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Ultrafilters over measurable cardinals
by
Jussi Ketonen (Buffalo, N. Y.)

0. Definitions. The notation and terminology in this paper is that
of the most recent set-theoretic literature. For less well-known items
we urge the reader to consult A. Mathias (1969). We shall now define
our fundamental notions. Unless otherwise mentioned, all the wultra-
filters discussed are assumed to be nonprincipal, »-complete over a fixed
measurable cardinal x.

0.1. DEFINITION. Given two ultrafilters D, U, we say D< U if
there is a function f: »—x go that

2eDe>fYz)eU.
In this case we also denote
D =f*U).

It DL U and U <D we say: D is isomorphic to U: In symbols,
D=T.

For more on this order, see K. Kunen [2] and J. Ketonen [1]. The
above definition is due to H. J. Keisler.

0.2. DEFINITION. Given an ultrafilter D, functions f,g: x>x we
say: f, g are isomorphic (mod.D), in symbols f~yg, if there is a one-to-one
funetion ¢ so that

f=9og(modD).

In this case fi(D) == g«(D). Another way of describing the above
sitnation is to describe f and ¢ in terms of the partitions {f™({o})| a € x},
{07 ({a})| a € x} they induce. Then f~g if and only if there is a set X ¢ D
and a permutation of the labels of the g-partitioning so that the ath part
of the f-partitioning intersected with X = ath part of the permuted
g-partitioning intersected with X for every a< x.

The following notions are extensions of the concepts of W. Rudin
[1956]:

(0.3, DerINITION. If D an ultrafilter. f: x—x, then D is an f-P-poini
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if for e{rery partitioning {X,| o < »} of » into pieces ¢.D there is a set X ¢ D
so that for every a <

(XA X <.
Dis a P- -point iff D is an id-P-point where id denotes the identity
function on x.

0.4. DEFINITION, An ultrafilter D is a @ - point if for every partltlonmg

{X,] a <} of » into pieces of cardmahty <#x there is a X ¢.D so that
XA X,)<
for every o < x.

Let us say that a function f: %x—x is almost one-to-one if the inverse
image of each point has cardinality <. Thus, D is a @-point if and only
if every. almost one-to-one fnnction i one-to-one on a set e D.

0.5. DEFINITION. An ultrafilter D is selective if every non-constant
fonction (modD) is one-to-one on a set eD.

Thus, D is selective iff D is isomorphic to a normal ultrafilter.

0.6. PROPOSITION. (1) D s selective iff D is <C-minimal.

(2) If D is a Q-point and a P-point, D is selective.

(3) If f is a function »->x not constant (mod.D), the ulirafilter U = fi(D)
is a P-point if D is a f-P-point. ‘

Proof of (3). Let {X,| a <x} be a partitioning of » into pieces
not ¢U then, for every a < ¥,

Ya:fﬂl(xa) ¢'D .
Hence, there is a Z'¢.D so that

12T <
for every a < ». Thus, for every a < »
f"(2) nX,| <w.

1. Q-points. Given an ultrafilter D, let i, denote the elementary

embedding of V into the transitive submodel isomorphic to the ultra-
power VP,

1.1. ProrosiTioN. If D, U ultrafilters, D < U, then
ip(x) <iglx) < (297

Proof. Bee J. Ketonen [1]: If y: x->x 50 that D = y,(U), then the
map f—>foyp yields an elementary embedding V2 V7.
1.2. ProPOSITION. If D, U wlirafilters, D < U and ip(x) = ty(x)

?
then for any projection y from U to. D (i.e. any function  s.t. D = p,(U))
there is a Z e U so that for every a < »x:

1Z cp™({a}) < =.
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Proof. Given any such y, the map f—f o p yields an order-preserving

map ép(#)—>ig(%) = ip(x). Thus, there is a fi 2= s.t.
[f o4y = [id]y .

As a corollary, we obtain: . .

1.3. PROPOSITION. If D < U and U is a Q-point, iy(x %) < iglx). The
Keisler order on Q-points is well-founded.

1.4. THEOREM. An wultrafiller D is o Q-point if and only
a E~D st. B extends the closed unbounded filier on ».

Proof. Assume that D is a @-point. Let ¢ be the D-least one-to-one
function #»—x. Define EF by:

Xe E<*~>¢—1(X) eD. L

Then, if ¢ is closed unbounded, C ¢ H: For otherwise we would have
the fu_.nction

if there is

fla) = sup(0 A a),

defined on X = —C being 1-1 and <id on a set Y ¢ B, violating the
minimality of ¢. Hence, ¥ extends the closed unbounded filter.

Conversely, agsume that D is an extension of the closed unbounded
filter. Liet f: x—x so that f < id on a set X e D. Then X is Mahlo. Hence,
there is a set ¥ C X of cardinality » so that f is constant on ¥. Thus,
f cannot be almost 1-1. Now, assume that f>id. Let

C= {0 y <d->f(y) < 0}.
Then ¢ is closed unbounded on x, hence ¢ eD The function f is
obvionsly 1-1 on C.

Let 8(x) denote the following statement: Every u-complete filter
over x can be extended to a x-complete ultrafilter.

1.5. ProPOSITION. If S(x), there are 2 Q-points. For every Dx-com-
plete over x, thére is o Q-point U = D.

Proof. Let {X,| a < »} be a partitioning of » into Mahlo sets. leen
an ultrafilter .D over x, let

FEOV{LJ*YJ AGD}:

aed

where { is the closed unbounded filter on x». If U is an extension of F,
U is a @-point z=D.

The rest follows from K. Kunen (1970): Bvery ultmfllter over » has
at most 2* nitrafilters below it in the Keisler order.

1.6. Damminirion. Jf R, M ave ultrafilters over =, we define their
product Rx M to he the set of all subsets X of X » s.t.

{a] XjaeM}eR, where X|a={B| (a,p)eX}.

17 ~ Fundamenta Mathematicae, 'T, LXXVIL



Artur


260 J. Ketonen

Trivially, Bx M ‘is a x-complete ultrafilter over x» X x. For more
on products, see K. Kunen [2], [3] and J. Ketonen [1].

1.7. ProposmoN. If D is a product, D is neither a P-point nor
a Q-point. ’

Proof. For the projection m; to the first coordinate on X x» would
yield a function which cahnot be refined to an almost 1-1 function, and
the projection m, to the 2nd coordinate yields a function which is almost
one-to-one but not one-to-ome. This follows from. the fact that

{a,B)| e<f<kteRXM.

Thus, in particular, as Kenneth Kunen independently noted, Kunen’s
dassification of ultrafilters in universes constructed from one normal
ultrafilter (see Kunen [2]) combined with 1.4 and 1.7 yield Jech’s result
on extensions of the closed unbounded filter: In this universe there is
only one extension of the closed unbounded filter. .

Given a non-Q-point D, there is a canonical @-point below it:

1.8, PropostTioN. If D an ultrafilter, and f is the least almost 1-1 fumc-
tion (mod D), f«(D) is an extension of the closed unbounded filier and hence
is & Q-point.

Proof. For if f(D) does not extend the closed unbounded filter,
there is an almost 1-1 function y < id(modfy(D)). Thus, p of <fand pef
is ‘almost 1-1; violating the minimality of f.

This Q-point is in fact the only one given by an almost 1-1 funetion
(mod D):

1.9. ProrosITION. Let D be an ulirafilter, ¢ an almost 1-1 function
#—>% 8.4 go(D) extends the closed unbounded filter. Then, if f < g (modD),
f is not almost 1-1. ‘

Proof. Suppose that for every a <, f(e) < g(a) and f defined a.e.
For o < x, let '

8=y ) ~ g7 ({a)) # 0] .
Hence, 8,Ca and

J7Ho) o g7 ({a}) Cf(Ba)
Then:

‘ T={a| 8, # 0} egu(D),
hence 7' is Mahlo. Define a pressing down function p on T by:
pla)=pplfel,].

Then there is a 7 C T' of cardinality » s.t. p = constant y on 7”. Hence,
for aeT:

F7h g7 ({a)) # 05
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i.e.
Pl ==

1.10. PROPOSITION. If D an wltrafilier, g ils least almost 1-1 function
u—>n, then for any other function h: x—x: h is almost 1-1 iff b > g iff there
is a function @, ¢ almost 1-1, so that

@ o h=g(modD).
Proof. Firstly, if & > g, k is almost 1-1: For every a < x:
R {eD U™ 0N v<a}.

Assume that h is almost 1-1. Let ¢ be the least almost 1-1 function of

he(D). Then (¢ o h)«(D) extends the closed unbounded filter. Hence,
by 1.9 ¢ o h = g(modD).

1.11. PrOPORITION. No two distinct x-complele extensions of the
closed unbounded filter » ultrafiliers can be isomorphic.

2. Products of ultrafilters. Given two ultrafilters U,V over » we
defined their produect U X7V to be the ultrafilter

{X_C_nxn] {a| XlaeV}e U} .

~ In the proof of Proposition 1.7 we found that if =, = projection
onto the ith coordinate (i =1 or 2), mu(U X V)= U, and m(UX V)=V
and there is a Z ¢ UXV so that for every o < «:

|z *({a}) N B] < o]

* and therefore 7y, < my (mod U X V).

We ghall in the following establish some converses to the above factse

2.1. PROPOSITION. Let D be an ultrafilier f, g v—x and h: x~>nX %
be defined by h(a)= (f(a), g(a)). Then, if for every ZeD

fal {8 Z ~ g7 ({B) ~f({a}) # 0} e U}V,

U,V being ultrafiliers over x, then hy(D)= UXV.

Proof. It X eV x U,

la] X]a= {f| (a,p)eX}eU}teV.

Thus, if

Z= e o Y g7

[

then Z e D since for every Y eD, ¥ nZ 0. But

Z = {y| (f(»), 9(») e X} .

2.2. PROPOSITION. Suppose D an ultrafilier, f, g: x—x so that both f, g
non-constant, f << g gu(D) is normal and g is not 1-1 on a set € D. Then

D = fu(D) X gu(D) = hi(D)

1™
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where h(a) = (f(a), g(a)) for every a <.
Proof, Let U= g«(D). If the conditions of Proposition 2.1 were
not satistied, we can find a Z ¢ D so that for no a < »

X,= (Bl Zog (B Af (e # 0} e U
we know that X, C (a, k), since
g a) CU Nl vy <o

Thus, there exists a set X ¢ U so thatb the sets X, ~ X arc disjoint singletons.
We can without aloss of generality assume that there is a 1-1 function
so that X, C {t(a)}; i.e.

‘ tof=g(modD).

Hence, there is a 1-1 function I so that f = I o g. But f < ¢; hence I must
be < id(mod U). But this contradicts the normality of U.

As a corollary, we obtain

2.3.  PROPOSITION. Suppose D is an ultrafilier, g: x—» almost 1-1 so
that g«(D) is normal. Then: Bither D is a P-poini or there is @ U< D
- 80 that

Uxg(D)< D,

9.4. PROPOSITION. Suppose U , D ulirafiliers, f: x —» so that U = fi(D)
* 48 normal <D. Then there is a V< D so that D =V XU if and only if
"X ¢D so that for a <=z

I ({a}) n X < lal -
Proof. For assume that for every a < x
. ) < Lol -
Then there is a partitioning {X,| o < x} of x» into pieces ¢ so that
(1) For every a <= f|X, is 1-1
(2) For every a <z, ‘
Fa) CULX,| y<a}.

Thus, if we define g =y on X,, the function t(a) = (h(a), f(a)) is 1-L.
It remains to show that g < f(modD). This follows from the fact that g is
not almost 1-1: If Y e D define

ha) = wylf({a)) ~ X, ~ T 0]

Then k is a pressing down function, hence a constant y(mod77). This
implies that

‘ o)~ Y =2.
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We shall in the following briefly sketch the theory of the Keisler-
order on products.

2.5. ProrosITION. If D, B, U ultrafilters, then U< DX E iff either
U < D or there are ulirafiliers B, < E s..

XeUsc>{f| X ecBg}eD.
Proof. Let {X,| a < x»} partition » X » so that

SeUe>JX,eDXE.
aeS
Let Y= X,|8.
Case 1. For a.e. a(modD) there is one, and hence exactly one f(a)
so that Y’® ¢ B. Obviously, in this case U = fi(D).
Cage 2. Not Case 1. Without a loss of generality assume that for
every a,f: Y24 H. Define B, by:

XeB—>UYeR.
. aeX
Obviously, our claim is then satisfied.
Using the reasoning of Proposition 2.5 it is then easy to prove:

2.6. ProPOSITION. If both U,V are normal, then U XV has exactly 3
isomorphism classes of mon-constant functions: Those isomorphie to my,
those isomorphic to m, and the 1-1 functions. More generally, if Uy, ..., Un
(1< n < w) normal, then the only mormal ultrafiliers <UyX ...X Uy are
Uiy ooy U and Uy X ... X Uy has exactly 2"—1 isomorphism classes of
fumctions. :

2.7. ProrositioN. Let U, B, (a < »), D be ultrafiliers, U normal s.1.
X eU<«>{f] XeBg}eD.
Then Dx U is the D-sum of T s: i.e.

DxUs= DY By={XCuxx {a] XlaecB}eD}.
D

Proof. Let

T,= {8 y<p and X,={8 ] p<2}
Then
XeUe>X,c 3B,
D

and X eDesJT,e D B,.
veX D

yeX

.

Now use the reasoning of 2.3.
© As a corollary, we obtain:
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9.8. ProrosrTioN. If D, B ulirafilters, U< DX E is normal, then
cither UL D or there are B, < E so thot :

DxU= D H,.
D

In particular, if. B is normal, U <D or U=1

3. P-points. Let D be an ultrafilter. Using Proposition 1.9 we obtain:

3.1. TEEOREM. Let f be the least non-constant function (mod.D) x—syx,
Then is a P-point if and only if f is almost 1-1 (mod.D) if and only if for
every non-constant funciion h there is a almost 1-1 ¢ so that f = ¢ o h(mod.D)
i.e. there is. @ set X ¢ D so that for o, f e X:

fla) # f(B)~>h(a) = h(B) .

" By Proposition 0.6 we also have the following observation:

3.2. PropPosITION. If D is a P-point, U< D, U is a P-point. There
is at most one nmormal ultrafilter <D.

3.3. ProrostTioN. Let D be a P-point. Then there is a P-point .

D < D so that if @ is the least non-constant function »—» (mod D),
' g <id-Hf: fop=g¢g

and there is o disjointed sequence {I},., of intervalls Cox whose end points
form a strictly increasing sequence so that ¢ = a on I, for a < x.

Proof. Let g be the D-least non-constant function not expressible
in the form fo p, where p is the least non-constant function of D. Let
D = ¢.(D). Then the first condition is automatically satisfied. Let
U = p4(D). Then U is normal. Let §, = ¢~*({a}) C (a, k). Define a map
F: [xP~{0,1} by
1 if sup8, > ming;,

T =
({a, 83) 0 otherwise (a < ).

Using the fact that the 8.’s have cardinality <x we find a X e U
so that F''[X] = {0}. The claim follows.
' 3.4. DEFINITION. An ultrafilter D iy atomic if D has exactly two
1somorph1_sm classes of non-constant functions; those which are 1-1 and
those which are isomorphic to the least non-constant function x-—»z

3.5. PB:O?OSITION. If D is a mon-normal P-point, éither there is
a U< D so that U is atomic or the Keisler-order on ulirafiliers <D is not
well-founded.

Proof. For assume that there are no atomic P-points below D.
Let ¢ be the least non-1-1 function s.t. ¢ is not isomorphic to the least

function of D. Then, if D, = ¢,(D), V < D, < D, and we can apply the
same process to D; ete.

©
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In the following, we shall construct an atomic P-point. Note that
any atomic ultrafilter is either a P-point or a Q-point, dependending .
on whether the least function is almost 1-1 or not. In the next chapter,
we shall construct an atomic -point using the same method.

3.6. THEOREM. If there is a normal ultrafiller containing the set

M = {a| a <x & a is measurable}

then there is anm atomic, non-normal P -poind.
Note that this happens in particular, if » is supercompact or if §,(2¥)
carries a l-complete normal ultrafilter.
Proof of Theorem 3.6. Let U> 1M be normal. For ae M, let
o* = the next measurable cardinal and let D, be normal over a*.
Define D by:
XeDes{o| Xna*eD}eT.
Firstly,
Ula,a*)eD.
aeM
This is a2 non-Mahlo set. Hence, D is non-normal. Define ¢ = « on (a, ¢*).
Then ¢ is the first function of D: For let ¢ < ¢. Then for one a(mod.D)

{y < a* #(y) <)}~ a*eD,.

Since D, is a*-complete we find p(a) <a so that i(y)= p(a) for a.e.

y(modD,). But p is constant (mod U). '
Thus, the first function of D is almost 1-1 and therefore D is & P-point.

Now, given any non-constant non 1-1 (mod D) fanetion f: x—x, by Propo-

sition 3.1 we can without aloss of generality assume that

a < B—f"(p " ({a})) ~f e {BY) = 0
Since f is not 1-1, '
{a| fi(a, a*) not 1-1 (modD,)}e U.
Thus,
{a] fi(a, *) is constant (modD,)}eU

by the normality of .D,. Flence, there is a g 80 that f=goq.
Selecting instiead of D,’s mon-normal ultrafilbers we can construct
P-points having lots of ultrafilters below them. Note that for the above.

ultrafilter .D:
ip(k) = o.t.(£[£]<%,< >)

= o.t. (” (y <) = ipl)-
U
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4. More on Q-points. In the following, let [ denote the closed nun-
bounded filter on .
4.1; ProposITION. Let D be an wltrafilter. Then the- set
I'(D) = {lglpl 9«(D) 2}
represents a set of ovdinals which is 1-closed for every A << w; d.e. if {oy] i < 1}
is an inereasing - sequence in I'(D),
sup {ai] © < A} e I'(D). )
Proof. Let {gi| 4+ < A} be a strictly increasing sequence of functions
in I'(D), and let g = sup(g:). Given any ¢ e, for every ¢ < 1 gi(a) € 0 a.e.
{mod D). Hence :

g(a) = supgy(a) e ¢ a.e. (modD).
i<d

Note that if D, U are @-points and D = ¢(U), then the map f—+fop
maps (D) into I'(U) and if D < U,
ordertype (I'(D)) < ordertype ().

As a-corollary to Proposition 4.1 we obtain

4.2, PROPOSITION. If the filter { v {a| ¢f(a) = w} cannot be exiended
to a x-complete wltrafilier, then every x-complete wlivafilter has at most
finitely mamy mnormal wltrafiliers (and other Q -points) below it in the
Keisler-order:

Proof. For if D is such that |[I'(D)| > », we can find an increasing
sequence {gi| ¢ < o} in I'(D). Then g = supg; ¢ ['(D) and every a: cf(g(a))
= w; henece ,

{a| ¢f(0) = w} € g(D) .

More generally, for any regular cardinal 1 < sx:

4.3. PROPOSITION: If the filter {w {a| cf(a) = A} camnot be extended

to a x-complete ultrafilter, then amy x-complete ultrafilier over x» has <A
normal ultrafilters below it.

4.4. PROPOSTTION. If q ¢ I'(D) and p < g, then for any 1-1 function
@: ¢ o p < g(mod D).

Proof. If not, suppose ¢ o p = g(modD). Now,
({a}) C Ul ™)) v < a}
for every a, and each p~'({y}) intersects at most o(¥) g ({a})’s. Let
8, = {al ¢7({a}) ~np7({y}) 5 0} .
Thus I8,l <=« and §,C(y,x). But then
L X=US,cq(D).

L oy<u
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Thus, we can define a function f by: i#(a) = uy[a €8,] a.e. on X. But
t(a) < a; hence there is a ¥ of cardinality « so that ¢ is a constant yonY.
But then |8,| = »: a contradietion.

4.5. PROPOSITION. Let f < id s.d. there is a almost 1-1 Junction v s..

pof=pel'(D) (such a v always ewisis: Let v be the least almost 1-1
function of f«(D)). Then there is a 1-1 function ¢ so that

f<@op(modD).
Proof. Define ¢ to be an 1.1 function satisfying

@(a) = supy™({a}) (a<k).
Then
pop=gopof>f,
These two propositions suggest a method for finding some elements
of I'(D):
Ifp e I'(D), and p is not almost one-to-one,

p* = suppile o pl| ¢l-1}

is the successor of p in I'(D). Using Proposition 4.1 at Limit stages and
the above at successorstages, starting from the least function of. I'(D)
we get the first » elements of I'(D).

Now, let ug assume that { v {a] ¢f(a) = A} (A a regular cardinal <x)
can be extended to an ultrafilter. By the well-foundedness of the Keisler-
order on @-points, we can pick a <-minimal extension D of ¢u
v {a] ef(a) = A B .

4.6. PROPOSITION. The ordertype of I'(D) 4is <A In particular
I[(D)| < A. Here:

T(D) = {g eI'(D)| g <id}.

_ Proof. For otherwise, there exists an increasing sequence {gi| ¢ < A}
CI'(D) so that g == supgs < id. Bub g.(D) would extend ¢ v {a| ¢f{a) = 4},

i<
violating minimality.

4.7. ProrosimioN. The ordertype of I'(D) is exactly ]Y‘(D)] = /1
Proof. If not, pick {f,}a < A cofinal in id(modD). Then there is
& tixed p ¢ I'(D), p << id, so that for every a < A there is a 1-1 y, o that
fosiy e (a<<).
Let v = supy,modpy(D)). Then p o p 3= id (mod D), hence o p is 1-1 on
a<d

a set e Dy p is 1-1; a contradiction.
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4.8. CoROLLARY. If { U {a] f(a) = A} can be extended 1o a x-complete
ultrafilter, then for every u <2 (v {a| ¢f(a) = u} can be extended to o
»-complete ultrafilter.

4.9, ProrosiTion. If U < D, then there are only <A fwnctwns P eT( )
so that if U = fu(D), there is a @ so that p = ¢ o f(mod.D). In pmtwulaw,
(0] < 4.

Proof. For if not, there is an increasing sequence {pi| 4 <4}, X ¢D
s0 that for 1 < 2, a,f e X

pia) # pi(B) ~F(a) # F(B)
We can without a loss of generality assume that

suppila)=a  (aeX),
i<i

and

pue) < pola) <. (aeX).
Thus:
a# BBy = d—~pi(a) #1%(/3) f(a) # f(B) ,
ie. f is 1-1. '
The above observations also yield:
4.10. PROPOSITION. D is a <-minimal extension of & v {a| ¢f(a) =1}
iff I'(D) has ordertype A. '
Let y(D) = ordertype of I'(D)= ordertype of I'(D). Can ¢(D) of
a Q-point be a suceessor? The answer is yes, under certain conditions:
4.11. PROPOSITION. Suppose that there are » distinct normal ulira-
Jiliers over x. Then, for any Q-point D, there is a @-point D* > D so that
y(D)+1, the greatest fumction of I'(D%) yielding D.
Proof. Let {D,| a < x} be a sequence of distinct normal ultrafilters
{4, a <} a partitioning of » into Mahlo sets .4, so that
v A, eD, (a<wmx).
Define D* by: . .
X eDtes{a]| XnA,eD}eD.
It we define f=«on 4,, we find that fu(D™) = {fiv {pof] ¢ <I'(D)}

Actually, the map ¢—g o f yields an onto map from {[lp|p: %->x}
to {{wlplv: x—x and v <id}.

In particular, if D is normal, U = D* is an atomic Q-point, 5o that
[[@<=]]x-<.
Ua<k D

Note that D* is a D-sum of D_’s. This situation should be compared
with 2.7 and 1.7,

icm

©

Ultrafiltres over measurable cardinals 269

.4.12. DEFINITION. D is a hereditary Q-point if for each function
f<id, f«(D) is & @-point.

Thus, lf D is a hereditary ¢ -point, for every f < id there is a pel(D)
go that p~f. In particular, D has exactly |I'(D)| isomorphism classes
of functions.

Tf U is normal, then U, U™, U**, ... are hereditary Q- -points, having
exactly 1,2, ... 1som0rph1sm clagses of fanctions,
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