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1. Introduction. The class of o-spaces, first introduced by Okuyama
in [8], is defined in terms of a sequence of locally finite collections. Under
the assumption of regularity Nagata and Siwiec [7] showed that o-spaces
can be characterized in terms of a sequence of closure preserving collections
and also in terms of a sequence of digerete collections. In this paper we
obtain several characterizations of o-spaces in terms of a sequence of
open covers. It should be noted that our method of proof yields another
proof of the Nagata-Siwiec results. We give two applications of our
characterizations. In § 3 we answer affirmatively a question raised by
BReed in [9], and in § 4 we prove Heath’s result [4] that every stratifiable
space is a o-space. ' . .

A collection F of subsets of a topological space X is a net for X if
for each point p in X and each open neighborhood U of p thereis a F in &
such that p e FC U. A space with a o-locally finite met is called
a o-space [8].

TUnless otherwise stated no separation axioms are assumed. The seb
of natural numbers will be denoted by N.

2. The characterizations. Let (X, J) be a topological space and let g
be a function from N X X into J such that for each » in X, z e[ g(n, 2).
=1

Notice that if we let Iy = {g(n, #): @ in X} then J;,J,, ... i8 a sequence
of open covers of X, Consider the following properties of the fanction g.

(A) If yeg(n, ) thew g(n,y)Cgn,»).

(B)If peg(n,my) for mn==1,2,.. then the sequence {z.) con-
verges to p. '

(C) pegn,ys and ya e g(n, 6) for n== 1,2, ... then the sequence
{®n) converges to p. )

(D) It {p, @a} Cg(n,ya) and yueg(n,aa) for n=1,2, ... then the
fequence <@,y converges o p.

(B) It {p, @} Cg(n,yn) and gueg(n,») ng(n,a) for n=1,2,..
then the sequence <¢m,> converges to p. :
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Remark. Semi-stratifiable space can be characterized in termg
of a function g satistying (B) and every developable space has a funetion ¢
satistying (D). (See [13, [21, 161, and [6].)

TaeoREM. The following are equivalent for o regular space (X, 3):

(1) X has @ o-discrete net,

(2) X is a c-8pace,

(8) X has a o-closure preserving mel,

4) X has a function g satisfying (A) and (B),

(8) X has a function g satisfying (C),

(6) X -has a function ¢ satisfying (D),

(1) X has a f'tmotion g satisfying (B) and (B).

Proof. The following implications are easy: (Ly=(2), (2)=(3),
(4)=(3), (8)=(6), and (6)= (7). To complete the proof we need only

show that (3)= (4) and (7)= (1)- '
(3)= (4): Let F;, Fy, ... be a sequence of closure preserving collections

o
in X such.that | J % is a net for X. We may assume that each Fy covers X,

=1
and by the regularity of X we may also assume that each Fy is a closed
collection. (This is the only place where regularity is used.) Forn =1,2,..

16t Jn = 7\ F,. Note that each J, is a closure preserving closed cover of X
and tha.t‘; tlhe following property () is satisfied: if p is a point of X and U is
an open neighborhood of p, then there is a % in N such that for -each
n> k there is a G, in 3, such that p e @G CU.

For # in X and n in N let g(n, )= X— U{G in Ju: ¢ @}, Clearly
@ e g(n, ) and since 3, is a closure preserving closed collection it follows
that g(n, ) is an open set. Finally, it iy straightforward to check that
the funetion g satisties (A) and (B). (Use property (*) to prove (B).)

()= (1): This is-the most difficult implication. The key to the proof
is Heaths technique [4] of showing that stratifiable spaces are ¢-spaces.
TLet ¢ be a function satisfying (B) and (B). We may assume that for all n
in Nand ¢ in X, g(n+1,2) Cg(n, ). Let < be a well ordering on X.
For # in X and i,n in N let

Hw,i,m)=X—[(Ulgln,9): v ¢gi, a)}) o (U6, ¥): ¥ < )|

and let %(i,n)={H(e,i,n): ©eX}. One can show thab H(%,i,m)
Cgli, %) and that J(i,n) is a discrete collection. For m=1,2,.
let F(w,i;n, m)=1{yecH@,i,n):aeglm,y)} and let F(i,n,m
= {F(x, i, n, m): z in X}. Since (i, n) is a discrete collection, 80
is ¥(i,n,m). Let ¥ = | J{F(i,n,m): i,n,m in N}. To complete the
proof it suffices to show that F is a net for X
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Let p be a point of X and let U be an open neighborhood of ?. For

i=1,2,.. let @ bej the smallest element of X such that p sg(z" &)
Since ¢ satisfies (B) it follows that w;—p. Consider these a,ssertions.,

(a) For each m in N there is an index I(m) such that for i > I(m)
we Ung(m, ) !

(b) For each ¢ in N there is an index J (i) such that if » > K (i) and
f‘/¢g('&:w¢) then p ¢g(n, ¥). :

Asgertion (a) follows from the fact that »;—p, and (b) can be proved
nsing the fact that the function ¢ satisfies (B).

Now let {im: m=1,2,..} be an increasing sequence of positive
integers such that @, e Ung(m,p) for m=1,2,.., and let
fnm: m=1,2,..} be an increasing sequence of positive integers such
that if ¥ ¢ g (8, @1,) then p ¢ g (nm, y). (Such sequences can be constructed
using (a) and (b).) Then for m=1,2,.., p e F(z,, im, tm, m). Now let
us show that for some m in N, F(#,, im, #m, m) C U. Suppose not. Then
there is a sequence {Ym)> such that ym e F (21, , im, tm, m) and yn ¢ U for
m=1,2,.. Now {p, ym} C F(%1,, im, "m, m) implies that @i, e g(m, p) ~
~gm,ym), oand since F(m,,im, m, m) CH (@, , in, 7n) C g(im, 2,)
Cg(m,m,) it follows that {p,ym} C g(m, a,). Hence by (), Ym—>D and
this gives a contradiction.

3. An application. In this section we answer affirmatively the following
question raised by Reed in [9]: Is a regular wi-space with o G - diagonal
o o-space? We begin by introducing a new clags of topological spaces.

DEFINITION. A topological space (X, J) is & MN-space if there is

a function ¢ from Nx X into J with # €(7) g(n, ) for all # in X satisfying

n=l
this condition: if {p,wa} C g(n,ys) and g(n,p) ~g(n,z:) #9 for =
=1,2,.. then the sequence (w,> converges to p.

Tt is eagy to see that M -spaces satisty (7) in § 2 and so every MN -
space is a o-gpace. Moreover it follows from Reed’s Theorem 2.6 that
every wd-space with a @ -diagonal is & MN -space. Thus Reed’s question
is answered affirmatively.

Remark. Hvery Moore space and every Nagata space is a MN -space.
(See [2] and [3].) On the other hand, M -spaces are semi-mefric spaces 21"
These implications can be summarized in a diagram as follows.

Moore space Nagata space
4
MY -gpace

geri-metric space 0-8pace
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4. Stratifiable spaces are o-spaces. In this section we use one of
our characterizations to give a short proof of Heath’s result [4] thag
every stratifiable space is a o-space. The following Lemma is dite to
Heath [4].

Levma (Heath). Let (X,3) be a stratifiable space. Then there is
o fungtion g: NX X3 satisfying these conditions.

@) e gln, z) for all © in X;
n=1

(i) gn+1,) Cg(n,x) for all n in N and x in X;

(iil) if p eg(n, za) for n = 1,2, ... then the sequence {n) converges to p;

(iv) if H is a closed subset of X and p ¢ H then there is a n in N such
ihat p ¢ U lgln, o)z o< 1. |

TrHEOREM (Heath). Bvery stratifiable space is a o-space.

Proof. Let X be a stratifiable space and let ¢ be a function satistying
conditions (i)-(iv) in the above Lemma. To show that X is a o-space
it suffices to show that g satisfies condition (C) in § 2. Thus, let p € g(n, ya)
and Y e g(n, wn) for n =1, 2, ..., and let us show that z,—p. Let W be
-an open nghd. of p. Then p ¢ (X —W) so by (iv) there is a positive integer n,
and an open nghd. V of p such that V ~ ({J {g(n, 2): e X—W)}) = 3.
Now p eg(n, yu) for n =1, 2, ... 50 by (iii) y,—p. Hence there is a positive
integer ny > n, such that if n > n; then y, ¢ V. It is now easy to check
that if #n > n, then z, ¢ W. :

Remark. As previously stated in § 2, the construction used in
‘proving (7)=- (1) is the same as that used by Heath in proving that every
stratifiable space is a o-space. Thus it is not surprising that Heath's
result i3 easy to recover from one of our characterizations.
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