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Real maximal round filters in proximity spaces

by
Don A. Mattsen (Mankato, Minn.)

Abstract. Given a proximity space (X, d), where P(X) is the collection of real-
valued proximity functions on (X, §), a maximal round filter is called real whenever the
corresponding maximal p-ideal is real. The maximal p-ideals in P(X) which are
not real are characterized in terms of their corresponding maximal round filters. From
this follow results concerning the realcompletion of (X, §). The realcompletion is dis-
tinguished from the completion of X relative to the total structure associated with &
and from the completion by local clusters.

If (X,4) is a dense (topological) subspace of 7T, conditions are obtained which
characterize when every member of P(X) can be continuously extended to 7. Examples
concerning these results are also provided.

1. Intreduction. Let (X, §) be a proximity space with Smirnov com-
pactification 6X. The points # of §X may then serve as indices which
make explicit the one-one correspondence between the maximal round
filters 5 on (X, 6) and the maximal “p-ideals” I” in the collection P(X)
of real-valued proximity functions on (X, d). A maximal round filter %
is called real if the eorresponding maximal p-ideal I is real. In this paper
we characterize the maximal p-ideals I® which are not real in terms of
maxjmal round filters. It then follows that the realcompletion of (X, 8)
is the completion of the generalized uniform space (X, L), where U is
the weak generalized uniformity determined by P(X). It is also shown
that the realcompletion of (X, d) is not, in general, coincidental with the
completion of X relative to the total structure U, associated with o,
nor with the completion of (X, §) by clusters.

When (X, 8) is a dense (topological) subspace of T, conditions are
obtained which characterize the property that every member of P(X)
can be continuously extended to 7. This supplements the results of [6],
[7] and [8]. An example is provided to show that this property can hold
when X is not C-embedded in 7 and when there is no compatible pro-
Ximity on T for which (X, §) is a p-subspace.

2. Real maximal round filters. We note that the collection P(X) need
not be a group nor a lattice (c¢f. [2], p. 135). The theory of p-ideals (or
p-systems) in P(X) is developed in [8] and [9]. Appropriate definitions
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and results concerning round filters may be found in [10]. The proximity
relation on the real numbers will be that induced by the standard metric.

Recall that every member f of P(X) can be extended continuously
to a mapping j of 6X into the Smirnov compactification of . Then for
each z ¢ 0X, the set I®= {f ¢ P(X): f(x) =0} is a maximal p-ideal of
P(X), and each maximal p-ideal has this form. (See Lemma, p. 416
of [8].) By F° we denote the unique maximal round filter on (X, 6) which
converges to .

The following result, implicit in [8], is stated for completeness.

LeMMa 2.1. For each © e 8X, the following are equivalent:

(i) I® s real,

(i) f(=) e R, for all feP(X).

Proof. (i) implies (ii). For fe P(X), there exists » e R such that
(f—r) e I®. Then (f—#)(z) =0, and since f—7= f—7r and F(z)=r, it
follows that f(z) = 7.

(ii) implies (i). If f(») ¢ R for all f ¢ P(X), then the extension to 6X
of f—f(w) vanishes at x, so that (f—f(z)) e I”. Thus I® is real and the
proof is complete.

- We next characterize the maximal p-ideals in P(X) which are
not real.

TEEOREM 2.2. For a point x € 0X, the following are equivalent:

(i) f(=) is not real, for some fe P(X). '

(ii) There exists f ¢ P(X) such that f is unbounded on every member of F°.

(iii) For some fe P(X) and for each positive integer mn, the seis
= {y e X: |f(y)| = n} belong to F=.

(iv) I® is nmot real. ]

Proof. (i) implies (ii). Let f satisfy (i). If f{F] is bounded in R, for
some F ¢ % then sinee z e Cl,xF, it follows that f(#) e Clpf[F]. Thus
f(=) € B, contradicting (i).

(ii) implies (iii). If f satisfies (ii), then no F, is empty. Now I, is
a p-neighborhood of F,,,, for all #, and each F, meets every member
of F°. Sinee §7 is maximal, each Fy, is a member of F°.

(iii) implies (iv). Buppose I® is real when F° satisfies (iii). By
Lemma 2.1, f(z) ¢ R. Choose % > |f(x)|. Then f[F,] is remote from f(x),
confradicting € Cl;x F,,.

(iv) implies (i). Immediate from Lemma 2.1. This completes the proof.

COROLLARY 2.3. There exists an unbounded member f of P(X) if and
only P(X) contains a mavimal p-ideal which is not real. '

Proof. Necessity. Take f « P(X), where f is unbounded. Then the
sets Fy= {y < X: |f(y)] >n} form a base for a round filter on (X, d)
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which can be embedded in a maximal round filter %, By Theorem 2.2,
the corresponding maximal p-ideal I¥ is not real.

Sufficiency. Since X is a member of %, P(X) contains an. un-
bounded member by (ii) of Theorem 2.2, and the proof is complete. '

Let v, X be the minimal realcomplete extension of (X, 8), (see [8],
p. 414.) From Corollary 2.3 it follows that if P(X)= P*(X), where
P*(X) is the algebra of bounded, real-valued functions on (X, ¢), and
if X is not compact, then (X, 8) is not realcomplete. Clearly, any non-
compact pseudocompact space cannot be realcomplete relative to any
comopatible proximity. We note that we may also have P(X)= P*X)
where C(X) # C*(X). )

Now each member f of P(X) determines a pseudometric o;, com-
patible with 8, by o(x,y) = |f(2)—f(¥)|. In this manner, P*(X) deter-
mines the unique totally bounded uniform structure 9* in the proximity
class of 4. Thus if &= {o;: fe P(X)}u #, and if § is the collection of
all pseudometries on X which are uniformly continuous with respet-
to 4, then G is a gage for X in the sense of [5]. The generalized unc
formity Wp (see [1]) associated with § by Leader’s theorem of [5] is the
“weak generalized uniform structure” (see [8], p. 417) determined by P(X)i

The following theorem now provides a characterization of the
points of v; X.

THEOREM 2.4. A point x of 0.X is in v, X if and only if F* is a Cauchy
filter relative to U:p.

Proof. Necessity. Take zev, X, so that f(x) is real, for every
fe P(X). Given ¢ > 0, the set Ny = {y e v;X: o5(%, y) < ¢} is a neighbor-
hood of z in v;X, and since ¥* converges to z, some member F of F* is
contained in N;. Thus o,[F] < 2s. Since 5 contains small sets relative
to the gage § of Up, F*° is a Up-Cauchy filter.

Sufficieney. If z ¢ $X—uv;X, then I® is not real by Theorem 2.2.
It follows from (ii) of Theorem 2.2 that there is a member f of P(X) which
is unbounded on every member of 5°. Hence, o; is unbounded on every
member ‘of 5%, and F® is not a Up-Cauchy filter.

This completes the proof.

Thus, the real maximal round filters on (X, d) are precisely the
Cauchy round filters relative to (X, Ujp). Let U, denote the weak
generalized uniformity on v, X generated by P{v,X).

COROLLARY 2.5. The completion of (X, Wp) is (v;X, Up).

Proof. Clearly, the canonical injection of (X, Uyp) into (v, X, Vp) is
a uniform isomorphism. Since v, X is realcomplete, (v; X, Up) is complete
by Theorem 2.4, and the proof is accomplished.
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0. Njastad has shown that the realcompletions of (X, 8) are
exactly the p-subspaces of X which are determined by completions of
weak generalized uniformities in the p-class of 4. (See Theorem”:?)‘ of [8].)
In [4] Leader has defined a proximity space to be “complete” if every
local cluster contains a point. The comple’pion of (X, d) by clusters is
then taken to be the set X* of all points of 6X which are close to small
subsets of (X, 6). Now every compatible pseudomefric ¢ on (X, d) can
be extended to a compatible pseudometric ¢* on X*. Thus, if e X
F% contains small sets relative to the “total” gage (see [1]) on (X, 4).
In particular, 7 has small sets relative to the gage §. Hence, by Theg-
rem 2.4, X* C v, X. We now provide an example to show that, in general,
X* # v, X, and that not every completion of (X, W), where W is a gener-
alized uniformity in the p-class of 6, is a realcompletion of (X, d).

ExawpLe 2.6. Let X be the unit ball in 7,, the space of square
summable real sequences, and let 6 be the proximity relation on X induced
by the standard metric d. Thus, P(X) is just the class of all uniformly
continuous real-valued functions on X. Now & is not totally bounded,
50 (X, 6) is not precompact. (See Theorem 12 of [4].) But every member
of P(X) is bounded, i.e. P(X) = P*X), so that v,X = 6X but X* # 6X.
Moreover, X is complete relative to the uniformity U, associated with d,
which is the total structure in the p-class of 4. (See Theorem 5 of [1].)
Since v, X is the minimal realcompletion of (X, d), W, is not a weak
generalized uniformity for any subcollection of P(X). We also note that
while X is realcompact, X is not realcomplete relative to 4.

3. Extensions of P(X). Given a proximity space (X, 0), we now
suppose that X is a dense (topological) subspace of a topological space 7.
From [6] it is known that every member of P*(X) has an extension to
a member of C*(T) if and only if each point of 7' is a cluster point of
& unique maximal round filter on (X, §). Here we show that every member
of P(X) can be extended to a member of C(T) if and only if every point
of T is a cluster point of a unique real maximal round filter on (X, ).
We note that if § is the proximity relation on X induced by the Stone-
Cech compactification pX of X, then for 6 = p Theorem 3.2 is & result
characterizing when X is C-embedded in 7.

Lexma 371 If each point x in T is a cluster point of a unique real
mazimal round filter F* on (X, 8), then every pseudometric o in the gage §
has an extension to a continuous pseudometric o om T.

Proof. If v, X is regarded as a p-tubspace of 6X, then (X,0) is

& p-subspaee of v, X, and by Theorem 1 of [4] and Theorem 2.4, every

pseudometric ¢ in § has a unique extension to a compatible pseudo-

. mefric o, on v,X. For each z ¢ T, let z;, be ‘the unique limit point in v; X
"of the real maximal round filter 5. Define (@, y) = oy(w;, ¥,). Since
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each 57 contains small sets relative to o, the proof of Lemma 2 of [6]
may be applied here to ¢. Thus, for z € T and & > 0, the £-ball about =
determined by o is a 7T'-neighborhood of z, and the proof is complete.

We now proceed with our main theorem on extensions.

THEOREM 3.2. Let (X, 8) be a proximity space, where X is a dense
(topological) subspace of T. Then the following are equivalent:

(i) Bvery point x in T is & clusier point of a unique real maximal
round filter 5 on (X, §).

(ii) Every pseudomelric in the gage S associated with the weak gener-
alized uniformity on X determined by P(X) has a unique continuous ex-
tension to T.

(ili) The canonical injection of (X, d) into ils real-completion v, X can
be exiended to a continuous mapping of T into v, X.

(iv) Every member f of P(X) has an extension to a member of C(T).

Proof. (i) implies (ii). Immediate from ILemma 3.1.

(ii) implies (iii). The collection §; = {7: o < S} is a gage for T (not
necessarily compatible with the topology for 7). If AU, is the generalized
uniformity for 7' associated with the gage S, then (X, L) is a uniform
subspace of (T, U,). By Corollary 2.5, (v,X, V) is a completion of
(X, W), hence it follows that the canonical injection 7, of (X, L)
into (v,X, V) has an extension 7 to a uniformly continuous mapping
of (T, 9U;) into (v,X, V). Since every pseudometric in G, is continuous
(relative to the original topology for T), = is a continuous mapping of T
into v, X.

(iii) implies (iv). Let fe P(X) and let 7 be the continuous extension
of the canonieal injection of (X, 6) into v, X. Now f has an extension to
member f* of P(v,X), so that f, =* « 7 is the unique continuous extension
of f to T.

(iv) implies (i). Since (iv) of the extension theorem of [6] is satisfied,
each point  in 7T is a cluster point of a unique maximal round filter F*
on (X, §). If 5= is not real, it follows from Theorem 2.2 that there exists
some f in P(X) which cannot have a continuous real-valued extension
at z, contradicting (iv). Hence &= is real, and the proof is complete.

Exawere 3.3. Let T be the subset {(z, y): ¥ > 0} of the plane. The
topology for T’ is determined by the usual neighborhoods of points in 7T
together with the following neighborhoods of the points (z, 0).

For ¢>0, N(2,0)={z, 00} v {(u,v)eT: (u—azP+(v—c)< &}
Then T is a completely regular, Hausdorff space. (See Example 3.K of [31.)

Let X be the subspace {(z, y): y > 0} of T and let & be the proximity
on X generated by the usual metric d in the plane. Now each point of 7 is
a cluster point of a unique maximal round filter ¥ in (X, §), where 5% is
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a Cauchy filter relative to d. Thus, F* is real. Now P(X) # P*(X), and
by Theorem 3.2, every member of P(X) may be extended to a member
of C(I). However, the function f(z,y) = sin(y~?) belongs to C*(X), but
clearly has no eontinuous extension to 7. Thus X is not C*-embedded
in T. We also observe that there is no compatible proximity on T for
which (X, é) is a p-subspace of 7. (See Example 1 of [7].)
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A remark on the independence of a basis hypothesis

by
Wajciech Guzicki (Warszawa)

Abstract. In the paper we prove the independence of a basis hypothesis used by
Enderton and Friedman in the proof of the existence of a minimal f,-model for
analysis. The main resulf is the consistency of ZFC with the axiom

(@) P BR) pipiaoy [ B € ITHa] & R ~ HOD [a] = 0].

The aim of this paper is to prove the independence of a basis hypo-
thesis used by Enderton and Friedman [1] in the proof of the existence
of a minimal f,-model for analysis.

The hypothesis is as follows:

{BHy): Let a C  and R be a class of subsets of o, defined by a X formula
with parameter a. Then there exists a subset # of w, defined
simultaneously by the formulae X} and IT}, such that » e R.

This is exactly the formulation of the fact that 4i[a] is a basis for
2lal. It is well known that (BH,) is a theorem of ZF (Zermelo-Fraenkel
set theory). Addison proved that the axiom of consfructibility implies
(BH,,) for every natural »>>2. Using the axiom of projective determinate-
ness, Martin and Solovay proved that for an odd », (BH,) does not hold.
Their conjecture is that under the same assumption (BH,) holds for even n.
Silver proved that (BHj) is consistent with the existense of a measurable
cardinal. For references see [1].

In the present paper we prove that assuming the consistency of ZF,

. the theory ZF with an additional axiom “(BH;) does not hold” is con-

sistent. Namely, our theorem is

TaEOREM 1. If M zs a countable standard model for ZF+V = L, then
there exists a model N 2 M for ZFC, satisfying the following sentence:
Jor every a C o there exists o class R, of subsets of w, R, € IT3[a] such that
no element of R, is ordinal definable from a.

In the proof we use the method of forcing, so by the well known
reasoning one can obtain the following consistency results:

‘COROLLARY 2.

Con (ZF) - Con(ZFC+ (a)p,, (BR) ppy[ R € T4a] & B ~ HOD[a] = 0]).
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