1}K = b_{0}$ and $K|_{X \times I} = H$. Defining the mapping L from $R^{+} \times I^{\omega} \times I$ to I^{ω} by $L_{r} = K$, for all $r \in R^{+}$, then using the compactness of X it is easy to see that $L;\ \alpha \simeq b$ (approaching).

From the above observations it follows that there is a functor $\Re E$ from $\Re C$ to $\Re \underline{C}$ taking $(X,x) \in \operatorname{Ob} \Re C$ to $\Re E(X,x) = (X,x) \in \operatorname{Ob} (\Re \underline{C})$ and $[\theta] \in \operatorname{Mor} \Re C$ to $\Re E([\theta]) = [f] \in \operatorname{Mor} \Re \underline{C}$, where $\Re E([\theta]) = [f]$ is well defined to be the approaching homotopy class of any mapping f generated by θ .

It is immediate from definition 2 above that there is a functor R from $\underline{\underline{C}}$ to $\underline{\underline{C}}$ carrying $(X,x) \in \mathrm{Ob}\,\underline{\underline{C}}$ to $R(X,x) = (X,x) \in \mathrm{Ob}\,\underline{\underline{C}}$ and $f \in \mathrm{Mor}\,\underline{\underline{C}}$ to $R(f) = f \mid \epsilon \, \mathrm{Mor}\,\underline{\underline{C}}$. By the definition of $\mathrm{Mor}\,\underline{\underline{C}}$ in (2.4) above it is clear that R considered as a function from the set $\mathrm{Mor}\,\underline{\underline{C}}$ to the set $\mathrm{Mor}\,\underline{C}$ is surjective.

If $H; f \simeq g$ (approaching), then denoting by H| the restriction of H to $J^+ \times I^w \times I$ it is clear that $H|; f| \simeq g|$ (fundamental). Thus there is a functor $\mathcal{R}R$ from $\mathcal{R}\underline{C}$ to $\mathcal{R}\underline{C}$ taking $(X, x) \in \mathrm{Ob}\,\mathcal{R}\underline{C}$ to $\mathcal{R}R(X, x) = (X, x) \in \mathrm{Ob}\,\mathcal{R}\underline{C}$ and taking $[f] \in \mathrm{Mor}\,\mathcal{R}\underline{C}$ to $\mathcal{R}R([f]) = [R(f)] = [f]$ $\in \mathrm{Mor}\,\mathcal{R}\underline{C}$. The surjectiveness of R above implies that $\mathcal{R}R$ considered as function from the set $\mathrm{Mor}\,\mathcal{R}\underline{C}$ to the set $\mathrm{Mor}\,\mathcal{R}\underline{C}$ is surjective.

5. DEFINITION. The approaching functor.

A continuous mapping ξ from $R^+ \times S^n$ to I^ω is said to be an approaching n-mapping of $(X,x) \in \mathrm{Ob}\,\mathcal{R}\underline{C}$ iff

(5.1)
$$\xi(R^+ \times \{p_0\}) = \{x\} .$$

(5.2) given $V \in \text{Nhd}(X)$ there is an $r \in \mathbb{R}^+$ such that $\xi([r, \infty) \times S^n) \subset V$.

An exact sequence from the n-th to the (n-1)-st fundamental group

201

If ξ and ξ' are approaching n-mappings of (X, x) then we say that ξ is approaching homotopic to ξ' iff there is a continuous mapping Φ from $R^+ \times S^n \times I$ to I^{ω} such that

$$_{0}\Phi = \xi , \quad _{1}\Phi = \xi',$$

$$\Phi(R^+ \times \{p_0\} \times I) = \{x\},\,$$

given $V \in \mathrm{Nhd}(X)$ there is an $r \in \mathbb{R}^+$ such that $\Phi([r, \infty) \times S^n \times$ (5.5) $\times I) \subset V$.

In this case we write Φ ; $\xi \simeq \xi'$ (approaching). Approaching homotopy is an equivalence relation on the set of all approaching n-mappings of (X, x)and the class of ξ will be written $\langle \xi \rangle$. The set of classes of approaching *n*-mappings of (X, x) will be denoted $\underline{\pi}_n(X, x), n \ge 0$.

We denote by c the approaching n-mapping of (X, x) such that $e(R^+ \times S^n) = \{x\}$. If ξ and η are approaching n-mappings of (X, x)then ξ^{-1} and $\xi * \eta$ are also approaching n-mappings of (X, x). If $\xi \simeq \xi'$ (approaching) and $\eta \simeq \eta'$ (approaching) then $\xi * \eta \simeq \xi' * \eta'$ (approaching). Thus, when $n \ge 1$, we can compose classes of approaching mappings as follows, $\langle \xi \rangle * \langle \eta \rangle = \langle \xi * \eta \rangle$. If ξ , ξ' and ξ'' are approaching n-mappings of (X, x) the following remarks are easily proven.

$$\langle \xi \rangle * \langle c \rangle = \langle \xi \rangle, \qquad n \geqslant 1,$$

$$(5.7) \langle \xi \rangle * \langle \xi^{-1} \rangle = \langle c \rangle = \langle \xi^{-1} \rangle * \langle \xi \rangle, n \geqslant 1,$$

$$(5.8) = (\langle \xi \rangle * \langle \xi' \rangle) * \langle \xi'' \rangle = \langle \xi \rangle * (\langle \xi' \rangle * \langle \xi'' \rangle), \quad n \geqslant 1,$$

$$(5.9) \langle \xi \rangle * \langle \xi' \rangle = \langle \xi' \rangle * \langle \xi \rangle, n \geqslant 2.$$

Thus $\underline{\pi}_n(X,x)$ is a set group or abelian group according as n=0,1or $n \geqslant 2$.

If ξ is an approaching n-mapping of (X, x) and $f \in \mathrm{Mor}_{\mathcal{C}}((X, x), (Y, y))$ there is a continuous mapping $f\xi$ from $R^+ \times S^n$ to I^ω defined by $f\xi(r, \alpha)$ $=f(r,\xi(r,a)),$ for each $(r,a) \in \mathbb{R}^+ \times S^n$. We observe that if $V \in \mathrm{Nhd}(Y)$ there is a $U \in \mathrm{Nhd}(X)$ and $r_1 \in \mathbb{R}^+$ such that $f([r_1, \infty) \times U) \subset V$ and there is an $r_2 \in \mathbb{R}^+$ such that $\xi([r_2, \infty) \times S^n) \subset U$. Thus

$$f\xi([r_1+r_2,\ \infty)\times S^n)\subset f([r_1,\ \infty)\times \xi([r_2,\ \infty)\times S^n))\subset f([r_1,\ \infty)\times U)\subset V.$$

From these 2 observations it follows that $f\xi$ is an approaching n-mapping of (Y, y).

It is easy to see that if ξ and η are approaching n-mappings of (X, x), $f, g \in \mathrm{Mor}_{\mathcal{C}}((X, x)(Y, y)), h \in \mathrm{Mor}_{\mathcal{C}}((Y, y), (Z, z)), \text{ then}$

(5.10)
$$f(\xi * \eta) = (f\xi) * (f\eta).$$

(5.11) Φ ; $\xi \simeq \eta$ (approaching) implies Ψ ; $f\xi \simeq f\eta$, where Ψ is defined by $_t\Psi=f(_t\Phi)$, for each $t \in I$.

 $H: f \simeq g$ (approaching) implies that $\chi: f \xi \simeq g \xi$ (approaching) (5.12)where χ is defined by $t\chi = f(tH)$, for each $t \in I$.

$$(5.13) (hf)\xi = h(f\xi).$$

From the above it follows that $\underline{\pi}_n$ is a functor from $\Re C$ to the category of sets, groups or abelian groups according as n = 0, 1 or $n \ge 2$. $\text{For } [f] \in \text{Mor}_{\mathcal{B}\underline{C}} \big(\!(X,x)\,,\,(Y,y)\!\big), \ \langle \xi \rangle \in \underline{\pi}_{n}\!(X,x),$

$$\underline{\pi}_n([f])(\langle \xi \rangle) = \langle f \xi \rangle \in \underline{\underline{\pi}}_n(Y, y)$$
.

Since $\underline{\pi}_n$ is a functor from $\Re \underline{C}$ it follows that $\underline{\pi}_n(X,x)$ is invariant up to equivalence of objects in the approaching category. Composing the functor $\underline{\pi}_n$ with the functor $\Re E$ of 4 above to obtain the functor $\pi_n \circ \Re E$ from $\Re C$ we see that (a fortiori) $\underline{\pi}_n(X,x) = \underline{\pi}_n \circ \Re E(X,x)$ is invariant up to homotopy type of pointed compacta.

6. DEFINITION. The inward functor.

A continuous mapping ξ from $J^+ \times S^n$ to I^ω is said to be an inward n-mapping of $(X, x) \in \text{Ob} \mathcal{H}C$ iff

$$\xi(J^{+} \times \{p_{0}\}) = \{x\},\,$$

given $V \in \mathrm{Nhd}(X)$ there is a $j_0 \in J^+$ such that $\xi_j(S^n) \subset V$, for all (6.2) $j \geqslant j_0$.

If ξ and ξ' are inward n-mappings of (X, x) then we say that ξ is inward homotopic to ξ' iff there is a continuous Φ from $J^+ \times S^n \times I$ to I^ω such that

$${}_{0}\Phi = \xi \;, \quad {}_{1}\Phi = \xi',$$

$$\Phi(J^+ \times \{p_0\} \times I) = \{x\},\,$$

given $V \in \mathrm{Nhd}(X)$ there is a $j_0 \in J^+$ such that $\Phi_i(S^n \times I) \subseteq V$, for (6.5)all $i \geqslant j_0$.

In this case we write Φ ; $\xi \simeq \xi'$ (inwardly).

The set of classes of inward n-mappings will be denoted by $I_n(X, x)$, for each $n \geqslant 0$. As in 5 above $I_n(X, x)$ is a set group or abelian group according as n=0, 1 or $n \geqslant 2$. The identity element of $I_n(X, x)$ is denoted by $\langle e \rangle$ where c(j,e)=x, for all $(j,e)\in J^+\times S^n$. Multiplication in $I_n(X,x)$ is $\langle \xi \rangle * \langle \eta \rangle = \langle \xi * \eta \rangle$.

If ξ is an inward n-mapping of (X, x) and $f \in \text{Moro}((X, x), (Y, y))$ there is an inward n-mapping $f\xi$ of (Y,y) defined by $(f\xi)_n = f_n \circ \xi_n$, for each $n \ge 0$. Thus proceeding as in 5 above we see that for each $n \ge 0$ there is a functor I_n from the category $\Re C$ to the category of sets, groups or abelian groups according as n = 0, 1 or $n \ge 2$, where $I_n([f])(\langle \xi \rangle)$ $=\langle f\xi \rangle$ for each $[f] \in \text{Mor}_{\mathcal{R}G}((X,x),(Y,y)), \langle \xi \rangle \in I_n(X,x)$. Since I_n is a functor from $\mathcal{R}C$ we see that $I_n(X, x)$ is shape invariant.

7. Definition. The fundamental functor.

The concept of approximative n-mapping of (X, x) or approximative sequence of (S^n, p_0) towards (X, x) was defined as follows by K. Borsuk "A sequence of maps ξ_k ; $(S^n, p_0) \rightarrow (I^\omega, x)$ will said to be an approximative sequence of (S^n, p_0) towards (X, x) iff, for each neighbourhood V of Xthe homotopy $\xi_k \simeq \xi_{k+1}$ in (V, x) holds for almost all k" (see [1], (13.1)). Clearly each approximative sequence of (S^n, p_0) towards (X, x), (or approximative n-mapping) is an inward n-mapping and in [1] it is shown that

- ξ is an approximative *n*-mapping of (X, x) and $\xi \simeq \xi'$ (inwardly) (7.1)implies that ξ' is an approximative *n*-mapping.
- ξ is an approximative n-mapping of (X, x) and $f \in \mathrm{Mor}_{\mathcal{C}}((X, x), x)$ (Y, y) implies $f\xi$ is an approximative n-mapping of (Y, y),
- ξ, η are approximative n-mappings of $(X, x), n \ge 1$ implies that $\xi * \eta$ is an approximative n-mapping of (X, x).

Thus there is a functor π_n from C to the category of sets, groups or abelian groups according as n = 0, 1 or $n \ge 2$ where for each $n \ge 0$ and each $(X, x) \in \text{Ob } C$, $\pi_n(X, x)$ is that subset of $I_n(X, x)$ such that $\langle \xi \rangle \in \pi_n(X,x)$ iff ξ is an approximative n-mapping of (X,x), and for each $f \in \text{Mor}_{\mathcal{C}}((X, x), (Y, y))$, $\underline{\pi}_{n}([f])$ is $I_{n}([f])$ restricted to $\underline{\pi}_{n}(X, x)$. π_n is called the *n*-th fundamental functor (see [1]).

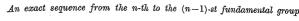
In [1] it is remarked that π_n being a functor from $\Re C$ $\pi_n(X, x)$ is shape invariant.

An equivalent useful method of defining the concept of approximative n-mapping is as follows.

(7.4) An inward n-mapping ξ of (X, x) is said to be an approximative n-mapping of (X, x) iff there is an approaching n-mapping η of (X, x) such that $\eta|_{J^+ \times S^n} = \xi$.

In [3] it is shown that, for all $n \geqslant 0$, $\pi_n(X, x)$ is the inverse limit of the system with objects $\{\pi_n(U,x)\}_{U\in \mathrm{Nhd}(X)}$ and morphisms induced by inclusion between neighbourhoods. An indication of this proof is given in Appendix 21.

8. Remark. From now on (X, x) denotes a fixed compactum with base point, contained in I^{ω} .



9. DEFINITION. The homomorphism i_n ; $\pi_n(X, x) \to I_n(X, x)$.

For all $n \ge 0$ we denote by i_n the inclusion mapping i_n ; $\pi_n(X, x)$ $\subset I_n(X,x)$. When $n \geqslant 1$ this is a homomorphism between groups.

10. Definition. Advancing a function.

Let X and Y be sets and f a function from $J^+ \times X$ to Y. Then there is a function A(f) also from $J^+ \times X$ to Y which takes $(n,t) \in J^+ \times X$ to $A(f)(n,t) = f(n+1,t) \in \mathcal{Y}$. A(f) is called the advancement of f.

11. DEFINITION. The advancing endomorphism, A_n ; $I_n(X, x) \rightarrow I_n(X, x)$.

Let ξ and η be inward n-mappings of (X, x). We observe that, when $n \ge 1$, $A(\xi * \eta) = A(\xi) * A(\eta)$, and, for all $n \ge 0$, if $\Phi : \xi \simeq \eta$ (inwardly) then $A(\Phi)$; $A(\xi) \simeq A(\eta)$ (inwardly). Thus, for each $n \ge 0$, there is a function A_n , from $I_n(X, x)$ to $I_n(X, x)$, which takes each $\langle \xi \rangle \in I_n(X, x)$ to $A_n(\langle \xi \rangle) = \langle A(\xi) \rangle \in I_n(X, x)$ and which when $n \geqslant 1$ is an endomorphism called the n-th advancing endomorphism of (X, x).

12. Remark. For each $n \ge 0$ we denote by Id_n the identity function from $I_n(X,x)$ to $I_n(X,x)$, $\mathrm{Id}_n(\langle \xi \rangle) = \langle \xi \rangle$, for $\langle \xi \rangle \in I_n(X,x)$. In the case $n \geqslant 2$, $I_n(X, x)$ is abelian and so $\mathrm{Id}_n - A_n$ is a homomorphism from $I_n(X, x)$ to $I_n(X,x)$.

In the case n=1 there is a function which we denote by $\mathrm{Id}_1*A_1^{-1}$ from $I_1(X,x)$ to $I_1(X,x)$ which takes $\langle \xi \rangle \in I_1(X,x)$ to $\mathrm{Id}_1 * A_1^{-1}(\langle \xi \rangle)$ $=\langle \xi \rangle * (A_1 \langle \xi \rangle)^{-1} \in I_1(X,x)$. Since $I_1(X,x)$ may not be an abelian group $Id_1 * A_1^{-1}$ is not in general a homomorphism.

13. DEFINITION. The homomorphism δ_n ; $I_n(X, x) \to \pi_{n-1}(X, x)$.

Let ξ be an inward n-mapping where $n \ge 1$. Denote by $B(\xi)$ the continuous mapping from $R^+ \times S^{n-1}$ to I^{ω} which, for all $j \in J^+$ and (r, e) $\epsilon[j,j+1] \times S^{n-1}$ takes (r,e) to $B(\xi)(r,e) = \xi_j \circ h_{n-1} \circ q_{n-1}(r-j,e) \in I^{\omega}$. By the definition of h_{n-1} and q_{n-1} , in notational remark 1, there is no ambiguity in this definition of $B(\xi)$. By (6.5), $B(\xi)$ is an approaching (n-1)-mapping of (X, x).

Let ξ and η be inward n-mappings for $n \ge 2$, then, by 1.1, $B(\xi * \eta)$ $=B(\xi)*B(\eta)$. Again if ξ and η are inward n-mappings for $n\geqslant 1$ and $\Phi; \xi \simeq \eta$ (inwardly) then defining the continuous mapping Ψ from $R^+ \times$ $\times S^{n-1} \times I$ by $_t \Psi = B(_t \Phi), \ 0 \le t \le 1$, we see that $\Psi, B(\xi) \simeq B(\eta)$ (approaching). Thus there is, for each $n \ge 1$, a function δ_n from $I_n(X, x)$ to $\underline{\pi}_{n-1}(X,x)$ which takes each $\langle \xi \rangle \in I_n(X,x)$ to $\delta_n(\langle \xi \rangle) = \langle B(\xi) \rangle$ $\epsilon \underline{\pi}_{n-1}(X,x)$. Moreover, when $n \ge 2$, δ_n is a homomorphism between groups.

14. DEFINITION. The homomorphism γ_n from $\underline{\pi}_n(X, x)$ to $\underline{\pi}_n(X, x)$.

An exact sequence from the n-th to the (n-1)-st fundamental group

205

For each $n \ge 0$, there is a function γ_n from $\underline{\pi}_n(X, x)$ to $\underline{\pi}_n(X, x)$ which assigns to each $\langle \xi \rangle \in \underline{\pi}_n(X, x)$, $\langle \xi |_{J+\times S^n} \rangle \in \underline{\pi}_n(\overline{X}, x)$. By (7.4) γ_n is surjective, $n \ge 0$. For $n \ge 1$, γ_n is a homomorphism between groups.

15. Lemma. When $n \ge 2$, Kernel (Id_n-A_n) = $\underline{\pi}_n(X, x)$. Also, Kernel (Id₁ * A_1^{-1}) = $\underline{\pi}_1(X, x)$.

Proof. When $n \geqslant 2$,

 $\langle \xi \rangle \in \operatorname{Kernel} (\operatorname{Id}_n - A_n)$

iff $\langle \xi \rangle = A_n(\langle \xi \rangle)$.

iff $\xi \simeq A(\xi)$ (inwardly).

iff There is a continuous mapping Φ from $J^+ \times S^n \times I$ to I^ω s.t. ${}_0\Phi = \xi$, ${}_1\Phi = A(\xi)$ and given $V \in \operatorname{Nhd}(X)$ there is an $N \in J^+$ s.t. $\Phi_j(S^n \times I) \subseteq V$, for all $j \geqslant N$.

iff Given $V \in \text{Nhd}(X)$, there is an $N \in J^+$ s.t. ξ_j is homotopic to $(A(\xi))_j = \xi_{j+1}$ in V, for all $j \ge N$.

iff ξ is an approximative n-mapping (see 8 above).

iff $\langle \xi \rangle \in \pi_n(X, x)$.

The case n=1 is dealt with in a similar fashion, Q.E.D.

16. Lemma. Kernel $(\gamma_{n-1}) = \text{Image}(\delta_n)$, for all $n \ge 1$.

Proof. Let $\langle \xi \rangle \in I_n(X, x)$. Then

$$\gamma_{n-1} \circ \delta_n(\langle \xi \rangle) = \gamma_{n-1}(\langle B(\xi) \rangle) = \langle B(\xi)|_{J+\times S^{n-1}} \rangle.$$

But

$$\begin{split} B(\xi)(\{j\} \times S^{n-1}) &= \xi_j \circ h_{n-1} \circ q_{n-1}(\{j-j\} \times S^{n-1}) \\ &= \xi_j \circ h_{n-1} \circ q_{n-1}(\{0\} \times S^{n-1}) = \xi_l(\{p_0\}) = \{x\}. \end{split}$$

Thus $B(\xi)|_{J+\times S^{n-1}}=c$ and $\gamma_{n-1}\circ\delta_n(\langle\xi\rangle)=\langle c\rangle=0$ ϵ $\underline{\pi}_{n-1}(X,x)$. This shows that $\mathrm{Image}(\delta_n)\subset\mathrm{Kernel}(\gamma_{n-1})$.

On the other hand, let $\langle \xi \rangle \in Kernel(\gamma_{n-1})$. Then $\gamma_{n-1}(\langle \xi \rangle) = \langle \xi|_{J+\times S^{n-1}} \rangle = \langle c \rangle \in \underline{\pi}_{n-1}(X,x)$. Thus there is a continuous mapping Φ from $J^+ \times \times S^{n-1} \times I$ to I^{ω} s.t. Φ ; $\xi|_{J+\times S^{n-1}} \simeq c$ (inwardly). For each $j \geqslant 0$ let ϱ_j be a retraction from $[j,j+1] \times I$ to $([j,j+1] \times \{0\}) \cup (\{j,j+1\} \times I)$. Let $\tilde{\varrho}$ be that retraction from $R^+ \times I$ to $(R^+ \times \{0\}) \cup (J^+ \times I)$ s.t. $\varrho|_{[j,j+1] \times I} = \varrho_I$, for all $j \geqslant 0$. Let $\tilde{\varrho}$ be that retraction from $R^+ \times S^{n-1} \times I$ to $(R^+ \times S^{n-1} \times \{0\}) \cup (J^+ \times S^{n-1} \times I)$ which takes $(s,e,t) \in R^+ \times S^{n-1} \times I$ to $\tilde{\varrho}(s,e,t) = (s',e,t') \in (R^+ \times S^n \times \{0\}) \cup (J^+ \times S^n \times I)$ where $(s',t') = \varrho(s,t)$. Now let Ψ be that continuous mapping from $(R^+ \times S^{n-1} \times \{0\}) \cup (J^+ \times S^{n-1} \times I)$ to I^{ω} s.t. $\Psi|_{R^+ \times S^{n-1} \times \{0\}} = \xi$ and $\Psi|_{J^+ \times S^{n-1} \times I} = \Phi$. Let $I = \Psi \circ \tilde{\varrho}$. Then, denoting ${}_1I$ by η , I^* ; $\xi \simeq \eta$ (approaching). Thus $\langle \xi \rangle = \langle \eta \rangle \in \underline{\pi}_{n-1}(X,x)$.

Next we will define an inward n-mapping η' of (X,x) s.t. $B(\eta')=\eta$. Since $\eta|_{J+\times S^{n-1}}={}_1I'|_{J+\times S^{n-1}}=\Psi\circ\widetilde{\varrho}|_{J+\times S^{n-1}\times\{1\}}=\Psi|_{J+\times S^{n-1}\times\{1\}}={}_1\varPhi=c$, there is, for each $j\geqslant 0$, an unique continuous mapping θ_j from $I\times S^{n-1}/I\times \{p_0\}\cup \{0,1\}\times S^{n-1}$ to I^ω s.t. for each $(t,e)\in I\times S_{n-1},$ $\theta_j\circ q_{n-1}(t,e)=\eta(t+j,e).$ Define the continuous mapping η' from $J^+\times S^n$ to I^ω by $\eta'_j=\theta_j\circ h_{n-1}^{-1}$, for all $j\in J^+$. Since η is an approaching (n-1)-mapping of (X,x) it follows from (5.2) that η' is an inward n-mapping of (X,x). Moreover, for each $j\in J^+$, given $(r,e)\in [j,j+1]\times S^{n-1}$,

$$\begin{split} &B(\eta')(r,e)\\ &=\eta_j'\circ h_{n-1}\circ q_{n-1}(r-j,e)\;, & \text{by definition of }B(\eta')\;\text{(see 13)}\;,\\ &=\theta_j\circ h_{n-1}^{-1}\circ h_{n-1}\circ q_{n-1}(r-j,e)\;, & \text{by definition of }\eta',\;\text{above}\\ &=\theta_j\circ q_{n-1}(r-j,e)\\ &=\eta(r-j+j,e)\;, & \text{by definition of }\theta_j,\;\text{above}\\ &=\eta(r,e)\;. \end{split}$$

Thus $B(\eta') = \eta$.

Therefore $\delta_n(\langle \eta' \rangle) = \langle B(\eta') \rangle = \langle \eta \rangle = \langle \xi \rangle$. Therefore Kernel (γ_{n-1}) \subset Image (δ_n) . Combining this with it's converse above, we have our result. Q.E.D.

17. LEMMA. For all $n \ge 2$, Kernel $(\delta_n) = \operatorname{Image}(\operatorname{Id}_n - A_n)$. Also, Kernel $(\delta_1) = \operatorname{Image}(\operatorname{Id}_1 * A_1^{-1})$.

Proof. Let $\langle \xi \rangle \in I_n(X, x)$, $n \geqslant 1$. In all cases we will show that, if $\eta = \xi^*(A(\xi))^{-1}$, then $\delta_n(\langle \eta \rangle) = \langle B(\eta) \rangle = 0$ $\epsilon_{\underline{x}_{n-1}}(X, x)$. Now $\eta_j = \xi_j * \xi_{j+1}^{-1}$, for all $j \geqslant 0$. Thus $B(\eta)$ is that continuous mapping from $\mathbb{R}^+ \times \mathbb{S}^{n-1}$ such that, for all $j \in J^+$,

$$(17.1) \quad B(\eta)(r,e) = \xi_j \circ h_{n-1} \circ q_{n-1} \big(2(r-j), \, e \big), \quad \text{for } (r,e) \, \epsilon[j,j+\tfrac{1}{2}] \times S_{n-1}$$
 and

$$\begin{split} (17.2) \quad B(\eta)(r,\,e) &= \, \xi_{j+1} \circ h_{n-1} \circ q_{n-1} \! \big(2 \, (j-r+1),\, e \big) \,, \\ & \quad \text{for } (r,\,e) \, \epsilon \, [j+\tfrac{1}{2},j+1] \times S^{n-1}. \end{split}$$

Let $\{V_k\}_{k \in J^+}$ be a sequence of neighbourhoods of X in I^{ω} such that $V_{k+1} \subset V_k$, for all $k \in J^+$ and such that $\bigcap_{k \in J^+} V_k = X$. Since ξ is an inward

n-mapping of (X, x) we can find a sequence of integers $\{j_k\}_{k \in J^+}$ tending to infinity such that, for each $k \in J^+$ and all $j \geqslant j_k$, $\xi(\{j\} \times S^n) \subseteq V_k$. By 17.1 and 17.2,

(17.3)
$$B(\eta)(\lceil i-\frac{1}{2}, i+\frac{1}{2}\rceil \times S^{n-1}) \subset V_k$$
, for all $k \in J^+$, $i \geqslant j_k$.

Denoting the set $\{j+\frac{1}{2}|\ j\in J^+\}$ by $J^++\frac{1}{2}$, we define a continuous mapping Φ from $(R^+\times S^{n-1})\cup ((J^++\frac{1}{2})\times E^n)$ to I^ω by $\Phi|_{R^+\times S^{n-1}}=B(\eta)$ and $\Phi((J^++\frac{1}{2})\times E^n)=\{x\}\subset I^\omega$. By 17.3

$$(17.4) \quad \Phi(([i-\frac{1}{2},i+\frac{1}{2}]\times S^{n-1}) \cup (\{i-\frac{1}{2},i+\frac{1}{2}\}\times E^n)) \subset V_k, \quad \text{ for all } i \geqslant j_k.$$

Now the pair $([i-\frac{1}{2},i+\frac{1}{2}]\times E^n,[i-\frac{1}{2},i+\frac{1}{2}]\times S^{n-1}\cup\{i-\frac{1}{2},i+\frac{1}{2}\}\times E^n)$ is homotopically equivalent to the pair (E^{n+1},S^n) . By 17.1 and 17.2 and the definition of Φ , $\Phi|_{\{i-\frac{1}{2},i+\frac{1}{2}\}\times S^{n-1}\cup\{i-\frac{1}{2},i+\frac{1}{2}\}\times E^n}$ corresponds to the continuous mapping $\xi_i^{-1}*\xi_i$ from S^n to V_k , for all $i\geqslant j_k$. But $\xi_i^{-1}*\xi_i$, being homotopic to the constant mapping from S^n to V_k for all $i\geqslant j_k$ can be extended to a mapping from E^{n+1} to V_k , for all $i\geqslant j_k$. Thus for each $i\geqslant 1$ $\Phi|_{\{i-\frac{1}{2},i+\frac{1}{2}\}\times S^{n-1}\cup\{i-\frac{1}{2},i+\frac{1}{2}\}\times E^n}$ can be extended to a continuous mapping Ψ^i from $[i-\frac{1}{2},i+\frac{1}{2}]\times E^n$ to I^ω , such that

(17.5)
$$\mathcal{Y}^{i}([i-\frac{1}{2},i+\frac{1}{2}]\times E^{n})\subset V_{k}, \quad \text{for all } i\geqslant j_{k}.$$

Since $[0,\frac{1}{2}]\times S^{n-1}\cup\{\frac{1}{2}\}\times E^n$ is a retract of $[0,\frac{1}{2}]\times E^n,\Phi|_{[0,\frac{1}{2}]\times S^{n-1}\cup\{\frac{1}{2}\}\times E^n}$ can be extended to a mapping $\mathcal{\Psi}^0$ from $[0,\frac{1}{2}]\times E^n$ to I^ω . Define the continuous mapping $\mathcal{\Psi}$ from $R^+\times E^n$ to I^ω by $\mathcal{\Psi}|_{[0,\frac{1}{2}]\times E^n}=\mathcal{\Psi}^0$ and $\mathcal{\Psi}|_{[i-\frac{1}{2},i+\frac{1}{2}]\times E^n}=\mathcal{\Psi}^i$, for all $i\geqslant 1$. Note that

(17.6)
$$\Psi|_{(R^+ \times S^{n-1}) \cup ((J^+ + \frac{1}{6}) \times E^n)} = \Phi.$$

Let $\overline{a,p_0}$ denote the set $\{(1-t)a+tp_0|\ 0\leqslant t\leqslant 1\}$ i.e. the line segment from the center a=(0,0,...,0) of E^n to $p_0\in S^{m-1}$. Let T be any continuous mapping from $R^+\times E^n$ to $R^+\times E^n$ such that

- (17.7) $T|_{R^{+}\times S^{n-1}\cup (J^{+}+\frac{1}{2})\times E^{n}}$ is the identity continuous mapping.
- (17.8) $T([0, \frac{1}{2}] \times E^n) = [0, \frac{1}{2}] \times E^n,$ $T([i - \frac{1}{2}, i + \frac{1}{2}] \times E^n) = [i - \frac{1}{2}, i + \frac{1}{2}] \times E^n, \text{ for all } i \ge 1,$
- $\begin{array}{lll} (17.9) & T|_{[0,\frac{1}{2}]\times\overline{a,p_0}} \text{ is a retraction from } [0,\frac{1}{2}]\times\overline{a,p_0} \text{ to} \\ & [0,\frac{1}{2}]\times\{p_0\}\cup\{\frac{1}{2}\}\times\overline{a,p_0} \text{ and } T|_{[i-\frac{1}{2},i+\frac{1}{2}]\times\overline{a,p_0}} \\ & \text{is a retraction from } [i-\frac{1}{2},i+\frac{1}{2}]\times\overline{a,p_0} \text{ to} \\ & [i-\frac{1}{2},i+\frac{1}{2}]\times\{p_0\}\cup\{i-\frac{1}{2},i+\frac{1}{2}\}\times\overline{a,p_0} \text{,} & \text{for all } i\geqslant 1 \text{.} \end{array}$

Now

$$(17.10) \quad \Psi \circ T(R^{+} \times \{a\})$$

$$\subset \Psi\left((R^{+} \times \{p_{0}\}) \cup \left((J + \frac{1}{2}) \times \overline{a, p_{0}}\right)\right), \quad \text{by (17.9)}$$

$$\subset \Phi\left((R^{+} \times \{p_{0}\}) \cup (J^{+} + \frac{1}{2}) \times E^{n}\right), \quad \text{by (17.6), (17.7)}$$

$$= B(\eta)(R^{+} \times \{p_{0}\}) \cup \Phi\left((J^{+} + \frac{1}{2}) \times E^{n}\right), \quad \text{by definition of } \Phi$$

$$= \{x\}, \quad \text{by definition of } B(\eta) \text{ and } \Phi.$$

Thus we may, without ambiguity, define a continuous mapping Γ from $R^+ \times S^{n-1} \times I$ to I^ω , by $\Gamma(s,e,t) = \Psi \circ T(s,k_{n-1} \circ r_{n-1}(e,t))$, for each $(s,e,t) \in R^+ \times S^{n-1} \times I$ $(r_{n-1},k_{n-1} \text{ defined in notational remark 1})$. By (17.6) and (17.7) and the definition of Φ , ${}_0\Gamma = \Psi|_{R+\times S^{n-1}} = \Phi|_{R+\times S^{n-1}} = B(\eta)$. By (17.10) ${}_1\Gamma = c$. By (17.4), (17.8), $\Gamma([j_k,\infty) \times S^{n-1} \times I) \subset V_k$. Thus $\Gamma; B(\eta) \simeq c$ (approaching). Therefore $\delta_n(\langle \eta \rangle) = B(\eta) = \langle c \rangle = 0$ $\epsilon \underbrace{\pi_{n-1}(X,x)}_{I}$. Thus, Image (Id_n $-A_n$), in the case $n \geq 2$, and Image (Id_n $+A_1^{-1}$), in the case n = 1, are both contained in Kernel (δ_n) .

On the other hand, let $\langle \xi \rangle \epsilon$ Kernel (δ_n) , then there is a continuous mapping Φ from $R^+ \times S^n \times I$ to I^ω s.t. Φ ; $B(\xi) \simeq c$ (approaching). Since $\Phi(R^+ \times S^{n-1} \times \{1\}) = \{x\} \subset I^\omega$ we may define a continuous mapping Ψ from $R^+ \times E^n$ to I^ω as follows. For each $(p,e,t) \in R^+ \times S^{n-1} \times I$, $\Psi(p,k_{n-1} \circ r_{n-1}(e,t)) = \Phi(p,e,t)$. By (5.5), Ψ has the following property, (17.11) given $V \in \mathrm{Nhd}(X)$, there is an $N \in J^+$ s.t. $\Psi([j,j+1] \times E^n) \subset V$, for all $j \geqslant N$.

Since

$$\begin{split} & \Psi(J^+ \times S^{n-1}) = \Phi(J^+ \times S^{n-1} \times \{0\}) = B\left(\xi\right)(J^+ \times S^{n-1}) = \xi(J^+ \times \{p_0\}) = \{x\}\,, \\ & \text{there is for each } j \in J^+ \text{ a continuous mapping } \tau_j \text{ from } S^n \text{ to } I^m \text{ s.t. } \tau_j \circ s_n \\ & = \Psi_j \text{ (see notational remark 1, for definition of } s_n). \text{ The pair } ([j,j+1] \times E^n, \\ & [j,j+1] \times S^{n-1} \cup \{j,j+1\} \times E^n) \text{ is homotopically equivalent to the pair } (E^{n+1},S^n) \text{ and } \Psi|_{[j,j+1] \times S^{n-1} \cup \{j,j+1\} \times E^n} \text{ can be considered to be the mapping } \tau_j^{-1} * \xi_j * \tau_{j+1} \text{ from } S^n \text{ to } I, \text{ for all } j \in J^+. \text{ Then, if } V \text{ and } N \text{ are as in } (17.11), \text{ by } (17.11) \text{ } \tau_j^{-1} * \xi_j * \tau_{j+1} \text{ can be extended to a mapping of } E^{n+1} \text{ to } V, \text{ for all } j \geq N, \text{ i.e. } \tau_j^{-1} * \xi_j * \tau_{j+1} \text{ is homotopic to the constant mapping of } S^n, \text{ to } V, \text{ in } V, \text{ for all } j \geq N. \text{ Compounding the } \tau_j, j \geq 0, \text{ we get an inward } n\text{-mapping } \tau \text{ of } (X,x) \text{ s.t. } \tau^{-1} * \xi * A\left(\tau\right) \simeq c \text{ (inwardly)}. \\ \text{Therefore } \langle \tau^{-1} * \xi * A\left(\tau\right) \rangle = \langle c \rangle, \quad \langle \xi \rangle = \langle \tau \rangle * (A\left(\tau\right))^{-1} = (\text{Id}_n - A_n)(\langle \xi \rangle), \\ \text{ in the case } n \geq 2, \text{ or } (\text{Id}_1 * A_1^{-1})(\langle \tau \rangle), \text{ in the case } n = 1. \end{split}$$

Therefore Kernel $(\delta_n) \subset \operatorname{Image}(\operatorname{Id}_n - A_n)$ when $n \geq 2$ and is contained in $\operatorname{Image}(\operatorname{Id}_1 * A_1^{-1})$ when n = 1. This remark with its converse above proves the lemma. Q.E.D.

18. THEOREM. Let (X, x) be a pointed compactum contained in the Hilbert cube. Then, for all $n \ge 2$,

$$0 \to \underline{\pi_n}(X, x) \xrightarrow{i_n} I_n(X, x) \xrightarrow{\mathrm{Id}_n - A_n} I_n(X, x) \xrightarrow{\widehat{\vartheta_n}} \underline{\pi_{n-1}}(X, x) \xrightarrow{\gamma_{n-1}} \underline{\pi_{n-1}}(X, x) \to 0$$
 is an exact sequence of groups and homomorphisms, and also

$$0 \rightarrow \underline{\pi}_1(X, x) \xrightarrow{i_1} I_1(X, x) \xrightarrow{\mathrm{Id}_1 * A_1^{-1}} I_1(X, x) \xrightarrow{\hat{\sigma}_1} \underline{\pi}_0(X, x) \xrightarrow{\gamma_0} \underline{\pi}_0(X, x) \rightarrow 0$$
 is an exact sequence, where $\underline{\pi}_1(X, x)$ and $I_1(X, x)$ are groups, and i_1 is a homomorphism.

209

Proof. From it's definition, i_n is a monomorphism, for all $n \ge 1$ and by 14 above y_n is surjective for all $n \ge 0$. The theorem now follows directly from these remarks and lemmas 15, 16 and 17. Q.E.D.

19. Example. If Σ_3 is the 3-adic solenoid of van-Dantzig and $\sigma \in \Sigma_3$ we will show that in the exact sequence

$$0 \rightarrow \pi_1(\Sigma_3, \sigma) \rightarrow I_1(\Sigma_3, \sigma) \rightarrow I_1(\Sigma_3, \sigma) \rightarrow \underline{\pi}_0(\Sigma_3, \sigma) \rightarrow \underline{\pi}_0(\Sigma_3, \sigma) \rightarrow 0$$

 $\underline{\pi}_0(\Sigma_3, \sigma)$ and $\underline{\pi}_1(\Sigma_3, \sigma)$ are both trivial but that the other 3 objects in the sequence are non trivial.

It is convenient and there is no essential difference so we work this example in R^3 instead of I^w . We start by giving a description of an embedding of Σ_3 in R^3 and of a sequence $\{U_n\}_{n\geq 0}$ of neighbourhoods of Σ_3 s.t. $U_{n+1}\subset U_n$, for all $n\geqslant 0$, and such that $\bigcap U_n=\Sigma_3$.

In R^3 consider the disc $D=\{(x_1+2)^2+x_2^2\geqslant 1,\,x_3=0\}$ and the solid torus U_1 obtained by revolving D around the x_1 -axis. In D consider the disc $D_0=\{(x_1+\frac{5}{2})^2+x_2^2\leqslant .01,\,x_3=0\}$ and the discs D_1 and D_2 obtained from D_0 by revolving D around its center by the angles $2\pi/3$ and $4\pi/3$ respectively. D_0 , D_1 and D_2 are disjoint since .01 is small. Now assume as D_1 revolves around the x_1 -axis it also revolves around its own cer in such a way that as one revolution around the x_1 -axis is complete becomes D_1 , D_1 becomes D_2 and D_2 becomes D_0 . Then the discs D_0 , D_1 , D_2 sweep out a solid torus D_2 which runs 3 times around the inside of the solid torus D_1 . Let D_2 be any continuous mapping from D_2 to D_2 which takes D_2 homeomorphically onto $D_2 \subset D_1$. Then $D_2 = D_1$. Define $D_3 = D_2 \cap D_1$ and in general $D_3 = D_1 \cap D_2$. Define $D_3 = D_2 \cap D_3$. Then

Let $\sigma \in \Sigma_3$. Denote by inc_n the inclusion mapping $U_{n+1} \subset U_n$, for all $n \geq 0$, $j \geq 0$, denote by $\pi_j(\operatorname{inc}_n)$ the function induced by inc_n from $\pi_j(U_{n+1}, \sigma)$ to $\pi_j(U_n, \sigma)$.

Now U_1 is a homotopy 1-sphere and since θ is a homeomorphism from U_1 onto $U_2 = \theta(U_1)$ it follows that U_2 and by induction each U_n , $n \ge 1$, is a homotopy 1-sphere. Theorefore each object of the system

$$\{\pi_0(\text{inc}_n); \ \pi_0(U_{n+1}, \ \sigma) \to \pi_0(U_n, \ \sigma)\}_{n \ge 1}$$

is trivial and therefore the inverse limit of this system, which by appendix 21 is $\underline{\pi}_0(\Sigma_3, \sigma)$ is trivial. Again each object of the system

$$\{\pi_1(\operatorname{ine}_n); \ \pi_1(U_{n+1}, \ \sigma) \rightarrow \pi_1(U_n, \ \sigma)\}_{n \geqslant 1}$$

equals $\pi_1(S^1, p_0) = Z$, the group of integers under addition, and for each $n \ge 1$, $\pi_1(\operatorname{inc}_n)$ is the homeomorphism from $\pi_1(U_{n+1}, \sigma) = Z$ to $\pi_1(U_n, \sigma)$

= Z, which takes $j \in Z$ to $3j \in Z$. Therefore the inverse limit of the latter system, which by appendix 21 is $\underline{\pi}_1(\Sigma_3, \sigma)$ is $\bigcap_{n \geqslant 1} 3^n Z$ which is trivial.

We take the point of view that $\pi_1(U_0, \sigma) = 0$ and $\pi_1(U_n, \sigma) = 3^{n-1}Z$ $\subset \pi_1(U_1, \sigma) = Z$, for all $n \ge 1$. An inward 1-mapping ξ of (Σ_3, σ) is a sequence $\{\xi_j\}_{j\geqslant 0}$ of continuous mappings ξ_j from S^1 to R^3 such that given any $N \in J^+$, $\xi_j(S^1) \subset U_N$ for almost all j and thus the homotopy class, $\langle \xi_j \rangle$ of ξ_j in U_1 is an integer a_j divisible by 3^N for almost all j. Consider the set of sequences $\{a_j\}_{j\geqslant 0}$ of integers a_j which for each $N \in J^+$, are divisible by 3^N , for almost all j. There is an equivalence relation on this set, $\{a_j\}_{j\geqslant 0} \simeq \{b_j\}_{j\geqslant 0}$ iff there is an $M \in J^+$ s.t. $a_j = b_j$, for all $j \ge M$. Denote the class of $\{a_j\}_{j\geqslant 0}$ by $\langle \{a_j\} \rangle$. After partitioning inward 1-mappings by the inward homotopy relation we see that $I_1(\Sigma_3, \sigma)$ is the set of classes of such sequences of integers with addition $\langle \{a_j\} \rangle + \langle \{b_j\} \rangle = \langle \{a_j + b_j\} \rangle$.

Since $I_1(\Sigma_3, \sigma)$ is abelian $\mathrm{Id}_1 * A_1^{-1}$ can be written $\mathrm{Id}_1 - A_1$ and $\mathrm{Im}(\mathrm{Id}_1 - A_1)$ is a subgroup of $I_1(\Sigma_3, \sigma)$ and so in this particular case $\underline{x}_0(\Sigma_3, \sigma) = I_1(\Sigma_3, \sigma)/\mathrm{Im}(\mathrm{Id}_1 - A_1)$ is also a group. To show that $I_1(\Sigma_3, \sigma)$ and $\underline{x}_0(\Sigma_3, \sigma)$ are both non trivial it is necessary only to show that $\underline{x}_0(\Sigma_3, \sigma)$ is non trivial.

We will show that there does not exist $\langle \{a_j\} \rangle \in I_1(\Sigma_3, \sigma)$ such that $(\mathrm{Id}-A_1)(\langle \{a_j\} \rangle) = \langle \{a_j-a_{j+1}\} \rangle = \langle \{3^j\} \rangle \in I_1(\Sigma_3, \sigma)$. Suppose such an $\langle \{a_j\} \rangle$ does exist then we can find $M \in J^+$ s.t. $a_j-a_{j+1}=3^j$, for all $j \geqslant M$. Then for all p-1>M we get,

$$a_M - a_p = \sum_{j=M}^{p-1} (a_j - a_{j+1}) = \sum_{j=M}^{p-1} 3^j = \frac{1}{2} (3^p - 3^M) \ .$$

Thus $3^p - 2a_p = 2a_M + 3^M$, for all p > M + 1, and $2a_M + 3^M \neq 0$ since 3^M is not divisible by 2. Chose $N \in J^+$ s.t. $2a_M + 3^M$ is not divisible by 3^N . Let p be so large that p > N and a_p is divisible by 3^N . Then 3^N divides $3^p - 2a_p = 2a_M + 3^M$, which is a contradiction.

To sum up we have shown that, $\underline{\pi}_0(\Sigma_3, \sigma) = 0$ and $\underline{\pi}_1(\Sigma_3, \sigma) = 0$ but none of the other three terms in the low dimensional sequence of theorem 30 is trivial. We remark that if $a \in S^n \Sigma_3$, the *n*'th suspension of Σ_3 , then the exact sequence of theorem 30 beginning with $\underline{\pi}_{n+1}(S^n \Sigma_3, a)$ is the sequence we have just described.

20. Remark. If (X, A, x) is a pointed pair of compacts contained in I^{ω} , then we can develop 3 long sequences $\underline{\pi}(X, A, x)$, I(X, A, x) and $\underline{\pi}(X, A, x)$.

icm[©]

and then, as in theorem 18, we can develop a 5 term exact sequence of long sequences and commutative ladders.

$$0 \rightarrow \pi(X,A,x) \rightarrow I(X,A,x) \rightarrow I(X,A,x) \rightarrow S^3\underline{\pi}(X,A,x) \rightarrow S^3\underline{\pi}(X,A,x) \rightarrow 0$$

where if C is a graded module then S^3C is that graded module with $(S^3C)_n = C_{n-3}$. $\underline{\pi}(X, A, x)$ is exact (see [3]) and it is easy to show that I(X, A, x) is exact. Using this set up it is possible to prove that if (X, A, x) is a movable pointed pair of compacta then $\underline{\pi}(X, A, x)$ is exact. The concept of movable compactum was defined by K. Borsuk in [2].

21. APPENDIX. For each $n \ge 0$, $\underline{\pi}_n(X, x)$ is the inverse limit L of the system $\{\pi_n(\operatorname{inc}(U, U')); \pi_n(U, x) \to \pi_n(U', x)\}_{U \subset U', U, U' \in \operatorname{Nhd}(X)}$ where for $U \subset U'$ both neighbourhoods of X inc (U, U') is the inclusion mapping $U \subset U'$.

Proof. If f is a continuous mapping from (S^n, p_0) to (U, x) denote its homotopy class by $[f] \in \pi_n(U, x)$, then L is the set of lists $\{[a_U]\}_{U \in \text{Nhd}(X)}$ where for each $U \in \text{Nhd}(X)$, $[a_U] \in \pi_n(U, x)$ and if $U \subset U'$, U, $U' \in \text{Nhd}(X)$, $\pi_n(\text{inc}(U, U'))([a_U]) = [a_{U'}]$.

If $\{U_n\}_{n\geqslant 0}$ is a nested sequence of neighbourhoods of X such that $\bigcap U_n=X$ there is a morphism

$$\Psi; L \rightarrow \pi_n(X, x), \{[a_U]\} \rightarrow \langle \{a_{U_n}\} \rangle$$

which has as 2 sided inverse the morphism

$$\Phi$$
; $\underline{\pi}_n(X, x) \rightarrow L$, $\langle \{a_n\} \rangle \rightarrow \{[b_U]\}$

where b_U is defined as follows. Given $U \in \operatorname{Nhd}(X)$ there is an $N(U) \in J^+$ such that a_n is homotopic to a_{n+1} in U, for all $n \geqslant N(U)$, define $b_U = a_{N(U)}$. Q.E.D.

References

- K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), pp. 223-254.
- [2] On movable compacta, Fund. Math. 66 (1969), pp. 137-146.
- [3] J. B. Quigley, Shape Theory, Approaching Theory and a Hurewicz Theorem, Thesis, Indiana University, Bloomington 1970.
- [4] Equivalence of Fundamental and Approaching Groups of Movable Pointed Compacta, to appear.

DEPARTMENT OF MATHEMATICS UNIVERSITY COLLEGE Dublin

Reçu par la Rédaction le 22. 12. 1970

The realization of dimension function $d_2(*)$

by

J. C. Nichols (Radford, Virginia)

K. Nagami and J. H. Roberts [6] introduced the metric-dependent dimension function d_2 and posed the following question, which we will call the Realization Question. Let (X, ϱ) be a metric space with $d_2(X, \varrho) < \dim X$ and let k be an integer with $d_2(X, \varrho) \leq k \leq \dim X$. Does there exist a topologically equivalent metric σ for X with $d_2(X, \sigma) = k$? For each Cantor n-manifold (K_n, ϱ) with $n \geq 3$, Nagami and Roberts described a subset (X_n, ϱ) with the property that $d_2(X_n, \varrho) = [n/2]$ and $\dim X_n \geq n-1$. This paper answers the above question in the affirmative for these spaces (X_n, ϱ) where $K_n = I^n$ (n-cube). The question remains unanswered for arbitrary metric spaces.

DEFINITION. Let (X, ϱ) be a non-empty metric space and let n be a non-negative integer. $d_2(X, \varrho) \leqslant n$ if (X, ϱ) satisfies the condition:

For any collection $C = \{(C_i, C'_i): i = 1, ..., n+1\}$ of n+1 pairs of closed sets with $\varrho(C_i, C'_i) > 0$ for each i = 1, ..., n+1, there exist closed sets B_i , i = 1, ..., n+1, such that (i) B_i separates X between C_i and C'_i for each i = 1, ..., n+1 and (ii) $\bigcap_{i=1}^{n+1} B_i = \emptyset$

for each
$$i = 1, ..., n+1$$
 and (ii) $\bigcap_{i=1}^{n+1} B_i = \emptyset$.

If $d_2(X, \varrho) \leq n$ and the statement $d_2(X, \varrho) \leq n-1$ is false, we set $d_2(X, \varrho) = n$. The empty set O has $d_2(O) = -1$.

DEFINITION. Let X be a topological space, $g: X \times X \to R$ a real valued function, and let A and B be two subsets of X. Let

$$g(A, B) = \inf\{|g(x, y)|: x \in A, y \in B\}.$$

This real number g(A, B) will be called the g-distance between A and B.

DEFINITION. Let I^n denote the Euclidean n-cube, let $p, q \in I^n$ and let $A \subset I^n$. We define Join(p, q) to be the collection of all the points

^(*) This work is taken from the author's doctoral dissertation at Duke University. I would like to thank Dr. J. H. Roberts for his guidance in the preparation of this paper.

^{14 -} Fundamenta Mathematicae, T. LXXVII