

Characterizations of σ-spaces

by

R. W. Heath and R. E. Hodel (Durham, North Carolina)

1. Introduction. The class of σ -spaces, first introduced by Okuyama in [8], is defined in terms of a sequence of locally finite collections. Under the assumption of regularity Nagata and Siwiec [7] showed that σ -spaces can be characterized in terms of a sequence of closure preserving collections and also in terms of a sequence of discrete collections. In this paper we obtain several characterizations of σ -spaces in terms of a sequence of open covers. It should be noted that our method of proof yields another proof of the Nagata-Siwiec results. We give two applications of our characterizations. In § 3 we answer affirmatively a question raised by Beed in [9], and in § 4 we prove Heath's result [4] that every stratifiable space is a σ -space.

A collection \mathcal{F} of subsets of a topological space X is a *net* for X if for each point p in X and each open neighborhood U of p there is a F in \mathcal{F} such that $p \in F \subseteq U$. A space with a σ -locally finite net is called a σ -space [8].

Unless otherwise stated no separation axioms are assumed. The set of natural numbers will be denoted by N.

- 2. The characterizations. Let (X, \mathfrak{I}) be a topological space and let g be a function from $N \times X$ into \mathfrak{I} such that for each x in X, $x \in \bigcap_{n=1}^{\infty} g(n, x)$. Notice that if we let $\mathfrak{I}_n = \{g(n, x) \colon x \text{ in } X\}$ then $\mathfrak{I}_1, \mathfrak{I}_2, \ldots$ is a sequence of open covers of X. Consider the following properties of the function g.
 - (A) If $y \in g(n, x)$ then $g(n, y) \subseteq g(n, x)$.
- (B) If $p \in g(n, x_n)$ for n = 1, 2, ... then the sequence $\langle x_n \rangle$ converges to p.
- (C) If $p \in g(n, y_n)$ and $y_n \in g(n, x_n)$ for n = 1, 2, ... then the sequence $\langle x_n \rangle$ converges to p.
- (D) If $\{p, x_n\} \subseteq g(n, y_n)$ and $y_n \in g(n, x_n)$ for n = 1, 2, ... then the sequence $\langle x_n \rangle$ converges to p.
- (E) If $\{p, x_n\} \subseteq g(n, y_n)$ and $y_n \in g(n, p) \cap g(n, x_n)$ for n = 1, 2, ... then the sequence $\langle x_n \rangle$ converges to p.

Remark. Semi-stratifiable space can be characterized in terms of a function g satisfying (B) and every developable space has a function g satisfying (D). (See [1], [2], [5], and [6].)

Theorem. The following are equivalent for a regular space (X, \mathfrak{J}) :

- (1) X has a \sigma-discrete net,
- (2) X is a σ -space,
- (3) X has a σ -closure preserving net,
- (4) X has a function g satisfying (A) and (B),
- (5) X has a function g satisfying (C),
- (6) X has a function g satisfying (D),
- (7) X has a function g satisfying (B) and (E).

Proof. The following implications are easy: $(1) \Rightarrow (2)$, $(2) \Rightarrow (3)$, $(4) \Rightarrow (5)$, $(5) \Rightarrow (6)$, and $(6) \Rightarrow (7)$. To complete the proof we need only show that $(3) \Rightarrow (4)$ and $(7) \Rightarrow (1)$.

 $(3)\Rightarrow (4)$: Let \mathcal{F}_1 , \mathcal{F}_2 , ... be a sequence of closure preserving collections in X such that $\overset{\sim}{\bigcup} \mathcal{F}_n$ is a net for X. We may assume that each \mathcal{F}_n covers X, and by the regularity of X we may also assume that each \mathcal{F}_n is a closed collection. (This is the only place where regularity is used.) For n=1,2,... let $\mathfrak{I}_n=\overset{n}{\bigwedge}\mathcal{F}_i$. Note that each \mathfrak{I}_n is a closure preserving closed cover of X and that the following property (*) is satisfied: if p is a point of X and U is an open neighborhood of p, then there is a k in N such that for each $n\geqslant k$ there is a G_n in \mathfrak{I}_n such that $p\in G_n\subseteq U$.

For x in X and n in N let $g(n, x) = \overline{X} - \bigcup \{G \text{ in } \mathbb{J}_n \colon x \notin G\}$. Clearly $x \in g(n, x)$ and since \mathbb{J}_n is a closure preserving closed collection it follows that g(n, x) is an open set. Finally, it is straightforward to check that the function g satisfies (A) and (B). (Use property (*) to prove (B).)

 $(7) \Rightarrow (1)$: This is the most difficult implication. The key to the proof is Heath's technique [4] of showing that stratifiable spaces are σ -spaces. Let g be a function satisfying (B) and (E). We may assume that for all n in N and x in X, $g(n+1,x) \subseteq g(n,x)$. Let \leqslant be a well ordering on X. For x in X and i, n in N let

$$H(x, i, n) = X - [(\bigcup \{g(n, y): y \notin g(i, x)\}) \cup (\bigcup \{g(i, y): y < x\})]$$

and let $\mathcal{B}(i,n) = \{H(x,i,n): x \in X\}$. One can show that $H(x,i,n) \subset g(i,x)$ and that $\mathcal{B}(i,n)$ is a discrete collection. For m=1,2,... let $F(x,i,n,m) = \{y \in H(x,i,n): x \in g(m,y)\}$ and let $\mathcal{F}(i,n,m) = \{F(x,i,n,m): x \text{ in } X\}$. Since $\mathcal{B}(i,n)$ is a discrete collection, so is $\mathcal{F}(i,n,m)$. Let $\mathcal{F} = \bigcup \{\mathcal{F}(i,n,m): i,n,m \text{ in } N\}$. To complete the proof it suffices to show that \mathcal{F} is a net for X.

Let p be a point of X and let U be an open neighborhood of p. For i = 1, 2, ... let x_i be the smallest element of X such that $p \in g(i, x_i)$. Since g satisfies (B) it follows that $x_i \to p$. Consider these assertions.

- (a) For each m in N there is an index I(m) such that for $i \ge I(m)$, $x_i \in U \cap g(m, p)$.
- (b) For each i in N there is an index K(i) such that if $n \ge K(i)$ and $y \notin g(i, x_i)$ then $p \notin g(n, y)$.

Assertion (a) follows from the fact that $x_i \rightarrow p$, and (b) can be proved using the fact that the function g satisfies (B).

Now let $\{i_m\colon m=1\,,2\,,\ldots\}$ be an increasing sequence of positive integers such that $x_{i_m}\in U\cap g(m,p)$ for $m=1\,,2\,,\ldots$, and let $\{n_m\colon m=1\,,2\,,\ldots\}$ be an increasing sequence of positive integers such that if $y\notin g(i_m,x_{i_m})$ then $p\notin g(n_m,y)$. (Such sequences can be constructed using (a) and (b).) Then for $m=1\,,2\,,\ldots\,,p\in F(x_{i_m},i_m,n_m,m)$. Now let us show that for some m in $N,F(x_{i_m},i_m,n_m,m)\subseteq U$. Suppose not. Then there is a sequence $\langle y_m\rangle$ such that $y_m\in F(x_{i_m},i_m,n_m,m)$ and $y_m\notin U$ for $m=1\,,2\,,\ldots\,$ Now $\{p\,,y_m\}\subseteq F(x_{i_m},i_m,n_m,m)$ implies that $x_{i_m}\in g(m,p)\cap g(m,y_m)$, and since $F(x_{i_m},i_m,n_m,m)\subseteq H(x_{i_m},i_m,n_m)\subseteq g(i_m,x_{i_m})\subseteq g(m,x_{i_m})$ it follows that $\{p\,,y_m\}\subseteq g(m,x_{i_m})$. Hence by (E), $y_m\to p$ and this gives a contradiction.

3. An application. In this section we answer affirmatively the following question raised by Reed in [9]: Is a regular $w\delta$ -space with a G_{δ}^* -diagonal a σ -space? We begin by introducing a new class of topological spaces.

DEFINITION. A topological space (X, \mathfrak{J}) is a MN-space if there is a function g from $N \times X$ into \mathfrak{J} with $x \in \bigcap_{n=1}^{\infty} g(n, x)$ for all x in X satisfying this condition: if $\{p, x_n\} \subseteq g(n, y_n)$ and $g(n, p) \cap g(n, x_n) \neq \emptyset$ for n = 1, 2, ... then the sequence $\langle x_n \rangle$ converges to p.

It is easy to see that MN-spaces satisfy (7) in § 2 and so every MN-space is a σ -space. Moreover it follows from Reed's Theorem 2.6 that every $w\delta$ -space with a G_{δ}^* -diagonal is a MN-space. Thus Reed's question is answered affirmatively.

Remark. Every Moore space and every Nagata space is a MN-space. (See [2] and [3].) On the other hand, MN-spaces are semi-metric spaces [2]. These implications can be summarized in a diagram as follows.

Moore	space	Nagata space
		₩
	MN - space	
		₩
semi-metric	space	σ -space

4. Stratifiable spaces are σ -spaces. In this section we use one of our characterizations to give a short proof of Heath's result [4] that every stratifiable space is a σ -space. The following Lemma is due to Heath [4].

LEMMA (Heath). Let (X, \Im) be a stratifiable space. Then there is a function $g \colon N \times X \to \Im$ satisfying these conditions.

- (i) $x \in \bigcap_{n=1}^{\infty} g(n, x)$ for all x in X;
- (ii) $g(n+1, x) \subseteq g(n, x)$ for all n in N and x in X;
- (iii) if $p \in g(n, x_n)$ for n = 1, 2, ... then the sequence $\langle x_n \rangle$ converges to p;
- (iv) if H is a closed subset of X and $p \notin H$ then there is a n in N such that $p \notin \bigcup \{g(n, x) : x \in H\}$.

THEOREM (Heath). Every stratifiable space is a σ -space.

Proof. Let X be a stratifiable space and let g be a function satisfying conditions (i)–(iv) in the above Lemma. To show that X is a σ -space it suffices to show that g satisfies condition (C) in § 2. Thus, let $p \in g(n, y_n)$ and $y_n \in g(n, x_n)$ for $n=1, 2, \ldots$, and let us show that $x_n \to p$. Let W be an open nghd. of p. Then $p \notin (X-W)$ so by (iv) there is a positive integer n_0 and an open nghd. V of p such that $V \cap (\bigcup \{g(n_0, x): x \in X-W\}) = \emptyset$. Now $p \in g(n, y_n)$ for $n=1, 2, \ldots$ so by (iii) $y_n \to p$. Hence there is a positive integer $n_1 \ge n_0$ such that if $n \ge n_1$ then $y_n \in V$. It is now easy to check that if $n \ge n_1$ then $x_n \in W$.

Remark. As previously stated in § 2, the construction used in proving $(7) \Rightarrow (1)$ is the same as that used by Heath in proving that every stratifiable space is a σ -space. Thus it is not surprising that Heath's result is easy to recover from one of our characterizations.

References

- [1] G. Creede, Concerning semi-stratifiable spaces, Pacific J. Math. 32 (1970), pp. 47-54.
- [2] R. W. Heath, Arc-wise connectedness in semi-metric spaces, Pacific J. Math. 12 (1962), pp. 1301-1319.
- [3] On open mappings and certain spaces satisfying the first countability axiom, Fund. Math. 62 (1965), pp. 91-96.
- [4] Stratifiable spaces are σ-spaces (to appear).
- [5] R. E. Hodel, Moore spaces and wΔ-spaces (to appear in Pacific J. Math).
- [6] Spaces characterized by sequences of covers which guarantee that certain sequences have cluster points (to appear in Proceedings of the University of Houston Topology Conference (1971)).
- [7] J. Nagata and F. Siwiec, A note on nets and metrization, Proc. Japan Acad. 44 (1968), pp. 623-627.

[8] A. Okuyama, Some generalizations of metric spaces, their metrization theorems and product theorems, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1967), pp. 236-254.

[9] G. M. Reed, Concerning first countable spaces, Fund. Math. 74 (1972), pp. 161-169.

UNIVERSITY OF PITTSBURGH DUKE UNIVERSITY

Reçu par la Rédaction le 25. 10. 1971