

Properties of some generalizations of the notion of continuity of a function

bv

Edward Kocela (Łódź)

Abstract. Let (X, T) be a compact topological space with the topology determined by some metric and let T_1 be a topology in X stronger than T.

In this work the necessary and sufficient condition is given under which the family F_T of all real functions, which are continuous with respect to the topology T is equal to the family F_{T_1} consisting of all real functions, which are continuous with respect to the topology T_1 .

The main theorem is the following one:

If (X,T) is a topological space of considered type and T_1 is a topology stronger than T, then $F_T = F_{T_1}$ if and only if for every pair of families of sets $\{A_y\}$, $\{B_y\}$ indexed by real numbers $y \geqslant y_0$ such that

1° for every $y \geqslant y_0$ the set A_y is closed while the set B_y is open,

2º for every pair $y_1 < y_2$ $A_{y_1} \supset B_{y_1} \supset A_{y_2} \supset B_{y_2}$ holds,

 $3^{\mathbf{o}} A_{\mathbf{y}} \neq \emptyset \neq B_{\mathbf{y}}$

we have $\bigcap A_{y} = \bigcap B_{y} \neq \emptyset$ (such a topological space is called *-compact).

Introduction. A generalized notion of the limit of a function and also that of the continuity of a function have recently been considered in a number of papers.

A detailed study of these generalizations can be found in papers by G. H. Sindalowski [2], [3] and in papers by T. Świątkowski [4], [5].

In general, the study of a generalized notion of continuity of a function consists in the introduction of some topology, stronger than the natural, in the set of real numbers.

In some cases, the class of continuous functions in the sense of a stronger topology than the natural and the class of continuous functions in the usual sense appear to be identical. Some conditions concerning the topology under which a generalized continuity at every point implies the usual continuity are known. In particular, a sufficient condition has been given in paper [5] mentioned above. Preserving the sufficiency, one can make this condition weaker.

Now we shall give the weaker form of the above-mentioned condition from paper [5].

THEOREM 1. Let T be a topology such that the conditions

 $1^{\circ} x_n \rightarrow x_0$ in the usual sense,

 2° $x_n \in E_n$, where E_n is a T-open set, imply $x_0 \in (\bigcup E_n)'_T$.

Then every T-continuous function defined in the interval (a, b) is continuous in (a, b).

The proof of this theorem is identical with the proof of Lemma 4 in paper [5].

Thus the question is what are the sufficient and the necessary conditions concerning the topology for the T-continuity at every point of some set to be equivalent to the usual continuity.

This paper aims at finding these conditions.

§ 1. In our further investigations we shall be concerned with topological spaces (X, T) with a fixed set X and various topologies T. A real function mapping X onto R (R stands for the set of real numbers) will be called T-continuous if and only if it is continuous as the mapping $(X, T) \rightarrow R$.

Assume now that (X, T_0) is a compact space and that $T \supset T_0$. It is clear that every T_0 -continuous function is T-continuous. We shall seek the conditions for T under which the class of the T-continuous functions (we denote it by $F_{\scriptscriptstyle T}$) is identical with the class of the $T_{\scriptscriptstyle 0}$ -continuous functions (denoted by F_{T_0}). Obviously we have $F_{T_0} \subset F_T$.

Since (X, T_0) is a compact space, it follows from $f \in F_{T_0}$ that f is a bounded function.

Thus $F_{T_0} = F_T$; then every function $f \in F_T$ is bounded. It turns out that if (X, T_0) is a metric space, then the necessary condition which has been found is also sufficient. The following theorem explains it more carefully.

THEOREM 2. Let (X, T_0) be a compact metrizable space with the topology determined by some metric ϱ . Let T be some topology stronger than T_{ϱ} $(T \supset T_0)$. Then the necessary and sufficient condition of $F_T = F_{T_0}$ is that every T-continuous function be bounded.

Proof. We shall prove the sufficiency of the given condition by demonstrating that if a T-continuous function which is not T_0 -cont ous existed, then a T continuous and non-bounded function (poss another one) would exist.

Let x_0 be a point of T_0 -discontinuity of a function f. This mean that in every T_0 -neighbourhood of the point x_0 there are points such that

$$|f(x)-f(x_0)| \geqslant \varepsilon_0$$

holds, ε_0 being some fixed positive number. Put

$$f_1(x) = \frac{f(x) - f(x_0)}{\varepsilon_0} \cdot \frac{\pi}{2}.$$

Clearly f_1 is T-continuous.

Since the minimum and the maximum of two T-continuous functions is a T-continuous function, putting

$$f_2(x) = \min \left(f_1(x), \frac{\pi}{2[1 + \varrho^2(x, x_0)]} \right)$$

and

$$f_3(x) = \max \left(f_2(x), -\frac{\pi}{2[1 + \varrho^2(x, x_0)]} \right),$$

we easily see that f_3 is a T-continuous function. We also have $|f_3(x)| < \frac{1}{2}\pi$, and sup $|f_3(x)| = \frac{1}{2}\pi$. Moreover, put

$$f_4(x) = \operatorname{tg} f_2(x)$$
.

The function f_4 is a T-continuous but non-bounded function, which ends the proof of sufficiency, and by the remarks preceding the theorem, it proves also the theorem.

Because of Theorem 2 in the sequel, we aim at finding out what the structure of the topological space should be in order that the continuity of a function should imply its boundedness. Since in compact spaces continuous functions are bounded, we shall try to weaken the assumption of compactness.

Definition 1. A space X is called σ -absolutely closed if for its arbitrary covering consisting of enumerably many open sets $\{G_n\}$ there exists a finite sequence $\{G_1, G_2, ..., G_{n_0}\}$ such that

$$\bigcup_{k=1}^{\overline{n_0}} G_k = X.$$

Theorem 3. If f is a continuous function defined in a σ -absolutely closed space X, then f is a bounded function.

Proof. Let

$$G_n = \{x: -n < f(x) < n\}.$$

Hence $\bigcup G_n = X$ and the sets G_n are open. Thus there exists an n_0 such that

$$\bigcup_{n=1}^{\overline{n_0}} G_n = X.$$

Then

$$X = \overline{G}_{n_0} \subset \{x \colon |f(x)| \leqslant n_0\} \subset X$$
,

i.e.,

$$X = \{x: |f(x)| \le n_0\},$$

which means that the function f is bounded.

icm[©]

Remark. If in Definition 1 we replace the enumerable covering by an arbitrary one, we obtain the absolutely closed space considered by Aleksandroff and Uryson in [1]. Every absolutely closed space is clearly σ -absolutely closed.

Now we shall give a necessary and sufficient condition that every continuous function defined in a topological space be bounded.

DEFINITION 2. A pair of families of sets $\{A_y\}$, $\{B_y\}$ with $y \ge y_0$ is said to satisfy condition (*) if

1° for every $y \ge y_0$ the set A_y is closed while the set B_y is open, 2° for every pair $y_1 < y_2$ $A_y \supset B_y \supset A_{y_2} \supset B_{y_2}$ holds,

 $3^{\circ} A_y \neq \emptyset \neq B_y$.

Definition 3. A topological space will be called *-compact if for every pair of families satisfying condition (*)

$$\bigcap A_y = \bigcap B_y \neq \emptyset$$

holds.

THEOREM 4. The sufficient and necessary condition that every real and continuous function defined in some topological space be bounded is the *-compactness of this space.

Proof of sufficiency. Suppose there exists in the space X a continuous and unbounded function. Then the pair of families of sets

$$A_y = \{x: |f(x)| \ge y\},\ B_y = \{x: |f(x)| > y\},\ y \ge y_0$$

satisfies condition (*), but because of the function f

$$\bigcap A_y = \bigcap B_y = \emptyset$$

holds, whence X cannot be *-compact.

Proof of necessity. We shall prove that if the space X is not *-compact, then a finite and continuous function f defined in X can be found which is not bounded. Thus suppose X is not a *-compact space. Then there exists a pair of families of sets $\{A_y\}$, $\{B_y\}$ which satisfies condition (*) and is such that

$$\bigcap A_y = \bigcap B_y = \emptyset.$$

Without diminishing the generality of our argument we can assume that $B_y = A_y = X$ for $y \leq y_0$. Put

$$f(x) = \sup \{y \colon x \in A_y\}.$$

The function f has been defined correctly since, in view of $A_{v_0} = X$,

$$\bigwedge_{x \in X} \{y \colon x \in A_y\} \neq \emptyset.$$

Moreover, the function f is finite because, by $\bigcap A_y = \emptyset$,

$$\bigwedge_{x \in X} \bigvee_{x \in R} (x \notin A_y).$$

Next we observe that f is an unbounded function because by assumption all the sets A_y are non-empty. Now we shall prove that f is a continuous function. To this end we investigate sets of the form

$$\{x\colon f(x)\geqslant y\}\;,$$

(2)
$$\{x: f(x) > y\}$$
.

For $y \leq y_0$ the sets (1) and (2) coincide with the whole space X and thus are close — open. Let $y > y_0$. First we have

$$\{x\colon f(x)>y\}=\bigcup_{y'>y}A_{y'}.$$

By Condition 2° we have $\bigcup_{y'>y}A_{y'}=\bigcup_{y'>y}B_{y'}$ and thus by 1° the set

$$\{x\colon f(x)>y\}=\bigcup_{y'>y}B_{y'}\quad \text{ is open }.$$

Hence it follows that sets of form (2) are open. Next we have

$$\{x\colon f(x)\geqslant y\}=\bigcap_{y'< y}A_{y'}.$$

Hence sets of form (1) are closed.

From the fact that the sets (1) are closed and sets (2) are open it follows that the function f is continuous, which ends the proof.

Remark. If X is a connected space and if is a continuous and unbounded function, e.g. from above, then for some number y_0 the inequality $y_0 \leqslant y_1 < y_2$ implies not only

$$\{x: f(x) \geqslant y_1\} \supset \{x: f(x) > y_1\} \supset \{x: f(x) \geqslant y_2\}$$

but also

$${x: f(x) \geqslant y_1} \neq {x: f(x) > y_1} \neq {x: f(x) \geqslant y_2}.$$

Thus under the assumption of connectedness of the space X in Theorem 4 one may, without essential changes in the proof, replace the *-compactness by a weaker condition.

A pair of families of sets $\{A_y\}$, $\{B_y\}$ is said to satisfy condition (**) if it satisfies condition (*) and if $A_{y_1} \neq B_{y_2} \neq A_{y_2} \neq B_{y_2}$.

DEFINITION 4. A topological space will be called **-compact if, for every pair of families which satisfies the condition (**) we have

$$\bigcap A_y = \bigcap B_y \neq \emptyset.$$

THEOREM 5. The sufficient and necessary condition that every real and continuous function defined in a topological connected space X be bounded is the **-compactness of the space.

We omit the proof.

icm[©]

§ 2. Theorems 2-4 of the foregoing paragraph enable us to solve the problem stated in the introduction.

THEOREM 6. Suppose we are given a compact space (X, T) with the topology T determined by some metric. Let T_1 be a topology stronger than T. Then every T-continuous function is T-continuous if and only if the space (X, T_1) is *-compact.

Proof. If (X, T_1) is *-compact, then by Theorem 4 it follows that every T_1 -continuous function is bounded. If follows from Theorem 2 that every T_1 -continuous function is also T-continuous. Let T_1 -continuity imply T-continuity. Thus by Theorem 2 all T_1 -continuous functions are bounded.

Hence by Theorem 4 the space (X, T_1) is *-compact. For a **-compact space (by Theorems 2 and 5) we may assert the corresponding theorem.

THEOREM 7. Suppose we are given a compact and connected topological space (X,T) with the topology determined by some metric and let T_1 be a stronger topology than T. Then every T_1 -continuous function is T-continuous if and only if the space (X,T_1) is **-compact.

The proof of this theorem is analogous to that of Theorem 6.

Final remarks.

. Remark 1. Spaces in which continuous function are bounded, i.e. pseudo-compact spaces, have been considered in papers dealing with topology.

It follows from Theorem 4 that a Tikhonov space is pseudo-compact if and only if it is *-compact.

Remark 2. The characterization of *-compact spaces given in Theorem 4 is similar to the following characterization of compact spaces.

THEOREM 8. A topological space X is compact if and only if every real upper (lower) semi-continuous function defined in X is upper (lower) bounded.

Remark 3. If the resulting space is an interval $\langle a,b\rangle$ with the natural topology T_0 , then, if in some topology $T\supset T_0$ the space $(\langle a,b\rangle,T]$ is *-compact, two conditions must be satisfied

- (1) Every interval $\langle c, d \rangle \subset \langle a, b \rangle$ is T-connected (connected in topology T).
- (2) Every T-neighbourhood of an arbitrary point $x_0 \in \langle a, b \rangle$ is a T_0 -dense set in some T_0 -neighbourhood of the point x_0 .

The problem. Do conditions (1) and (2) suffice for the space $(\langle a,b\rangle,T)$ to be *-compact, i.e. for

$$F_{T_0}(\langle a,b\rangle,T_0)=F_T(\langle a,b\rangle,T)$$
 (notation of p. 2).

This problem may be considered for an arbitrary compact and connected space (X, T_n) .

Remark 4. If a space (X, T) is *-compact, then every space (X, T_1) where T_1 is a topology weaker than T, is also *-compact.

References

- [1] П. С. Урысон, *Труды по топольоги и другим областям математики*, Москва--Ленинград 1951, vol. 2. pp. 854-963.
- [2] Г. Х. Синдаловскин, Некоторые вопросы непериваности и дифференцруености измериных функции, ИАН СССР 22 (1958), pp. 395-442.
- [3] О непрериваности и дифференцируемости относительно Конгуируэтных множеств, ИАН СССР 26 (1962), pp. 125-142.
- [4] T. Świątkowski, On some generalization of the notion of asymmetry of functions, Coll. Math. 17 (1967), pp. 77-91.
- [5] On the conditions of monotonicity of functions, Fund. Math. 59 (1966), pp. 189-201.

Reçu par la Rédaction le 14. 12. 1971