Natural sums of ordinals
by .
M. M. Zuckerman (New Ybrk) ™

1. Introduction. -We characterize the Hessenberg natural sum, [3],
as well as a more general notion of natural sum, given below. Our results
are formalizible within Godel-Bernays set theory — for example, within
the axiom system consisting of groups 4, B, ¢, and D of [2].

Thus an ordinal number can be considered as a.set that is transitive
and e-connected. “On” will denote the class of all ordinal numbers. We
will refer to ordinal numbers simply as “ordinals”. (In this respect we
differ from the terminology of [2]; there On is included among the ordinals.)
We agsume familiarity with the basic properties of ordinals and of their
arithmetic [2, Chapter III] and [4, Chapter XIV]. ‘

Greek letters, sometimes with subscripts, will denote ordmals, we
also use Roman letters these ordinals are natural numbers. “a < g”

" means a € f; “a < 7, “a > 7, and “a = 7 are defined in terms of “a < /3”
in the usual way.

Braces will be used to designate proper classes as well as sets.

For any ordinal numbers a and g, the Hessenberg sum of a and £,
a(+)p, is defined as follows: o and f§ admit representations of the form

a= 0™ M+ o My+ ... 0" M, ,
g= w“1~n1—|—w‘“-'n2+ e 0% m,,
where «,, a,, ..., a,are decreasing ordlna,ls ‘and my, My, ..., My, Ny g Nyyeny By
are natural numbers Let
C‘(”l‘)ﬁ'z a’ul'(m1+%1)+qu'(mz+“s)+ 0™ (M)
(This definition is independent of the above representations of « and j,
since different representations differ only in “zero terms”.)

A Dinary operation on On, @, is called a natural sum if for all
ordinals «, 8, and y,

(*) Thiz research was supported by a City Unfversity of New York Faculty
Research Award, 1970.
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1) e@f =@
2) (c@B) Dy = c®(FDY);
3) a®0 = g

4) p <y if and only if a@®f < a@®y.

This definition is (essentially) due to Carruth, [1].

The Hessenberg sum is clearly a natural sum. Moreover, Carruth
proved that it is the “smallest” natural sum; in fact, if @ is an arbitrary
natural sum, then for all ordinals « and B,

atp<a(+)B< a®p.

Let 2 be a nonzero ordinal. A binary operation,- @,, on A is said to
be a A-natural sum if for all a, B,y <4, ’

0) a@;p < 2 .

1)-4) of the definition of “natural sum” hold for @,. A-natural
sums are discussed in [5]. .

A nonzero ordinal y is said to be a prime component if there exists
no decomposition, y = a+-f, where a <y and g < y. The prime com-
ponents are just the ordinals of the form ® for some ordinal « [4,
pp. 319-3201.

A necessary and sufficient condition for a A-natural sum to exist
is for 1 to be a prime component [5, Theorem 3, p. 50].

Let 2 be a prime component and let @ (@®;) be a natural sum

(4-natural sum). A nonzero ordinal y (y <) will be called a @- prime
(@;-prime) if there exists no decomposition, y = a@p (y= a®;p),
where a <y and f§ < y. It follows from the definition of “natural sum”
(“A-natural sum®) that a necessary and sufficient condition for 2 to be
2 @-prime (@;-prime) is that y = a®f (y = a@,f) iff {a, f} = {0, y).
In particular, it is easily established that :

(1) the (+-)-primes are precisely the prime components.

A nonzero ordinal y (y < 1) is said to be @-irreducible (@, -irreducible)
if a<y and <y together imply a@®p <y (@@B <yp). v (y<i)is
said to be @-reducible (®;-reducible) if it is not @-irreducible (@, -irre-
ducible). Bvery @ -irreducible (@z-irreducible) element is a @ -prime
(@;-prime); the converse is false, in general. (See [5, p. 52].) However,
(+)-primes are irreducible. Moreover, a necessary and sufficient con-
dition for a nonzero ordinal y to be g prime component is for o < y and
B <y together to imply a+f < 7. ] N
If & is a binary operation on On and <1 is a binary operation on 4,
then ¢, is said to be the' restriction of & to 2 and & is said to be an

extension of O, if a>f=0a<, B whenever a < A and < If A is

icm

Natural sums of ordinals i 291

a prime component, if @; is a A-natural sum and if @ is a natgral sum
that is an extension of @&, we say that @ is a natural extension of ®;.
We denote the restriction of (+) to 4 by A

2. The main results.

TaroREM 1. a) Let @ be a natural sum. For each nonzero ordinal 2,
the restriction of @ to 4 is a A-natural sum if and only if Ais & @-irreducible
element.

b) Let 1 be a prime component and lot @, be a A-natural sum. For
arbitrary ordinals a and p, let

a=lata, a<i
and

B=1fi+Bsy, Pa<<ih

be the unique representations of this form. Then for every p =2 and for
every natural sum @', the binary operation, @, on On, defined by

a@f = pe(o @ .81)“?"(‘12@;, Bs)

"7 48 a natural extension of @,.

c) Let A be a prime component, let @, be a A-natural sum, and let @
be a natural extension of @,. Then for every y < A, y is a @-prime if and
only if y is a @;-prime, and y is @-irreducible if and only if y is @,-irre-
ducible.

THROREM 2. 2) Let @ be a natural sum. A mecessary and sufficient
condition that @ = (-+) is that

(2)  for every ordinal y, y is & @-prime if and only if y is a (+)-prime.

b) Let 2 be a prime component and let @, be a A-natural sum. A nececes-
sary and sufficient condition that @®,= (+); is that

(2),  for every ordinal v, ¥ 18 a @,-prime if and only if y is a (+),-prime.

Proof. a) Clearly () satisfies (2). ‘
Let @ Dhe an arbitrary natural sum that satisfies (2). Let

A= {6cO0n: for all o, cOn, a(+)f =06 iff «@®f = 0}.

By (1) and claunse 3) of the definition of “natural sum”, every ordinal
of the form «® is in A.

Algo, 0 ¢ A Dbecause a(+)pf=10 iff a=f=10 iff «@f=0.

Suppose y C A but y ¢ A. Then there are ordinals a and g such that
a(+)p = y < a@p. Since y is not a @-prime, there exist x ¢ {0, y} such
that for some », u@w == y. It easily follows from 1), 3), and 4) of the
definition of “natural sum?” that » ¢ {0, ¥}.
19 — Pundamenta Mathematicae, T. LXXVII
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u(+)v£ 7, by our inductive hypothesis. Since u(+)r < u@v = ¥,
we must have u(+)v =y = a(+)p. Let the Cantor normal form of ¥ be

y = wgi'J1+w9"J2+ e ¥, ,

where g, > g, > ... > g, > 0, and where J;,J;, ..., J, are nonzero naturg
numbers. Then
o= 0% J,+o®Jy+ .. + ¥,
and
B= o J] + 0™ dy + . +otr-d
where for each i =1, 2, ...,r, Ji+J; = J;. Similarly,

o= w"‘-J;‘-}—a)e"J:—l— _}_by.Jj
and
v = oIy b JrF 4 . + o I},

where for each i =1,2,...,r, J‘{—I—J:f* = Ji. By means of the inductive
hypothesis together with the associativity and commutativity of natural
sums, it is easily established that ’

0@ =pdrv=1y.

This contradiction establishes that yC A implies y¢ 4, and hence that
A = On.

b) (+), satisfies (3),. For any A-natural sum, @,, let A= {6 <X
for all a, B €On, a(+),8=§ iff a@®;B = 6}

The argument of part a), with minor modifications, shows that 4, = 1.

A natural sum, @, is said to be econtinuous provided that for all
ordinals a, {,, and B;, where ¢ <,

a® U= U(e®p,).
A ‘L‘<Co t<to
Let 2 be a prime component. A A-natural sum @, is said to be CONBinuous
provided that for all ordinals a, §o; and B,, where ¢ < £y whenever o < 2,
B <A dfor all £ <&, and (U By <4, then
¢

<Lo

a@®; U ﬂ; =U (a@®, /3;) .
<ty <t

(+) is continuous and for every prime component 1, ( +); is continuous;

thus (2) ((2)1) is a sufficient condition for a natural sum (2-natural sum)

to be continuous. The example of [5, pp. 58-59] shows that this con-

dition is not necessary. The main result of [6] is that a continuous i-natu-

ral sum, @,; coincides with (-+)11if and only if the @;-primes are precisely

~ the @j-irreducible elements. We now show that the assumption of
continuity can be removed.
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THEOREM 3. a) Let @ be a natural sum. A necessary and sufficient,
condition that @ = () is that every @-prime be @-irreducible.

b) Let A be a prime component and let @, be a A-natural sum. A neces-
sary and sufficient condition that @, = (-+); is that every @, prime be
@;-irreducible.

Proof. The verifications of a) and b) are similar; we prove only
part a).

a) It suffices to show that if every @-prime is @-irreducible,
then @ = (4). According to Theorem 2, we need only show t.ha,t 1f every
@-prime is @-irreducible, then for every g, f is a @-prime iff g is
a (-+)-prime. ) _

Agsume that every @-prime is @-irreducible.

Suppose f is not a (4)-prime. Then

B= "+ Ni+a® N+ ... +-N,,

where a = ;> f,> .. >, 0 < Ni<ow for 1 <igr, and r>1. Also,
w* < B and o N+ o N+ ... +0f - N, < 8; yet

B= @+ (0N, + 0P N,+ ... -I—cuﬁ"N,)
< 0@ (0 N+ of?-Ny+ ... +0N,).

Thus, if 8 is not a (- )-prime, it is @-reducible; hence it is nf)t 2 @—pri_me.
We now proceed to show that for every ordinal g, »? is a @-prime.
Clearly, »° is a @-prime. . o
Suppos,e that for all y < 4, ¥ is a @-prime. Then the restmctl.on

of @ to o’ which we denote by “@,s”, is an «’-natural sum f01.‘ which

(2),6 is true. By Theorem 3b), @, s = (+),s. Furthermore, we claim that

(3) for all e < 0®, o’@a= o’(+)e.

urely, 0’@®0 = o’ = % +)0.
° 13:1,313 acg 0 and suppose w’@y = o’(+)y for all y < ;1<m”. Then
®’(4)a cannot be a @-prime; thus we have aal@ = r;g (+)a, dwi;a;z
{oy, @} == {0, @’(+)a}. We can assume that o’ <o <o G-%anaxn that
0< o< a Then a = o’+oy= ’@a, where ay < a. It follows

wa( +la= D= (wd@ 03) Dy = @D (6Day) -
Clearly, o,@®a, = a; therefore v’@a = ’(+)a. This establishes (3).

In particular, we have o’@«’= 0’-2; by induction it can be
established that .

DD ... Do’ =’ N, for all natural numbers N >1.
[ 7} (11 F——
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Now let o be such that for all y < g, 0’ is a @-prime. If 4 < @
and » < w®, there are § < g and M < w for which u < ®- M and » < o®- I,
Thus

i

a®f <o’ UMD’ M < ol
Consequently, «? is a @-prime.
COROLLARY. a) A sufficient condition for a natural sum @ io be continu-
ous s for every @-prime o be @ -irreducible.
b) Let 1 be a prime component. A sufficient, condition for a A-natural
sum @, to be continuous is for every @;-prime to be @,-irreducible.
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Some remarks on selectors (I)
by
B. Weglorz (Wroctaw)

The Axiom of Choice states that every family of pairwise disjoint
non-void sets X = (X;),.r has a selector, i.e. there i3 a set § such that
|8 ~ Xy =1 for every iel. The situation is quite different when we
consider non-disjoint families. In the present paper we will study the,
problem of the existence of selectors of the families which have large
subfamilies with selectors. (Of course the Axiom of Choice is assumed
throughout.) So our problem has rather a “compactness” character.

We say that a family. L = (X, )., has partial selectors if for every
B < x the family L = (X, >,.; has a selector. E(x, 2) (or respectively
F(x, 1) (*)) will denote the following statement: Hor every family
L= (X, Duc, of seis of powers <A (or= A respectively) if L has partial

selectors then X has a selector.

It is easy to see that for each infinite cardinal x, the statement
E(x, w,) is provable in ZFC. In [1], 2. Erdés and A. Hajnal ask:
Does E(w,, w,) hold? We give a partial answer (Corollary 4.6) to the
question. The main result is contained in § 4 (Theorem 4.4). It states
that under the assumption of GCH, the property E(x,x) is equivalent
to the weak compactness of »x.

The paper is arranged as follows: in § 0. we give some neccessary
definitions, and in § 1 we prove some simplest properties of the lstatfaments
E and F. In particular, from 1.1.5 it follows that the investigations of
the statement F can be reduced to E with respective parameters. In § 2,
we give the proof of a part of 4.3, namely that the weak compactness of
implies E(x, »). In § 3, we study connections between E(x, x) fmd the
tree property of x. From the results of §§ 3 and 4 it follows that if we d'o
not assume the strong inacecessibility of x, then the property E(x, %) is
a better approximation of the weak compactness than the tree propert_y
of x. Finally, in § 4, we prove two theorems which have rather a eombi-
natorial character.

() F(x,4) denotes S(x,1,2)~>B(2) in the terminology of [1}.
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