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A proof (involving Martin’s axiom) of a partition relation
. -

J. Baumgartner (Hanover) and A. Hajnal (Calgary)

Abstract. Tet @ be an order type such that @ ->(w),. Then ®->(a)} for a < w,,
k< .

This solves a conjecture of Erdds and Rado as generalized by F. Galvin.

§ 0. Statements of the results and outline of the proof. The aim of this
paper is to prove (in ZFQ)

THEOREM 1. Let @—(w), for a type @. Then

D>(a); for a<ow, k<ow.

This solves problems 10/A and 11 of [1].

For the convenience of the reader we state here the definition of
the partition symbol for types.

DEFINITION. Let @; &,, v< y; be types, r << . ®-(d,) ., denotes

. <
that the following statement is true. Whenever 4, < is an orriered set

and f: [AT —y then there avre BC 4, »< y such that
tpB=®, and f(X)=» for Xe[BT.

As to further conventions and notations concerning the partition symbols
we refer to [1].

The following is a brief history of the problem.
The partition symbol was introduced by P. Erdos and R. Rado.
In [2] the following results were proved
D+(w+n,wm?, O>(ot+n), D>(0+l)i for |D > w;
ool &P, w,m k<o and o> (0+1, ;)%
o >(w+n); for n<ow.
Later in [3] the following results were proved
b ->(ava®, n)
B> (w-n, ) a< oy 1< 0, 0,0 KO, 0] >0
14 — Fundamenta Mathematicae, T. LXXVIIL
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(where 5 is the type of the set of rational numbers) and

2

w;—> {2, on) for n<o.

(0) It was also proved in [3] that CH = w; 4 (0+2, o) Galvin
(unpublished) proved the following results

O>(a) for a<ao, OD->()) and o—>(0-2, .

Prikry proved recently (unpublished) w;—(w*+1,a)* for o< ;.
Galvin also showed that the assumption @-(w), of Theorem 1 is neces-
sary since

&5 (0), implies D+ (w, 0412,

Outline of the proof. We will first show that the statement is
true if we assume Martin’s axiom (see [5] and [9]) and |@| << 2%. We
do not state Martin’s axiom because we only use Lemmas 1, 2 ([6], [5]),
which are consequences of it. More precisely in § 1 we prove

TeEEOREM 2. Let @ be a type such that O (o). Assume |@| = f and
MA, holds (V). Then ®—(a)y, holds for a< o, k< o

Then we will obtain our Theorem 1 by carrying out some “ab-
soluteness” proofs. The first of these given in § 2 is

THEOREM 3. Assume that either of the following conditions hold

(i) M and N are transitive models of ZFC, N is an extension of M
and o = ol

(ii) M is the universe V of set theory, N is the Boolean universe VE for
some complete Boolean algebra B and the semtence “w, = w,” is Boolean
valid in VB (o, is the canonical image of w, in VF).

" Assume A, < is an ordered set in M, and “for a< o, k< o,
A~ (a)i” is true in N (Boolean valid in N) then the same is true in M.
The proof of Theorem 3 employs an argument essentially due to Shoen-
field and is contained in Silver’s paper [8].

In § 3 we prove the following

THEOREM 4. Assume that either of the following conditions hold

(i) M is a countable transitive model of ZFC, B is an W complete
Boolean algebra with the countable chain condition lying in M. P is the
partial order consisting of all non zero members of B (with the ordering
inherited from B) G is P-generic over M and N = M[G].

(ii) M is the universe V of set theory, B is a complete Boolean algebra
satisfying the countable chain condition and N is the Boolean universe VE.

Assume C is an ordered set in I such that pC— (o), is true in M
then tpC—> ()}, is true in N (Boolean valid in N).

(1) MAp is the same as Az in [6]; MA (%) in [5]; Mgy in [9)].
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We will prove both absoluteness theorems under the respective as-
sumptions (i) because these proofs are easier to follow. It should be clear
for the readers familiar with Boolean valued models (see [7], [9]) how
to convert them into proofs appropriate for cases (ii).
Using the above Theorems 2, 3, 4 we can prove Theorem 1 as follows.
Proof of Theorem 1. Let 4, < be given, & = tp4 and assume
&~ (w),. Let |@ = . It is proved in [9](}) that there is a complete
Boolean algebra B with the countable chain condition such that M4,
and @, = o; are Boolean valid in V% = ®. By Theorem 4 then, ipA —(w)}
is Boolean valid in . By Theorem 2, then ip4—(a); is Boolean valid
for e < wy, k< w in N. But then, by Theorem 3, ®->{a)i, a< o, k<
is true in the universe of set theory.
‘We want to point out that first we only obtained proofs of Theorem 2,
Theorem 3 and the proof of the following assertions weaker than Theorem 4
(1)  Let M and N be related as in Theorem 3 (i) or (ii). Then if (4, <>
is an ordered set in M such that (in M) («) o, < ip4 or (B) 4 con-
tains a denumerable dense subset, |4|> w, then (x) or (B) are
true in | (Boolean valid in ) respectively. This already implied
that both w,~(a)} and 21— (a); hold for ¢ << @;, k< w where 1 is
the type of the set of real numbers. After that F. Rowbottom
obtained a proof of the following

(2) Let Tt and N be related as in Theorem 3 (i) or (ii). Let 4, < be
an ordered set in 9 such that wy € @ = tpd4 in M then w, < tpdv
vo; & 4 is true in N (Boolean valid in N) as well.

(2) together with our results Theorem 2, Theorem 3 furnished a proof
for the more general statement.

D>(a) for a<w, k<w provided oKD, (D= aw.
However this statement is still weaker than Theorem 1 as is shown by
the following example obtained by the first author.

(3) There is a @, P—(w), such that o < ¥, holds for every ¥ < &,
] = w,.

The proof of (3) will be published elsewhere. The problem if (3) was
false or true is due to F. Galvin. We mention that one of the lemmas
used for the proof of our Theorem 4 relies heavily on the idea of (2) due
to F. Rowbottom. In § 4 we state some other corollaries of our method,
mostly without proofs. Finally we state the following

ProBLEM. Does M4, imply

o> (w42, w)2?
This should be compared with (0).

(*) The proof in [9] is actually given for § = w, (see Theorem 7.15 of [9]) although
the more general theorem is obvious from the argument.
18+
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We would be glad to see a direct combinatorial proof which we were
unable to obtain (*).

§ 1. Proof of Theorem 2. Let A, << be an ordered set ipAd = @,
D—>(w),, || = B. It is obviously sufficient to show that ¥-»(a): holds
for a suitable ¥ < @. Thus we may assume
(1) ¥H (o) for V<P, |P|< B; hence c¢f(f) > o.

Put J = {BC A: tpB+ (0),}. Then
(2) J is an w;-complete ideal; [AT<*CJ, 4 ¢J.

For B, CC A we write B C iff ¢ B, y < C imply < y. We put
B> z={yeB: 2y} for BC A.

We need the following well-known facts.

(3) Assume BCA, B|> xed for v e B then Bed.
(4) Assume BCA, o, tpB, B|<zed for z<B then BeJ.v

The proof of (3) and (4) is an easy exercise and is left to the reader.
As a corollary of (3) and (4) we have

(5) Assume BC A, B¢J then either w, < ipB or there are C,D¢d;
C,DC B such that D < C.

Proof. If (5) is false then B = B, u B, where B, = {e B: Bi<wed},
B/={zeB: B|>2ed}, and o, £ tpB. By (3) and (4) both B, and B,
are in J hence BedJ as well.

Now we state two lemmas due to Solovay and Kunen respectively.
Both are consequences of M A, and Martin’s axiom will only be used at
this point in the proof.

Lemva 1 (Solovay [6]). Assume MA,. Let k<< ow and assume o
= UkA(i, §) for << B. Then there are X C o, |X| = w and f ¢ *% such that

<

[X—A(f(&),8)|<w for E<p

Le. A(f(¢), & contains an endsection of X for every &< B.

L‘EMMA 2 (Kunen [5]). Assume MA, For f,ge®w put f<yg iff
there is < o such that f(m) < g(m) for n <m < w. Let FC%, |F| < B
Then there is g € “w such that f < g for every fe 5.

Let now [A] = -UkTi' be a 2-partition of length % of 4. For every
<<

0<g¢< w we choose an ascending sequence gz << g, 7 << @ such that

go=0 and

(6) w® = Z @,

n<e

() Added in proof: F. Galvin obtained a combinatorial proof of Theorem 1.
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We agree that in this section & denotes ordinal power, and ' denotes
ordinal addition. For C,DC A4, [C,D]= {{z,y}: o +# yrze OryeD}L
For each o< w, we define a family 72 of subsets of 4 by transfinite
induetion on o as follows.
(7) 5= [A]. Assume 0< o< w; and F° has already been defined
for o < 0.
Let & be the set of those X C 4 for which.there are N C v, (N = w, i<k
and X,,C A for m ¢ N such that
(i) Xo < X for n<m; n,meN,
(ii) XmeFo™, meN,
(iif) [Xu, Xm] C Ts for n<m; n,meN,
(iv) X = | Xn.

mexN .
We now state some properties of 5° which follow immediately from the
definitions

8y (i) X «F? implies ipX = o® for g < oy,
(ii) X e 9, Y is an endsection of X (ie., ¥ = X;E z for zeX)
imply Y e 5 for o< oy,
(ifi) XY eFe, MCN; M= w; ¥YmnC Xy, YmeF™ for me M imply

Y= {J Tnede for 0< o< a,.
me M

Now using Lemmas 1, 2 we generalize Lemma 1 to the following

LeyuaA 3. Assume that the statements of Lemmas 1, 2 are true. Let
o<, XeF X=1\JX(,¢&) for £E< B. Then there are YC X, ¥ «5°
i<k -

and f e’k such that X(f (), £) contains an endsection of ¥ for &< p.

Proof. By induction on . For ¢ = 0 the statement is obvious.
Assume 0 << p < o, and that Lemma 3 istruefor 0 < o< 0. Let X, m e N
satisfy the conditions of (7). Put X (¢, &, m)= Xpm ~ X (i, &) for meN.
By the induction hypothesis there are ¥ C Xm, fm <’k for m e N satis-
fying the following conditions

(9) YpeFom, for meN

and X(fa(%), &, m) contains an endsection of ¥, for every me N. Let

A, &) ={meN: fu(§)=1} for £E<B,i<k Then N=|JA(,¢&) for
<k

- i
&< f. By Lemma 1, there are M C N, |M|= o and f<’k such that
A(f(£), £ contains an endsection of M for &< . Let ¥, (t< o) be
a sequence of subsets of ¥, such that ¥, is an endsection of Ym, and
every endsection of Y, contains a ¥, ;. We have

(10) For every &< f there are n << w and ¥, e My such that
Ym’g,s(m) C X(f(&), E) for a<<meM.
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Put F = {¥,: £< f}. By Lemma 2, there is ¥ ¢ v such that ¥, < ¥

for £< 8. Put Zm= X,y for me M, Y = {J Zn. Then by (8), YeFo

meM
and, by (10), X(f(£), &) contains an endsection of ¥ for &< 8. This proves
Lemma 3. We now prove

Lemyva 4. Assume B¢J, BC A, ¢ < w,. Then there is X ¢ 5%, X C B.

Proof. For ze 4, i< k put Ty(w) = {y e A: {z, y} ¢ Ti}. We proceed
by induction on p<< w,. The statement is obvious for g = 0. Assume
0< o< o, and Lemma 4 is true for ¢ < .

We now define the sequences Y, Bn; n < w of subsets of B by
induction on n < w. By (3), there is z¢B with B| Sz ¢J. Put Y= {«}
for such an 2. By (2), there is 4,<< k such that T,(2) ~ B> x¢J. Put
By = T, (x) ~ B! > #. Assume that 4, << w, Yu, and B, are already defined
so that ¥pn & BoC B, Y,eJ, By¢J. We now claim that there are
Z, G C B, such that

(11) ZeFen, (C¢J and Z<3C.
We distinguish two cases (i) o, < tpBn (ii) w; € tpBan.

Case (i). By (1) and by w,~>(w), we have f= w,. Let D C By,
D = w,. Then D ¢J. By induction there is ZC D, Z e o', Put O
=lzeD: Z<{w}}. Then Z, O satisfy (11).

Case (ii). By (5), there are D, CC B,; D, C ¢J, D << C. Applying
the induction hypothesis for D we get ¥ C D, ¥ ¢ 5%+ which satisfies (11)
with C.

Put now Z(i,u) = Ti(u) ~Z for we 0, i< k. Then, by Lemma 3,
there are V' CZ and fe % such that Ve 5o and Z(f(u), u) contains
an endsection of ¥ for u ¢ C. Let now V,, t < w be a cofinal sequence of
endsections of V. Put C(i, t) = {weC:V,CZ(f(u), uaf(u) =i} for i< k,
t<w C={J JO(@,?). By (2) and (11) there are 4,., <% and i< o

i<k <o
such that C(i,.,,?)¢J. Put ¥,.,=7V,, B,,, = O(i,,,,?). Then Y,
<B, CB, Y,,,¢F», B . ¢J. Thus the sequences are defined and
we also know that in<k, Yo < Y,.,, Yo CB for n< 0; [Yu, ¥u]C T,
for n<m< w.
Put My= {n< w: is =14} for ¢ < k. There is i< k with |[M,| = w.
Put M;= N, X= {J ¥,,. Then by (7) and (8) X ¢ F° and X C B.

meN

In view of Lemma 4 and 4 ¢J to eonclude the proof of our Theo-
rem 2 it is sufficient to prove the following fairly easy

Lexva 5. Let a< o, k< w. Then there is p= o(a, k) < w, such
that X e 5¢ implies the existence of ¥ C X, i << x with tpY =a, [YPRC T;.
Proof. Let 2 <fi<<w, for i< k ‘
(12) o= (fu, -, Br,)* denotes the following statement.
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For every X « 5 thereare Y C X, i < k with ipY = fyand [YPC Ty.
We prove the existence of p(fy, ..., fi_y) = £ < w, satisfying (12).

First we proceed by induction on k. For k = 0,1 the statement is
trivial. Assume k > 2 and the statement is true for I < k. Then it is true
provided ;= 2 for some i< k. Now it is obviously sufficient to prove
the existence of g, 0 = (B, ..., B;_,)? under the condition that g(ay, ..., az_;)
exists for every sequence with at least one a;<< fs; fi= ;= 2, f;>2
for j< k. Let 0= o{fo; ..., Bx_,) be the minimal ordinal satisfying the
following condition:

There is n << w such that

on = SUP{0(Boy ey @ty woey Brn)s @< Buy i<}

We claim that o = (8o, ..., fr_y)% Let Xm, m e N, i<k satisfy the con-

ditions of (7) for X « 2. We may assume n < m for m ¢ N. By f; >1 there

is a sequence y,, < w of ordinals < f; such that > y,> f; holds for
teT

every T C w, |T| = w. By the definitions either there are m e N, ¥ C X,
j<k, j# i such that tp¥ = g;, [YRCT; or for every m e N there is
YuCXmy tp¥m=ym, [¥nPCTi. Then Y= {J ¥YnCX and #pY = 4,

meN
[YEC T;.

§ 2. Proof of Theorem 3. First we prove a lemma in ZFC.

Leyma 6. Let a < 0, k<o and A, < be an ordered set. Let 9: w—a
be onto and one-to-one. Let f satisfy

{1) f: [AP—>Ek.

X C A is homogeneous for f if x,y ¢ [X]* implies f(x) = f(y).
We define

2) P(f,q) = {s: s is a function A Do(s)ew, A Ra(s)C 4 is homogene
ous for fA for all m,n e Do(s), s(m) < s(n) iff g(m) < g(n)}.

We also define a partial order by letting s <t iff s D t. Then ipA - (a)i
kolds iff for every f satisfying (1), P(f, g) is not well founded.

Proof. If s;: n< w is a descending sequence in P(f,g) then X
= {J Ra(s) is homogeneous for f and tpX = a. If X is a homogeneous

n<<o
set for a, let h: a->X be an order isomorphism. Then (hg)ln; n< w is

a descending sequence in P(f, g).

For the proof of Theorem 3 let 4, < ¢ I, fe M satistying (1), and
a< o be given. Let g ¢ M be as above. It is easy to see that P(f, ) ae
= P(f, 9)" = P(f,g). Since it is well-known that any relational system
lying in % is well founded in 9 iff it is well founded in 9, Theorem 3
now follows from Lemma 6.


Artur


200 J. Baumgartner and A. Hajnal

Remarks. The assumption o = f is not used in this proof. We
stated (i) in this stronger form because (i) is needed to prove Rowbottom’s
result § 0, (2). Of course Theorem 2 is true for any denumerable type
lying in M in place of a.

§ 3. Proof of Theorem 4. It will be more convenient to prove the
theorem @ (), replaced by ®—(w*),. We assume that M and R are
related as in (i) (Y). B B .

We denote by C the completion of C. If ¢ e €, then the Ze.ft (right)
character of ¢ denoted by I(c) (7(c)) is the least cardinal # for which there
is an increasing (decreasing) sequence {c¢,: a << §» of members of ¢ with
¢ = lime,. We start with a strong version of Rowbottom’s result § 0, (2).

a<f . _ _ ]

Lesma 7. Let €, < eI be an ordered set. If c<C®—C™ then 1(c)
=r{e) (in MN).

Proof. We work in M. Put § = |C|. There are two cases

a) Either I(¢) = g or r(¢) = f.

b) Gtherwise. ‘

Case a). Clearly § is regular. Let {c,: £ < §) be a well-ordering of ¢
lying in M. For ¢eC and &< B let

Lie) = {¢,s n<<é and ¢, < ¢}, Rye)={c: n<fand c<g¢,}.

Now fix ¢ e C®— C™. By symmetry it is sufficient to see that r(c) = 8
implies I{¢) = f. If I(¢)<< f then for some &< f§, ¢=IubLc). Since
r(¢) = p it follows that there is ¢’ ¢ O such that Ljc) < {¢} < Ryc).
Clearly L;(c') = L,(c). But of course, 1}5(0’)im = Lﬁ(c')"t (since {c;: &< B) € M),
50 ¢ =Iub L(¢') e C™ a contradiction. ’

Case b). Bay I(c) <r(¢)< f. Choose a decreasing sequence
<@t a<r{c), and an increasing sequence {(¥,: a << I{¢)> of members of ¢
with lima, = limy, = ¢. By a well-known property of countable chain
condition extensions there is D e I, |D| = r(c) such that {z,: a << r(e)} v
 {y,: 9.<Ue)} C D. But now it is clear that ¢ « D®— D™ and the left
and right character of ¢ with respect to D are just I(c) and (c) respectively,
s0 we are done by case a). ‘

Let now C, < be an ordered set (fixed for the remainder of the
proof) and sappose that ¢'= { J4; in 9N where each 4; is well-ordered.

i<o
We will show that € is the union of countably many well-orderings in I
as well.

Lmvwa 8. If ¢« C%— C™ then L(e) = r(c) = w (in N).

{) We use without mention the well-known fact that cardinals and cofinalit;
are preserved in the passage from M to N.

N

9] © ‘
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Proof. By Lemma 7, I(c) = r{¢). If I(c) = r(¢) > o then of <ipC
and O cannot be the union of countably many well-orderings.

Let A be a term of language of forcing which denotes (A i< o
Then A will denote 4;. Let b= [C'= || 4;A each A, is a well-ordering].

i<w
We are assuming that 5° ¢ & hence in particular 5° 0 (the zero element
of B).

We work now in M. For each i< w let §; be the set of all « such
that b, = [4; has order type o]Ab® # 0 (here A is the meet operation
in the Boolean algebra). If a, # a, then by Ay, = 0 50 by the countable
chain condition for B, each §; is countable.

For each i and aeS;let C,={ceC: Wb e P, bCb, and bi-ce 4.
It is clear that C = |_J | Oy, so it will suffice to show that each 0, 18

i<m aeSj

the union of countably many well-orderings. Fix i< w and a, € §;. For
each f<< oy let Dy= {ce C: Hbe PHy < B, b < b, and b|— ¢ is the yth
member of A,}.

Leavia 9. For all o < oy, D, is the union of countably many well-
orderings. Since D, = C,,, this will complele the proof.

Proof of Lemma 9. By induction on a < a,. For a= 0 this is
clear. Suppose a > 0.

Case 1. a= f+1. Let D= {¢e C: Tbe P, b<b, and b-¢ is the
pth member of 4,}. Then D, = Dy v D. By the countable chain condition,
D is countable. Thus D, is the union of countably many well-orderings.

Case ii. ¢f(a) = w. This is trivial by induction hypothesis since if
o = Sup a, then D, = (JD,,.

n<o n<aw

Case iii. ¢f(a) > w. Let ¢ be the term denoting the limit of the
first @ members of 4;. By Lemma 8 we know that b, |- ¢ C*%.

Let C*= {ce C™: Hb < b, b/—é=c}. By the countable chain con-
dition C* is countable. For each c¢e C* let b, = I¢ = ¢lAD,,, and let
D,y={ceC: Bb<h,Hf<<ab—¢ is the pth member of A,}. Since
b, = > b, it follows that D, = {_J D, so we need only show that each

ceC* ceQ*

D, is the union of countably many well-orderings. Fix c¢e C*, by (the
inverted version) of § 1, (3), it will suffice to show that D, < ¢ is the
countable union of well-orderings for all ¢’ ¢ D,.

Fix ¢’eD,. Let X = {(d,f): deC and Tb<b, b|~d is the fth
member of 4;Ad S ¢'A(Vy< p) the yth member of A, is <¢'}. Clearly
it (d,8)eX then d<¢ and f< a. By the countable chain condition,
X is countable. Hence f, = sup{f: d(d, f) ¢ X} < a. Finally we claim
that D,} < ¢’ C D, which is the union of countably many well-orderings
by inductive hypothesis. This will complete the proof.
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Let deD,,d < ¢ Choose b < b, and f<a 80 that b|-d is the fth
member of A,. It will suffice to show g < f,. Since bl-é=¢ we also
have bl (Hd e C)(Ej < a)[f < y‘/\c’ < d'Ad’ is the yth nllember of
A;A(Vo< y) the oth member of A; is < ¢']. Hence there are deCy<a
and b < b so that b’ |- (B<yAc’ < @' Ad is the yth member of A;A
A(V8 < y) the th member of 4 is =20, e, (@, ) e X. Hence <y < b
and the claim is proved. -

§ 4. Some further results. As to the definition of polarized partition
relation used below see [1]. In § 1 we implicitly proved the following result

CoROLLARY 1. Let A, < be an ordered set, ipA = @, D> (w),. Assume
M Ay, holds, o< 1, k< o, f: 0*X A—>k. Then there are X Cw® BCA
such that tpX (<) = o, pB(<3) =¥, (o), and XX B 18 homogeneous
for f. In an informal notation this means

(qb ) . (’E{W(‘P»(w)}u))l'l

w? w?

and certainly yields the following.
COROLLARY 2. Assume MA, . Then

AN AL
o] 7\ e
o w?fy

From Corollary 1 using the “absoluteness” arguments described in
this paper one can get

for <o, k<o,

COROLLARY 3. Assume ®—(w)L; 0, a<< wy, k< w. Then

[} a \l'l
] ™ -

We omit the details. We mention that we have a direct proof of this
result as well.
Following the argument given in [4] we easily get

COROLLARY 4, MA, and 7,k < o implies

el

And using the absoluteness argumezits we obtain the following.

COROLLARY 5. Assume a << w;, 7, k<< w. Then

(e)={els

icm
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We omit the proof. This yields a new proof of an unpublished
result of F. Galvin,

Finally we mention without proof one more result:
THEOREM 5. Assume MA, , a<< w,. Then

oo 2]

By a theorem of [3], this is false if CH holds and is relevant to the
problem stated in the introduction.
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