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Let us add that by a slight modification of the construction of the

compactum Y, one can obtain a plane compactum. Y| of dimension |
such that every plane compactum X has the same shape as a retract
of Y. .
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On transfinite sequences of B-measurable functions
by
Tibor Salat (Bratislava)

Abstract. The notion of the convergence of transfinite sequences of real numbers
and functions was introduced by Professor W. Sierpifiski (Fund. Math. 1 (1920),
pp. 132-141). In this paper that notion is extended for metric spaces. A part of results
of the paper generalizes some earlier results of . Sierpifski and H. Malchair, further
the transfinite sequences of functions with closed graphs are investigated.

In paper [10] the notion of the limit of the transfinite sequence of
real numbers and the notion of the limit function of the transfinite se-
quence of real functions were introduced. The idea and some results of
paper [10] were developed in some further papers by H. Malchair and
M. M. Lavrentieff (see e.g. [31-[7]).

We shall generalize these notions and some results of the above-
mentioned papers to metric spaces and we shall prove one theorem. on
limit functions of transfinite sequences of functions with closed graphs
(see Theorem 4).

The following definitions generalize the above-mentioned notions.

DerinrroN 1. Let (X, o) be a metric space and let 2 denote the
first uncountable ordinal number. The transfinite sequence

1) {ag}e<a

of elements of the space X is said to be convergent and have a limit ¢ ¢ X
if for each ¢ >0 there exist an ordinal number a < Q such that for each
E,a << E< Q the inequality o(a, a)<C¢ holds. If (1) has the limit a, .
we write 1$i_>mpa5= a (or briefly a,—a).

DerINITION 2. Let X be a set and let (Y, p,) be a metric space. The
transfinite sequence

2) {fideca

of functions f;: X ¥ is said to be convergent and have a limit fﬁ.nction
f: XY if for each z ¢ X we have 15111!12]‘5(00) = f(z). If (2) has the limit

function f, we write léng fe=1f (or briefly f.—f).
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It is easy to see that each sequence (1) has at most one limit and
each sequence (2) has at most one limit funetion.. ‘

In paper [10] Professor W. Sierpinski studied some propfertles of
limit functions of transfinite sequences of real continuous functions and
functions of the first and second Baire class which are defined on B,
= (—o0, 4+c0). It is proved in [10] that the limit funetif)n of any con-
vergent transfinite sequence {fi; o of continuous fu.netlons fE BB,
is again a continuous function. The proof of this fact is based in [1.0] on
the separability of the space E,. We shall extend this vesult to arbitrary
metrie spaces.

THEOREM 1. Let X, Y be two metric spaces, let fi: XY (£< Q) be
continuous functions. Let fo—f. Then f is also a continuous function on X.

We shall use in the whole paper the following simple auxiliary result.

Levyia 1. Let (Z, 1) be a metric space, a,e Z (§ < Q) and a,—a. Then
there exists an ordinal number a < Q such that a, = a for each &, a < &< Q.

Proof. From the assumption of Lemma 1 we get for ¢ = 1/n an
ordinal number a,< 2 such that z(a, a) < 1/n for each &, an < E<Q.
Let a denote the first ordinal number which is greater than any a,
(n=1,2,...). Then, as is known, we have a<< Q. For each £, a < < 2
we obtain z(a,,a)<1lfn (n=1,2,..). Hence a,=a for &, a << E< Q.

Proof of Theorem 1. Let 2,e X. We prove that f is continuous
at a,. It suffices to prove that if @, e X (n=1,2,..), &irgmn = %,, then

we have limf(z.) = f(w,).
R—00
We construct the following transfinite sequences:
{felt)lice (1=10,1,2,..).
Since f,—f, we have li)mgfg(az,)=f(ml) (1=0,1,2,..). On account of

Lemma 1 we obtain for each ! (I=0,1,2, ..) an ordinal number g, < 2
such that f(x) = f(x;) for each & o, < &< Q. Let o denote the first
ordinal number which is greater than any o, (I =0,1,2,..). Then a < 2
and )

@) L) =f@) (=0,1,2,.).

Since f, is 2 continuous function on X, we have

1im f, (@) = f,(@)
and this together with (3) yields
}}Ealof(ﬂﬂ) = fla) .

This ends the proof.
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Let X, ¥, Z be metric spaces. The funection f: X x ¥~ Z is said to
be linearly (or separately) continuous on X x Y if for each ze X the
function g.(y) = f(«, y) is continuous on ¥ and for each y « ¥ the function
hy(z) = f(x, y) is continuous on X.

The following theorem is an easy consequence of Theorem 1 (*).

THEOREM 1'. Let fiz,y) (£<< Q) be linearly continuous functions on
XXY, fo XX Y2 (< Q). If fi—F, then the function f, f: Xx ¥ Z,
is also linearly continuous on X X Y.

Analogously to Theorem 1 we can prove the following theorem,
which is an extension of a result of paper [4].

TeEOREM 1”. Let X be a meiric space, fi: X =B, (§< Q) be lower
(upper) semi-continuous functions. Let fy-f. Then f is a lower (upper) semi-
continuous function on X.

We shall generalize the above-mentioned result of W. Sierpiniski also
in another direction. Liet X, ¥ be two sets and let S be a clags of functions
J: X>Y. The set D C X is said to be a determining set for § if any two
functions in § that agree on the set D are identical on X. So any dense
subset of a mefric space X is a determining set for the class of all real
continuous functions on X or any infinite subset M C E, is a determining
set for the class of all polynomials (ef. [2], [8]).

THEOREM 2. Let X be a set and Y a metric space. Let 8 be a class of
Sfunctions f: X Y. Let us suppose that there exists a countable set D C X
such that D is a determining set for 8. Then the limit function of each con-
vergent transfinite sequence of functions belonging to 8 is again a function
from 8.

Proof. Let D= {d,, d,, ...}, fe S (< 2) and fe—f. Since }Ln!}fg(dk)

= f(dx), there exists in view of Lemma 1 an ordinal number a;< Q
such that

(4) Fildx) = f(d)

for each &, ar < &< Q. Let a denote the first ordinal number which is
greater than any ax (k=1,2,...). Then for each &,7; a <& n< 2 we
obtain on account of (4)

Jddr) = f,(dr) (= f(dr))

Since D is a determining set for S, we have fe=f,for a < & < Q. From
this it can easily be deduced that f= f,. Hence feS.

(*) The author is thankful to the reviewer for improving the original version of
Theorem 1.
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We shall show an application of Theorem 2. . ‘

F, denotes the class of all approximately diffe.rentla,b.le functions
f: <0, 1>~ E,, F, denotes the uniform closure of ﬁ’l, ie H 1s the set of
all funetions f: <0, 1;-+E;, which are limit functions o?? uniformly con-
vergent sequences of functions from F;. It is proved in [9] that ﬁj,, i
a proper subset of the class of all approximatt_aly eonmnuO}ls- functions
on <0, 1, and that the set of all continuous functions on <0, 1) is a proper
subset of the class F.

TaworEM 3. Let f, e By (< Q) and f—~f. Then fel,.

Proof. BEach dense subset D C 0,1> is a determining set for the
class F, (cf. [9]). For D we can choose the set of all rational numbers
of the interval <0, 1. Theorem now follows at once from the Theorem 2.

Remark. In connection with Theorem 3 the question arises whether
the limit funetion of any convergent transfinite sequence of approximately
continunous funetions f; <0, 1) F, is again an approximately continuous
fanetion on {0, 1. )

In paper [10] it is proved that the limit function of a convergent
transfinite sequence {f;}.., of functions f;: B,—~ B, of the first Baire
class is again a function of the first Baire class. The same idea can be
used to prove the following more general result.

THEOREM 4. Let X be @ complete and separable meiric space and Y
a metric space. Let {f.};. o be a transfinite sequence of B-measurable functions
Ji: XY of the first cluss. Let f,—f. Then also f is a B-measurable function
of the first class. -

If X and Y are metric spaces with the metric o and g,, respectively,
then C(X, Y¥), By(X,Y), U(X,Y) denote the class of all continuous
functions f: X—Y, the set of all B-measurable functions of the first
class, and the set of all functions f: X +¥ whose graphs are closed sub-
sets of the metric space X x Y (with the metric o* = V ¢®+ ¢2), respectively.
In paper [1] it is proved that
(5) C(X,B)CU(X,E)CB(X, E)
holds.

The class § of functions f: XY (Y is a metric space, X is a set)
is said to be closed with respect to the framsfinite convergence (S is e.b.c.)
if the limit function of each convergent transfinite sequence {fe}ecq of
functions f; e § is again ‘a function from 8. It follows from the previons
results (see Theorems 1 and 4) that ‘

1) the class C(X, Y) is c.t.c. for each metric space X,

2) B(X,Y) is etie. if X is a complete and separable metric space.

From Theorem 4 it follows in view of (53) that the Limit function of
each transfinite sequence of funetions from U (X, E,) is a B-measurable
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function of the first class if X is a complete and separable metric space.
In connection with this fact the question arises whether the class U (X, Y)
is also c.t.c. A positive answer to this question is given by the following

THEOREM 5. Let X, Y be two meiric spaces. Let fe U(X,Y) (£ <“_Q)
andf.—~f. Then fe U{X,Y).

Proof. Let &, denote the graph of the function h: X Y. In order
to prove that fe U(X, Y) it suffices to show that G,C @, (G, denotes
the closure of G; in X x ¥).

Let (o, %) ¢ G;. Then there exists a sequence {lory fl@))lse,,
(e, f(zx)) e @ (k=1,2,...) such that
(6) }nggo(‘vk’ floe)) = (@, %) in XxY.
Let us construct the transfinite sequences

@)} ica

Sinee for a fixed ¢ we have ggfé(mk): flmr), there exists in view of

Lemma 1 an ordinal number az<< Q such that felzr) = f(ax) for each
&, 0 < £<< Q. Denote by o the first ordinal number which is greater
than any ax (k= 1,2,...). Then a<< Q and fiwx) = f(zr) (b=1,2,..)
for each £, a < £<C 2. Hence

(7) (x5 f (@) = (2, folow))
for §, a << &< Q. For each £ a < £< Q we get from (6), (7)

(k=1,2,..).

(k=1,2,..)

}iglo(-’fk, felon)) = (%0,9,) in Xx7Y.

Since fy e U(X, Y), the point (z,, y,) must belong to the graph of
the function f;. So we have ¥, = fi(,) for & o< &< Q. From this fact
it is easy to see that y, is the limit of the transfinite sequence { fel@o)}ecns
and since fy—f, we get y, = f(z,). Hence (x,, y,) « G;. This ends the proof.

In paper [10] also the notion of the convergence and the sum of
transfinite series of real numbers and functions was defined. Tt is proved
in [10] that functions u,e C(B,, B,) (£< 2) for which the sum of the

transfinite series Y u, does not belong to C(H,, #,) exist. For the func-
<

tions %, we may choose suitable polynomials. An analogous result may
be proved also for the system U (#,, B,).
THEOREM 6. There exist functions ug e U(By, B) (§< Q) such that

the transfinite series ) u, converges and its sum does not belong to U(E,, E,).
&<

Proof. Put #(0)=1 and u(x)= 0 for # # 0. Then u e B,(H,, B,)
and therefore there exists a sequence {f,}°, of continuous functions
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fa: By~ F, such that {f,}n.o converges pointwise to u. Pubt u,= foy
z:.—-]l’,,——(fﬂ—}-fl—l— e Ffpy) for lgn< o and =0 for 0 <§&< Q.
=

Then
Sw=u,
&<

ug e U(B, B,) and u ¢ U(Hy, By .
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Property Z and Property Y sets in F-manifolds

by
William H. Cutler (*) (Baton Rouge, La.)

Abstract. Let M be a manifold modelled on a Fréchet space F such that F o F”.
K, a closed subset of M, will have Property I if given an open neighborhood U of K
and an open cover of I, there exists a set N which is a closed neighborhood of K con-
tained in U and a homeomorphism h: N =Bd(¥)x [0, 1) snch that for xz «Bd(N),
h(z) = (%, 0) and {{z} X [0, 1)) is contained in some element of the cover. It is shown
that (1) Property ¥ implies infinite deficiency, and (2) Property Z implies Property ¥
for separable M. The combination gives an alternative proof to the proof of Anderson’s
that Property Z implies infinite deficiency.

Key words and phrases. Infinite-dimensional manifold, ¥ -manifold,
deficiency, Property Z, negligibility, variable product.

1. Introduction. An F-manifold is a manifold modelled on a Fréchet
space F' such that F = F*. A closed subset K of an F-manifold M has
Property Z if for every open, non-empty, homotopically trivial set U in M,
then U— K is non-empty and homotopically trivial. K has F-deficiency
if there is a homeomorphism h: M —>M x F such that for z e K, h(x)
= (IL‘, 0)-

Anderson was the first to show that Property Z implies # - deficiency
for separable F-manifolds [1]. More recent results due to Chapman [2]
have established this for non-separable F-manifolds. This paper gives
a new approach to the problem, one which avoids use of the Hilbert
cube, the useful compactification of I, (separable Hilbert space), which
has no good generalization for other Fréchet spaces. We will also define
a new type of deficient subset, which will be used as a stepping stone
in the proof that Property Z implies F-deficiency.

Let K Dbe a closed subset of a space X. Then K has Property Y if
given an open neighborhood U of A and an open cover of X, there exists

(*) This paper
W. Henderson.
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