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If the domain of a strongly additive function is a ring, then the con-
dition of (o, 8)-additivity reduces to o-additivity.

2.11. TurorEM. Let 1 be a o-additive function on a ring R of subsets
of a set T, with values in a complete metric Abelian group Q. Then A is
uniquely extendable to a o-additive function A’ on the o-ring R’ generuted
by R if only if 1 is monotonely convergent.

Proof. Let £ (R’) be the (o, d)-lattice (s-ring) generated by K.
We note that R’ is the monotone class generated by K ([1], p. 12). Since
£’ iz a monotone class containing R, £’ D R’. On the other hand, R’ is
a (o, 0)-lattice containing R, hence also L', so we have &' = £’. Now the
theorem will follow, as a corollary of 2.10, if we show that the monotone
convergeénce of A implies the A,-lower regularity of 1,. Let F ¢ R,. Since
25 is monotonely convergent (hypothesis and 2.6), the argument (b) = (a)

of the proof of 2.4 shows that lim A(F)= u(F) exists. Let ¢ > 0 be
FCE.FeRe

arbitrary. There exists an R;-set K contained in ¥ suchthat K CK'CE
and K' e R; implies [A,(K')— u(E)], [A(K")|—A(K)] < ¢. Let Byt B, Ry e R.
Then

12(Bn)— p(B)] < |M(Ba)— A K) |+ |A(E)— p(B)]
< M Bn v E)— 1K)+ |25(E—Rn)| + ¢

and |A,(Ry v K)— 4(K)| < e Because R is a ring, K— Ry € R,, 80 A(K—Ry)
= A5(H— Ru)—>0 (2.6). Therefore A(R,)—~pu(E). On the other hand, 1(R,)
- J(E), therefore u(B)= 1(E).
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Various approaches to the fundamental groups
by -
M. Moszyinska (Warszawa)

Abstract. The notion of the fundamental group introduced by X. Borsuk in [1] is
useful in the Borsuk approach to the theory of shapes. However, if one is concerned
with the Mardegi¢ and Segal approach (see [3], [4]), then some other notions seem to
be more convenient. One of them, the notion of the limit homotopy group, has been
defined by the author in [7]. Another one, the notion of the shape group, is defined
here in § 4. As regards compact metric spaces, these three approaches turn out to be
in some sense equivalent (§ 6). To explain these connections we start with preliminaries
concerning the category theory (§1). .

For the convenience of the reader, definitions of the two categories R*,R%
(of ANR(R)-systems) and of the categories §%, &* (of inverse systems of groups) are
recalled in the Appendix.

1. Isomorphism and quasi-isomorphism of functors. One of the basie
concepts in category theory is the notion of natural transformation and
of natural equivalence of functors (see [6], p. 59). The notion of natural
equivalence enables us to identify two functors I7,II': X-—£, which,
from the intuitive point of view, coincide. Here, the natural transformations
are treated as morphisms in some category of functors; then the natural
equivalence is simply an isomorphism in this category. In turn, this
notion of isomorphism of functors from % to £, where the categories X, €
are both fixed, is extended to the notion of quasi-isomorphism of functors.
It enables us to study the connection between two funetors II: J—¢€
and I7": X'—~¢C. )

Given two categories X, £, we are concerned with covariant functors
from X to €. Let us consider the category 4™ (1) with all those functors
as objects and with morphisms defined as follows:

for IT, II' « Oby,

A eMory(IT,II')  whenever 1= {Ax}xcony
where

Ay € Morg(IT(X), IT'( X))

() We shall often write M instead of MHE,


Artur


108 M. Moszyliska

and for any feMoryg (X, ¥) the diagram

- mx) 2 oy

J.Xl E

X)) ——>II'(Y)

()

is commutative.

Let us refer to this diagram as the A-diagram.
For any functor IT e Oby, the identity 1, is defined as {X ez}
The composition of morphisms in H*F is defined in the natural way:
if A= {ig}, 4'= {2%}, then

A = (i} -

Let us notice that

1.1. For any II, IT": K—8, A = {Az} is an isomorphism in MFE i and
only if all Az are isomorphisms in L. B

1.2. For any covariant funcior ¥: ¥y—~%K, and every pair of funciors
II,IT: Ry, if II,IT' are isomorphic in ML then ITVP, IT'F are iso-
morphic in SFE. m ‘

In partieulam, it ¥ is an inclusion, we get

1.3. Let K, be a subcategory of XK,. If II,IT: K,—~L are isomorphic
in MPE, then the partial functors IT| Ry, IT' | %, are isomorphic in A5, m

Now let us take two functors IT: % —L; II': X&' —£. The functors 17, IT’
are said to be quasi-isomorphic whenever there exists an igomorphism
@: XX such that the diagram

i

o N
[ ! / : i 3 JL
\‘L L commutes up to isomorphism in A5,

ie. the functors /7 and II'® are isomorphic in SERE (2),

(*) The quasi-isomorphism of functors could be defined in another way as an
isumorphism in the category G with all covariant functors with values in £ as objects
and morphisms understood as follows: for I7: £, IT": J' L

A EBIOPUKJC'(H ,II'Y  whenever A == (D, {i,}),

where @: X >X ' is a covariant functor, Ayxe Morg(II(X), II'®(X)) and for any
feMory (X, T), the diagram V

mx 225

Iz Ay is commutative.

1I6(X) s 1D ()

icm
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2. Fundamental category and shape category. We are concerned with
two approaches to the theory of shapes, the first one due to Borsuk ([1]),
the second one due to Mardesi¢ and Segal ([3], [5]). In both approaches
the shapes are understood as isomorphic types of objects in some cate-
gory — in the fundamental category F in the first case (see [1]) and in
the shape category 8 in the second case (see [5]).

Let us briefly recall the definitions.

1) Pointed fundamental category ¥. The objects of & are
pointed compaet subsets of the Hilbert cube @, i.e. the pairs of the form
(X, %), where X = XCQ, z,¢X.

The sequence of maps f*: (@, z,)—(Q, ¥,) is said to be a fundamental
sequence from (X, z) to (Y,y) (in symbols f= {f% (X, z), (¥,%)})
whenever for every neighbourhood ¥ of Y in @ there is a neighbourhood U
of X in Q and a natural number k, such that f¥| U ~f***|U in (V, ¥,) for
k> k.

Two fundamental sequences

f= {fk: (X, 20)5 (Y, #0)}s

=1 (X, %), (Y, 40}

are said to be komotopic (in symbols f~f’) whenever for every neighbour-
hood ¥V of T there is a neighbourhood U of X and a k, such that
O =f*T in (V,y,) for k= k.

Morphisms in F are defined as fundamental classes, i.e. the equivalence
classes of fundamental sequences with respect to the homotopy relation.

For any (X, 2,) € Obg, lx,, is defined as the fundamental elass of
the sequence {1y, (X, x,), (X, 2)}-

The composition of fundamental sequeneces f= { FE (X, )y (Y, Yo)}
and g = {0 (Y, 90), (Z,2)}:

QI ot {9% (X, i), (Z 5 2)} -

2) Pointed shape category S. The objects of 8 are pointed
compact Hausdorff spaces.

Morphisms are defined as follows.

Take two objects (X, ), (¥, y,) and consider the two classes of
all ANR(R)-systems (i.e. inverse systems of absolute neighbourhood
retracts for compact Hausdorff spaces) associated with (X, ;) and (¥, ¥,),
respectively, For any pair (X, x,), (X', x;) associated with (X, &) (¥, o),
(Y, y,) associated with (1’,y0)) there exists a map #: (X, x,) (X", x;)
(7 (¥, y)—~(Y", yo)) associated with 1x ., (with 1z,) (see [3], Th. 10).
By Th. 11 of [3], any two such maps i,i associated with 1,, are
homotopic. Thus the following equivalence relation between arbitrary
two maps fi (X, x5)— (¥, yo), £ (X', x5) = (¥’ y,) can be defined:
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f~f' whenever the diagram

!
(X, x0) — (¥, »o)
j | ; commutes up to homotopy
J in the sense of [3].
", ¥o)

(X', x4) > (¥

A morphism from (X, 2,) to (¥,%,) in § is defined as the equivalence
class of a map fi (X, x,)=(¥Y,y) (for (X,xp), (Y,y,) associated with
(X, ), (¥, yo)) with respect to ~; it is called a shape map (in symbols [fT).

For any pair (X, ,), the identity in 8 is defined as the class [i] of
a map i: (X, x,)—(X, x,) which is associated with 1y ..

The composition of shape maps is defined in the natural way.

Now, let 8’ be the subcategory of the shape category 8, with metric
compact pairs as objects. Since all the statements of [4] are also valid
in the case of pointed compacta, the main result of [4] can be expressed
in the following form:

2.1. The subcategory 8" of the pointed shape category is isomorphic to
the pointed fundamental category F (3).
More precisely
. The functor @: F->S defined by the formulae

DX, m) = (X, ) for any (X, z) ¢ Obg,
di[f] =[f1, the map f being related to the fundamental sequence f ,

s an isomorphism.

3. Fundamental groups. Let us recall briefly the Borsuk definition
of the fundamental groups (see [1]). It is based on the notion of approxi-
mative sequence.

Take two compact subsets S, X of the Hilbert cube Q; let ;e S,
@, € X. The sequence of maps f*: (8, s,)=>(Q, %) is said to be an approwi-
mative sequence whenever for every neighbourhood U of X in @ there is
a natural number %, such that

fFraf®  in (U,m) for every k= k;
in symbols l‘: {75 (8, 8) > (X, m)}.  #

(*) As a matter of fact, the objects of the shape category § (8') are not the Haus-
dorff compact (metric) spaces themselves, but their topological types. Thus, the
statement 2.1 should be formulated precisely as follows. The category §’ is isomorphic
to the quotient category &~ with topological types of pointed compacta as objects and
the corresponding sets of fundamental classes as morphisms. However, from the stand-
point of topology, any two homeomorphic spaces used to be identified; therefore, we
do not distinguish between a space and its topological type.
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Two  approximative sequences, f= {f% (8, s)~>(X, z)} and

F =1{f%(8,8)>{(X, )} are said to be homotopic whenever for every
neighbourhood U of X in @ there is a k, such that

ff~f* in (U,x,) for every kxk.

Now, put 8" for 8§ (8" being the n-dimensional sphere). Take s, € 8".

The set of all homotopy classes of pointed approximative sequences
(8%, 5) > (X, z,) is proved to be a group with respect to the operation
of joining (see [1]), the neuntral element being the homotopy class of the
constant sequence {f%, (8%, s))—>(X, @)}, F5(s) = #, for all se8* This
group is called the n-th fundamental group of (X, x,); in symbols an( Xy &,).

Since any approximative sequence can be composed with a funda-
mental sequence, for any fundamental sequence g = {5, (X, 2}, (X, %)}
the induced homomorphism gn: za(X, #,)—>ma( ¥, y,) can be defined by
the formula -

_g_»[f]; [:g]‘

By Theorem 15.4 of [1] one obtains the covariant funector :n:n F->8
from the fundamental category F to the category of groups, §

4. Shape groups. Now we are concerned with the pointed shape
category S (see § 2).

Let us consider two pointed compact Hausdorff spaces, (S, s,) and
(X, my). The pair (8, s,) can be treated as a constant inverse system (for 4
consisting of a single element). In a similar way to that followed by S.
Mardesié in [5] (here § 2), we define the equivalence relation ~ in the set
of all maps of (8, s,) into ANR(R)-systems associated with (X, z,). By
Th. 10 of [3], for any two ANR(&)-systems (X, x,), (X, x;) associated
with (X, x,) there exists a map it (X, x,)~(X;, x;) associated with 1% .
by Th. 11 of [3], any two such maps i, i’ are homotopie. For any two
maps f: (8, 8) = (X, Xo), 2 (8, 8) (X', xp), let

f=~f" whenever the diagram

(8, 80) > (X, %,)
|+ commutes up to homotopy (in the sense of [3])
N for any map i associated with 1z ...
A , ¥y P (X.zo)
(X7 xp) .
The equivalence class of the map f with respect to the relation ~ will
be referred to as a simple shape map, in symbols [f1.
The set of all simple shape maps from (S, s,) to (X, ) will be
denoted by [X, x,]5%.
Take a shape map [g?eMmS((X z), (Y, %)) and a simple shape
map [f] e [X, z,JS*; the composition [glif] is defined as the simple
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shape map in [Y, y]®* given by the formula
[ellf1= Igf'1,

where f': (S, o)~ (X, x,), &': (X, x)—>(Y, y,) are representatives of [g]
and [f], respectively.

Now let us fix a natural number n and put 8" for § (8" being the

. n-dimensional sphere). For any compact Hausdorff pair (X, x,) we are

going to define a group operation in [X, %[, For this purpose take

an ANR(R)-system (X, x5) = {(X,, %), i, 4} associated with (X, u,)

and consider two maps £, f": (8%, so)—>(X, %), f' = (9s fhs [ = (@, J.')s

@ = const. The maps f', f" are said to be separated whenever, for '

any «eA, the maps f., f.' are separated in the sense of Borsuk (see
[2], p. 44). To any pair of separated maps f',f’'; the following map
frof": (8% s)—(X, x,) can be assigned:

frof = g:fio i
the map f. o f." being the join of the maps f.,f." in the sense of Borsuk
{see [11 or [2], p. 44).

By the definition of a simple shape map and by the arguments used
in [2],"it follows that

4.1. For every pair of simple shape maps, [f1, [f"']e[X, z,]®"%,
there exisis a pair of separated maps, f',f "o (8" 8,) > (X, x), such that
frelf’l and " €lf"]- m '

4.2. The simple shape map [f’ o f''] does mot depend on the choice of
separated representatives of [f'] and [f]. M

The statements 4.1 and 4.2 make us possible to define the join of
simple shape maps by the formula '

1= I < f

where f7, f': (87, 8)—>(X, x,) are two separated representatives of [fT

and [f"'], respectively.

As the neutral element [0] of the set [X, x,J5™* we take the simple
shape map represented by the constant map.

One can easily prove that

4.3. The system ([X, x,], =, [0]) is a group. m

This group wﬂlee referred to as the n-th shape group of the pair
(X, xp); in symbols 7, (X, z,).
N ::A_ny shape _map lg] e Morg((X, @), (¥, ¥,)) induces a homomorphism
ga T, (X, 2) >, (¥, y,) defined by the formula

£alfl ot Ig1lf1-
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Setting
%ﬁgﬂ "]')":t §H ’
we get a covariant funetor 7.: §—+G.

5. Limit homotopy groups. Let R be the category of pointed ANR(R)
spaces. First, we are concerned with the category KL (see the Appendix or
[71). Let us consider the funetor sz,: K% 8", which has been defined in [7]
as follows: For any pointed ANR(R)-system (X, x,) = {(X,, %), e, A},
put

75(X 5 Xo) E {710 X oy oa) (Pf)m A}.

This inverse system of homotopy groups is referred to as n-th homotopy
system of (X, x,). Any map of inverse systems, g = (¥, gp): (X, x> (Y, ¥4)s
induces morphism of nth homotopy systems,

gn = (1/’7 (gﬁ)u): 'ﬂ:n(X5 xf))—)nn(y7 yG) N

If g and g’ are homotopic, g~g’, then g, =g, (see the Appendix); so
the homotopy class [g] induces the morphism [gn] in §*. Setting

wallg) = L&l

we get the functor m,: Rz 8%

Since this functor is covariant, it carries the set of isomorphisms in RE
into the set of isomorphisms in &*; thus

5.1, If g: (X, x,) > (Y, y,) 18 a homotopy equivalence, then the induced
morphism gu: 7a(X, X)>7n(Y, ¥) 15 an isomorphism in . m

Now, let us consider the pointed shape category 8. As was shown
in [7], for any compact Hausdorff pair (X, z,) the inverse limit of @a(X, x,)
is independent of the choice of the ANR(R)-system (X, x,) associated
with (X, z,). Therefore, the limit homotopy group of (X, x,) has been
defined by the formula

(1) W:(Xy Zo) = E-n_lnn(xs Xo) 5

(X, x,) being an ANR(R)-system associated with (X, z,). Take any
shape map [g]leMorg((X, ), (¥,90)) and leb g (X, Xo)=>(¥; ),
g (X', x)>(Y',y;) be two representatives of [g]. Then, there exist
maps i, associated with the identities 1xzy; lrye 20d such that the
diagram
(X, X)) ——> (Y, )
il 7

i commutes up to =~.
(X', x,) —g'," (¥, ¥o)
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By 5.1, since i,j are homotopy equivalences, they induce isomorphisms
of the homotopy systems. Then, by 2.1 of [7], the inverse limits limgy,
}—il_l}g; coincide up to isomorphism. It enables us to define the in:ﬁ;ced

homomorphism =z[g] by the formula

&)

i 5 linge.

‘The functor of mth limit homotopy group, w): §-6, is defined by the
formulae (1) and (2).

6. A connection between the fundamental groups, shape groups and limit
homotopngrou}ﬁ)s. Given a natural number n, let us consider the pair of
functors 7, =, from the shape category 8§ to the category of groups, G.
We are going to prove ’

6.1. THEOREM. The functors T, and =, are isomorphic.

Proof. According to 1.1, we have to find a family of isomorphisms in G,
A= {l(X,mo)}(X,zn)EOD.; such that for every [g] eMorS((X 5 %), (X, yo)) the
A-diagram

- Talle]
(X y @) —>7n( X, Yo)
A X o)

“:(X: %)

l4ryy is commutative .

:ﬁ;ﬁ ”:( Y, %)

‘Take a compact Hausdorff pair (X, x,) and let (X, x) = {(X,, %), 2%, A}
be an ANR (§)-system agsociated with (X, 7). Any element [[;‘"1] oﬁf,the
-sha.pe group n,(X, ,) has a representative f“ = (p,f): (8", 8)—>(X, x,)
which is determined uniquely up to homotopy. The maps f,, a e 4 sa,;isfyz
the following condition: v ’

/\ pZ,fa' :fa

a’>a

n (X, %) .
Thus
a{; (Pﬁ/)n[fa:] = [fa]’
ie. the system {[7.]},., belongs to limm(X, x,).
Setting —*

Mgl f1 = WThects

Wwe obtain a homomorphism 2 . 7in(X , @) > limma(X, x,). Obviously,
‘the homomorphism 27, defined by the formula

e AREAT)

ke
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is an inverse of Zix .3 therefore Ay ., is an isomorphism. Now let us
take any shape map ig] e Morg{(X, #), (Y, )] and verify the commu-
tativity of the /-diagram. Take ANR(R)-systems (X, x), (Y, )
(over A,B) associated with (X,z), (¥,%,) respectively, and let
g = (9,9, (X, x))>(Y, ) be a representative of [g]. Then the A-diagram
can be written in the form

~ o~

75»(X1 o) —an( ¥ 7[3’&)

X0 | S

lim 700 (X, Xo) 7> Lim 7a{ ¥, ¥o) -

Take a simple shape map ifl e (X, @) and its representative

?—_“ (g, fa): (8™, 8)=> (X5 xo)- We have

}'(Y,yo)‘é“[fﬂ = ;"(I',w) gﬂm = }‘(Y,:Iu)m = {[gﬂfw(ﬁ)]}ﬁEBs
on the other hand,
Erggnl(x,m fi= 15‘33»{[‘?“]}“4 = {[gpf,(mi}fxw .

Thus the A-diagram is commutative, which completes the proof. m

Let §° be the subcategory of S with pointed compact metric spaces
as objects. By 1.3 and 6.1 we get the following

6.2. COROLLARY. The functors 7n|8" and 7, |8’ are isomorphic. &

Now we are going to establish a connection between the two functors,
mn: §F->8 and 7|8 8’ >8 (Theorem 6.4). For this purpose, given an
approximative sequence, let us define the related map into ANR -sequence.

Consider two arbitrary pointed compacta (S, ) and (X, x,), XC@,
and take an approximative sequence f== {5 (8, so)> (X, m)}. Let (X, %)
= {(X, 2,), ¥, N} be an inclusion ANR -sequence associated with (X, ).
Then there is an increasing function ¢: ¥ N such that ¢(k) =k for
every k and

1= ko= R o fHE) in (X, 2);
hence the maps fi: (S, 8o)—=>(Xk, Zo) given by the formula
: k|
T(8) ;f“‘ (s)
form a map of ANR-systems, f= (const, fr): (S, 8) (X, Xo)- This map
f is said to be related to f.

Applying Lemmas 5 ande6 of [4], one can easily prove

6.3. There is a biunique correspondence between the set of homotopy
classes of all approximative sequences from (8, 8) to (X, @) and the set of
simple shape maps, [X , L=, For any fundamental sequence g from

§ — Fundamenta Mathematicae, T. LXXVIII

for se 8,
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(X, 2) to (Y, yo), the homotopy class [gf] corresponds io the simple shape
map [glLf], where g and f are related t?fg and f respectively.

Now let us prove

6.4. THEOREM. The functors mn and |8’ are quasi-isomorphic.

Proof. Let @: §—+ 8’ be the isomorphism of the pointed fundamentak
category F onto 8’ (see 2.2). We have to show that the diagram

F
o
o | >Q
¥
s’ /7;1

“ie. that the functors m, and 7,@ are isomorphic.
Take any compact metric pair (X, z,) and define a homomorphism

commutes up to isomorphism,

}"(X,wo): E”(X7 %q) —>?T91(X, L)

by the formula

k hxzolf1 5 LD
where f is a pointed approximative sequence and f— a related map of
ANR-sequences. It i3 easy to see that Ay ,, is 2 homomorphism. By 6.3
it is an isomorphism.

It remains to verify the eommutativity of the /-diagram:

(X, mo)

X z0) l

—> an( Y, Yo)
¥ 0)

(X xo),—>‘:¥n(1’, Yo)
2n®lg]

for any pointed fundamentdl sequence 9= {g%, (X, 2), (

Y, y,)} This
diagram can be written as follow.

an(X, l‘o) - 7n( ¥, Yo)
AX,20) l A7,v0)

Ta( X, ) “‘T’?‘n( Y, v0)
En

Take [f]ean %); by 6.3, we have

l(r,yo)gn([_]f]) = l(y,y,.)[gj_‘] = Eg]]ﬂf]];
on the other hand,

Zndxay f] = Ealf] = 121111

Thus the .1-diagram is commutative, which completes the proof. m

icm
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Since @|Oby is an identity, the statements 6.2, 6.4 imply

6.5. COROLLARY. For any compact metric pair (X,z,) the groups
an( X, zo), Tl X, %) and (X, z,) are isomorphic. W

We get also the following

6.6. COROLLARY. Let g be a pointed fundamenial sequence, and Tet
g be a related map of AI\R(R) sequences. Then

gn I8 Gn isomorphism <> g, is an wonwrphzsmahmg,, 8 an 1so-
wiorphzsm,

gu i @ monomorphism <> gn is a monomorphism <> limg, is a mono-
morphism, A

gn is an epimorphism <> g, is an epimorphism < limg, is an epi-
morphism. B

Appendix. Let us consider a pair (X, ~) which consists of a cate-
gory % and an equivalence relation ~ in Mory, satisfying the condition:

f~frg~g =g9f ~97F"-

In [7], to such a pair (}, ~) the following two categories 3\',’:, X7 have
been assigned. Both J‘u J\, have inverse systems in X (over closure-
finite directed sets) as ob]ects Morphisms of :h, are maps of inverse
systems, ie. for X= {X_, p%, 4}, Y=1{Y,, ¢}, "B}, feMor(X,¥) in
X' whenever f= (¢,f;), where ¢: B>4 is an increasing function,
fp e Morg (X5, ¥;) and all the diagrams
o)
Koty ™ Xoiany
in| i/,,: commute up to ~ for f'= .
Y; — I’
qﬁl
Morphisms in R* are equivalence classes of morphisms in X7 with re-
spect to the following relation ~: let f, f e Morgx(X,Y), f=(¢,fs),
f'=1(¢,1p , then

fxf= N\

A a}q:}ﬂ/ﬂﬁ)fﬁpg(ﬁ) ~Iib -

In particular, if ~ is an identity relation, then we write Ji*(il*)
instead of KX (RI).

Here we are interested in the following two cases:

1) & = R, the category of pointed ANR(R)-spaces,

2) X =G, the category of groups.
g+
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In the first case we get the categories K%, and K% introduced by 8. Mar-
deié and J. Segal in [3]. In the second case we geb g* and 8* used
here in § 5.
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in this class and it is shown that the number of elements in P(n) is 1+ ¥ " (2% _1).
k=0
In the last section we develop some properties of free relatively pseudo-complemented
semi-lattices with n free generators (n < oo). It is shown that these algebras are all
(distributive) lattices and that for # = 2 the free algebra is isomorphic with 2x 3x 3.

1. Preliminaries. The notation I7;8 (or simply II8) will be used to
denote the greatest lower bound of a non-empty subset § of a mee$
semi-lattice I; the greatest element of L, if it exists, is denoted by 1,(1).
If § = {x, y} then IIS = ay; it is convenient to define /T =1 when L has
a greatest element. The symbols X8, 0, z+y, and Z¢ are defined dually.
‘We will identify each integer n > 0 with the set {0, ..., n—1}. In Sections 2
and 3, the topic is pseudo-complemented semi-lattices and so the terms
“homomorphism”, “subalgebra®, ete. shonld be regarded in this context.
However, the meaning of these terms is suitably altered in Section 4,
where we discuss relatively psendo-complemented semi-lattices.

2. Pseudo-complemented semi-lattices. A pseudo-complemented semi-
lattice is an algebra <L; -, 0, * in which {L; -, 0’ is a meet semi-lattice
with 0 and such that for each xeL, there exists a largest y (denoted
by z*) such that xy = 0. It is well known that these algebras form an
equational class. Some of the elementary properties of these algebras
are listed below for easy reference (cf. [4]).

(*) This research was supported, in part, by a Summer Fellowship from tke »
TUniversity of Missouri-St. Louis.
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