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Minimal class generated by open compact
and perfect mappings
by
Keid Nagami (Matsuyama)

Abstract. We study minimal classes of spaces containing good spaces, such as
metric spaces, p-spaces ete., generated by open compact mappings and perfect mappings.
As Bennett showed, a paradoxieal thing like Michael’s space can be a member of such
a class. If we assume that all spaces considered are regular, such minimal classes turn
suddenly into somewhat harmonious objects. Main theorem: Let f: X »Y be a compo-
sition of open compact mappings and perfect mappings, with X a p-space. Then f is
compact-covering. We deduce many ecorollaries from this theorem among which there
are answers for some problems for MOBI and MOBOS by Arhangel’skii.

0. Introduction. The present study has grown up from the idea of
Arhangel'skif [3], § 5, where he proposed the importance of the study
for classes of spaces which are generated by good mappings starting
from good spaces. He defined, among others, two classes of spaces, MOBI
and MOBOS, and raised a group of problems which seems to be very
interesting. Recall that MOBI or MOBOS is the class of all images of
metric spaces under the compositions of open compact () mappings or
of open compact ones and perfect (*) ones, respectively. Recently Ben-
nett [4] showed that Michael space [11] X is an element of MOBI and
almost all problems for MOBI raised by Arhangel’skii are solved in the
negative. X is Lindelof regular and hence paracompact, yeb it is neither
metric, developable (3), perfectly normal nor a p-space (*). Bennett

{*) A mapping is said to be open if the image of every open set is open. It is to be
compact if every point-inverse is compact. '

(*) A mapping is said to be closed if the image of every closed set ig closed. It is
said to be perfect if it is closed and compact.

(®) A sequence W, i=1,2, ..., of open coverings of a space X is said to be
a development it {S(@, W) = | J {Ts weUeUn}: i=1,2,..} forms a local base at &
for every point « of X. A space is said to be developable if it has a development. A de-
velopable regular space is said to be a Moore space.

(*) A space is said to be completely regular if it is T, and has a base consisting of
cozero sets. According to Arhangel’skii [1], Definition 5, a space X is said to be a p-space
if it is completely regular and there exists a sequence Usg, 4=1,2, ..., of open col-
lections of its Stone-Cech compactification fX such that ﬂ 8@, W):4=1,2,..3C X
for every point % of X and such that each ql, covers X. A sequence {;} with this
property is said to be a pluming of X.
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actually constructed a metric space Y, a Haunsdorff space Z, and open

compact mappings f: ¥Y—~Z and g: Z - X. In this paper we assume that
all mappings are continuous onto, while transformations need not be
onto. Tt is a meaningful fact that Z is not a regular (T4 T;) space.
Tt we assume that a starting space is metric and each intermediate stop,
which is to be the range of an open compact mapping and is to be the
domain of another open compact mapping, is regular, then we can avoid
monsters like X as the last stop. This will be clarified in this paper.
Hereafter all spaces are regular and hence the domains and the ranges of all
mappings are regular. This convention should be kept even for the compo-
sitions of mappings. Both the domain and the range of each factor mapping
must be automatically regular.

0.1. DeFINITION. A mapping is said to be an OC, OP, or OCP, if it
is respectively the composition of open compact omes, open ones and
perfect ones, or open compact ones and perfect ones. Let C be a class of
spaces. Let 0C(G), OP(C), or OCP (C) be respectively the class of all images
of elements of C under OC-, OP-, or OCP-mappings. In other words
OC(€), OP(€), or OCP (C) is the minimal class of spaces containing C which
is closed wnder the operation of taking images of OC-, OP -, or OCP -mappings
respectively.

The main purpose of this paper is then to show that these three
kinds of classes, starting from Moore spaces, absolute G, (%) spaces or
p-spaces, turn suddenly into somewhat harmoniuous objects in spite of
Bennett’s counter example. When C is the class of all metric spaces,
OC(C) is denoted merely by OC (metric). This type of abbreviation is used
for other C; OP (absolute G;), OCP(p-spaces), etc. The author thinks
that OC(metric) or OCP (metric) is what Arhangel’skil expected under
the name of MOBI or MOBOS respectively. From this stand point of
view yet affirmatively unsolved problems for MOBI and MOBOS raised
by him can be asked again for OC(metric) and OCP(metric). Some of
them will be solved affirmatively or at least their relationship will be
clarified in this paper. The reader will notice that, as far as the present
study concerns, starting from Moore spaces is more essential than from
metric spaces. .

) Section 1 gives preliminary lemmas and notations. In Section 2 we
will prove that OC-mappings or OP-mappings defined respectively on
P-spaces or on absolute @, spaces are compact-covering (°). The technique
in the proof of the theorem for OC-mappings, which is summarized as

. 3(33 Ahspace is said to be absolute Gy if it is completely regular and a G set of its

one—Cech compactification. This concept was introduced by G

by Feotte 1o p oduced by Cech [7] and developed
‘(‘)‘ A mapping f: XY is said to be compact-covering if each compact set of ¥ i8

the image of some compact set of X under I
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in Lemma 2.3 below, will be used in Section 4 to prove mf)re general
and main theorem: An OCP-mapping defined on a p-space 18 eompa,e.t-
covering. To prove this theorem we require other technique which will
be exhibited in Section 3. In Section 5 some applications of this theorem
will be given. The two among them are as follows. Under the continuum
hypothesis, the weight (7) of each space in OCP(Moore) cannot exceed
its power. Bach element of OCP(p-spaces) is of countable typ.e (®)- Thﬁe
first assertion contains an answer for the question of Arhangel'skif [3], § 5,
from our stand point of view. These two theorems reveal an aspeet. of
the regularity of OCP-mappings. In Section 6 we prove first that a point-
wise paracompact space is & Moore space if it is an element of‘OC(Moore).
Similarly, a pointwise paracompact completely regular space 18 & p-Space
if it is an element of OC({p-spaces). As a corollary we get Theorem 6.2
below: If a paracompact space is an element of OC(Moore), !:ulxen it is
metric. This contains an answer for the question of Arhangel'skii [3], § 5,
from our stand point of view. We will end this paper with Section 7 where
some related questions are given. Section 8 gives a supplement.

The author acknowledges many valuable comments to the present
study by Professor A. Okuyama and Mr. Yoshio Tanaka.

1. Preliminaries.

1.1. Norarion. Let U be a collection of subsets of a space X.
Then U¥ denotes the union of all sets in .

1.2. LemvA. Let f: XY be an open mapping cm.d U= {U,: aed}
am open collection of X. Then there exist an open collection U = {Vy: BeB}
of X and @ transformation @: B—>A such that

(i) Flaw® =J0% - _

(ii) @(B) = a implies V,C U, and f(Vp) Cf(U,) at the same tume.

Proof. Let W= {W,: yeC} be an open collection of X sgch that
W < (refines) U and W — UH. Let p: C—4 be a transformation sqch
that u(y) = a implies W,CU,. Let §= {@,: B ¢ B} be an open collection
of Y such that §< f(W) and G¥# = f(WyF. Let 6: B--C be such that
9(p) = y implies G5 C f(W,). Set V= f"HGp N W,,(ﬁ);ﬁtThen W; ?.atve %1;
open collection U = {Vg: BB} of X. To show #J;(%) =f(;l3’) ;Fvgl
an arbitrary point of f (Uy*. Since f (U = f(W)F and f(‘ID);1= g7, Were
exists G, with yeG;. Then ye f(Wys) and hence ye flf ‘(Gﬂ) n ({(ﬂ)}
= f(Vy). Set g = pf. Then we have ¢: B—A. Let # be an arbitrary index

(7) The weight of a space X, denoted by w(X), is the minimum of cardinals of

i X. o
bases(’!0) A space X is said by Arhangel’skil [1], Definition 3, to be of cownt'able }tlype
if each compact set of X is contained in a compact set K of countab.Ze character; 1.el.jt ere
exists a sequence Uy, Us, - of open sets of X such that for each pair K C U with U open

there exists an ¢ with K C Ui C U.
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in B. Set 0(8)=y and 9(y)=a. Then V,CW CU, an G
. . and
Cf(W, C(U.). The proof is finished. G

o 1.3. LemmA. Let fi: Xy»X, 4, ¢=1,..,n, be open Mmappings and :
= {U,: ae A} an open collection of X,. Then there ewist an open col- -
legtion U= {Vy: peB} of X, and a transformation ¢: B—>A satisfying

the following conditions:

@) fo oo S W = fo .. i)

(il) @(B) = a tmplies Vo C U, and fi .. [u(V)) C fu . f(T,), i =1, ...
vy,

at the same time.

Proof. Applying LeMa 1.2 to W and f;: X;—+ X,

‘ . : X have an o
collection = {U,,: A “tran o “fe o
ot Uy = {Up: aedy} of X; and a transformation ¢;: 4,4
(1) FWFF = fi( Uy,
@) of)=a implies T, C U, and f(Ty,) CH(T,) .
é);})lln;l;l_ng Lepama 1.2 again to fi(U,) and f,: X,—»X,, we have an open
e hﬂllon Uy = {gza: aedy} of X, and a transformation ¢,: A4,->4

e ab fofi(Us)™ = fo(Us)¥# and such that @) = o implies [723 C f2 (U, ;
1 la

and fy(Uy) C fofi(U,.). Continuing i i
: o g in this manner, we finally have
open eollection Uy = {U,: ae A} of X, for ¢ = 1,’..., n, and }; transﬂi&

mation @i 4;> A4, P = isfyi

mation piz Ag>d,, for i=1, ..., n, satistying the following two con-

(3) fi+1fi(cu‘i)# zfi+1(cu‘z'+1)#’ %= 1: vy =1,

4 (B) = i i U

(4) @i{f)=a implies U'L'Bcfi—l( U'i—l,a) and fi(Uiﬁ)Cf'ifi—l(U'—l )y
=2, ey

Set B = Ay. Define ¢: B> y i = Le be an
) . ¢: B> A Dby settin @ = @ D /3
ar[)lbrary index in B. Set @ ﬂ —“L a ()g ) = 2 o n .a, t(p =
. index R (Pn( ) » 1f I 2 g ey My nd (ﬂ) a.

V = U V = -
af ngr Yn—-1,8 U, —~Lap-y nfnll(vnﬁ)) ey Vlﬁ = Ula1 ,—\fl—-l( Vzﬂ) .

Then we have formulae:
5) - =
@) . V= Uy f; Wiprg), = 1, ,n—1.

Sinee ¥, C U, by (8)

and U, ) g
Cfies(Us_14,). Hence i fisUic,) Dy (4), then Vi

JiaViy 8) = fid(U; -1
Thus we have: it NIVl = V.

6
( ) fi—l--'f1(71§)=viﬂ, § = 2;...,%.
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We have now an open collection U= {¥V; =V B e B} Let us
check that this collection fulfils the second requirement. Since V5 C Uy,
and @ya) = a, then V,CU,, CTU, by (2). Let i be an arbitrary integer
with 1< i< . Since fi... fu(Vig) = Vigrs 0¥ (6); Vi118C Uirrmn DY (8)
and Uy e, CTilUs) by (4), then

(7 Ji oo iVip) CFlUsey) -
Repeated applications of (4) shows:
FiUiad) C FificsUsmra) Cfifia FioalUsmaa) © o
wee Cfi o il Usa) Cfi oo (U 5
ie. .
{8) Fil Us) Cfs o Fi(Ta) -
By (7) and (8) we have the desired inequalities:
Fi e Ji(Vap) CliwfulUg)y =715y,

Let us check the first requirement. From (3) we have:

9) fa '--fi(cu’i)#zfn -"fi+1(cu’i+1)#’ i=1,..,n—1.
= ...

By repeated applications of (9) we have: f”(m)#= Fufno1(Wop_y)
o= fa o fu(Un)¥. By (1) We have: fu ... Fu W = fu e fu(Wy¥. Hence

(10) Fal UonJ¥ = fa vee o W)
By (6) and the equality V,;= U,; We have:
(11) Fo ver FolOFF = fu(Un)¥ .

By (10) and (11) we have the desired equality:
fﬂ f1(%)# = fﬂ fl(cv)#

The proof is finished.

1.4, DEFINITION. Let us say that this type of transformation ¢ is
of type TL with respect 10 fu ..c fi, U and U, while the simpler type of ¢
stated in Lemma 1.2 is of type L.

1.5. Lmmma. A completely regular space X s
if there exists a sequence {X;} of open collections of B
i satisfying the condition: i

IfoweX and zeHiel for each 1, then [ H;CX.

Proof. If X is a p-space, then its pluming {3€:} evidently satisfies
the condition. Conversely to show that {Je;} with the condition is a pluming,
let y be an arbitrary point of M S(x, ) with z € X. Then we can find
for each i an element H; of 3; with » ¢ H; and y < Hy. Since ¥ e[\ Hi,
y ¢ X. Thus [ 8(z, %) C X. The proof is finished.

Hereafter a pluming is the one with the condition in this lemma.

a p-space if and only
X with 3&F D X for each
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1.6. NorArioN. Hereafter the tilde for sets in X denotes always
the closure in X, while the bar for sets in X denotes the closure in X,

2, OC(p-spaces) and OP (absolute G,).

2.1. THEOREM. Let f: X~ be an OC-mapping of a p-space X (5 9).
Then f is compact-covering.

Proof. Let fi: X;»X,,,, i=1,..,n, be open compact mappings,
withX, =X, X, = Yandf=/fu..fi. Lot S, i=1,2,..,bea pluming
of X. Let J; be an open collection of AX such that J&¥ = ¥ and &, < g,.
Since a closed subset of a p-space is a p-space, it is sufficient to prove
the theorem for the case when Y is compact. Assume so. Let U,
= {U,: e e 4;} be the restriction 5,]X. Let U, = {U,, # @: « € B} be
% finite subcollection of W, such that f(Us;)* = ¥. Let Uy, = {Uset a4y}
be an open collection of X and ¢2: 4,— B, be a transformation of type IT
with respect to f=fu ... fi, U, and Uy such that f(U,)¥ = (U — .
It can easily be seen that we can assume W, < J6,| X without loss of
generality. Then we have a finite subcollection of Usp, 82y Wy = {T,,
#0: aeBy), such that f(U,#= Y. Repeating this process yields
a sequence ;= {Uy,: aed}, i=1,2,.., of open collections of X,
a sequence Uy ={U,:ae By}, i=1,2, .., of finite subcollections of Uz,
and a sequence gitl: Aipy>Bi,i=1,2,..., of transformations satistying
the conditions: '

() Each ¢{*! is of type II with respect to Jo o fiy Wyyy and A
(i) f(WfF=7, i=1,2,..

(i) W < 36| X.

(iv) Up #0 for ae By, i=1,2, ...

It is to be noted that {B;; @i+!|B, +1} forms of course an inverse
system. Let z,,; be an arbitrary point of ¥, Set

Ci={aeB;: Ly € f( Ui} -

T?len each 6"i is not empty and {C;} forms an inverse subsystem (°) of {B}.
Pick an arbitrary element (o> from inv lim G:. Since f;%(w,,,) is compact,

Jooa = BiU) O 0ny) #0 and f, R (T Y CF (U, for
1=1,2, .., then

(x:\i fn—l "'fl( U‘[cu)) nf;l(wvwl) # @ .

Pick a point 2, from the left side, Then fu(,) = a, +1- In this mann
We can get a point sequence #j, j=1,..,n, such that

ff(wi) =%, and Ly € ﬂ fy’ o A Uizu) .

() Let {4y

i+1 . i
. i} be an inverse system. If for each 4 B;CA4; and ¢;"(B;,,) CB;,
then (B;; o, | B;

41} 18 said to be an inwerse subsystem,.
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Esgpecially #; € () UWy,. This shows that

i
(1) Y={J {F(N Uit Car» e invEm By} .

2

Moreover this argument shows that
2) {a:;> einvlimB; implies ([ Uw) #09,
since f(U,,) # @ and f{ Ui Cf(Uy_14.,). For each U,, with aeB;,
choose an element H,, of i¢; and an element G, of G; with
(3) U,CH,CH,C@Q,.

Set P,,= H,,, where ae¢B,, P,,=H, ~ H,, where aeB, and
®i(a) = B, and so on. In general set

'P‘l'n=H'[tzm‘Pi-1,ﬁ’ aeB;, (Pg—l(a):ﬂ? i=2,8,..
Then .
(4) U,.CP,CH,, .

This can easily be seen by the inequalities: U, C U, 1sCH, ,;, where
®i_i(a) = B, and by induction. By this construction, for each i and each
aeB; Py, C Py, where f = ¢i*'(a). Thus if we set

ﬂ\.;:{P,h: aeBi}, ’l:-_—1,27...

b

then wi*'= pi*!|B, gives a refine transformation of Ty to 5. Set
P;=gF. Then P;= (F,)# and B,DP,D ... Set

(8) L= P;.

Then L is a compact set. To show that L C X let # be an arbitrary point
of L. Set

Bi={aeBi: xc¢P,}.

Then B; is a non-empty finite set and {B}} forms an inverse subsystem
of {Bi}. Pick an arbitrary element ¢8> from inv lim B;. Then

(6) Te m -T)im .
T
Since (2) implies [ U, # @, we can pick a point p from this intersection.
Then by (3)
(7) Pe[) Gy and hence [ Gy CX.

By (3) and (4), () Uy, C) Py, CN Hys CN Gy, By (6) e Gy, and
hence by (7) # ¢« X. Thus L is a compact set of X.
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it (ys> is an arbitrary element of inv imBy, then (U, # @ and
this intersection is contained in L. Hence by (1) f(L) = ¥ and the proof
is finished. ‘

9.2. COROLLARY. If X is a member of OC(p-spaces) and f an OC-
mapping on X, then f is compact-covering.

Proof. Let Z be a p-space such that X is the image of Z under an
0C-mapping g. Since fg is an OC-mapping from Z to Y, fg is compact-
covering by Theorem 2.1. Let K be an arbitrary compact set of ¥ and T
2 compact set of Z with fg(I)= K. Since g(L) is a compact set of X,
f is compact-covering. The proof is finished.

The following lemma, which will be frequently used in the sequel,
is essentially proved in the proof of Theorem 2.1.

9.3. LEMuA. Let f be an OC-mapping of X to Y. Let Uy = {Uy,: a € 43},
i=1,2,.., be open collections of X and ¢i™": A, ,—~A: a transformation
of type IL with respect to f, Us;y, Wi, Let {as> be an element of invlim{A;
oY If y €[ f(Usy), then there ewists a point @ of X with f(z) =y and
xe) Uy .

The following lemma is due to Frolik [9], Theorem 3.8.

2.4. LeymA. A completely regular space X is absolute G, if and only
if there exists a sequence Si, ©= 1,2, ..., of open coverings of X - satisfying
the following condition:

If  is a non-empty collection of closed sets of X with the finite inter-
section property such that F < G for each i and for some F ¢ &, then the
intersection of all elements in F is not empty. )

2.5. NotaTioN. Lebt f be a perfect mapping of X to Y. Let W
= {U,: ae A} and U = {V;: B < B} be open collections of X and p: B4
a refine transformation; ie. ¢(f) = « implies V,C U,. Let 4" denote
the index set which consists of all finite subsets of A. BY is def-
ined similarly. For each element 1 in A" set U, = | J{U,: a eA}. Then
we have an open collection {U,: 1¢ 4"} of X, denoting it by U’
V¥ = {V,: peB" is defined similarly. Set for 147

(1) W,=Y-f(Z-T,) .

Then we have an open collection {W,: 1€ A7} of ¥, denoting it by f7(W).

V) ={G,: ueB"} is defined similarly. Henceforth the element of

f7(0) with the index 1 is always- defined by the formula (1) without

special noticing. Define ¢": B”— A" Dy: ’
¢"(u)={p(B): Bep}, umeB”.

Then ¢"(u)= 1 implies G,C W,. Thus ¢” is a refine transforration
from f7(U) to f7(Us). It is evident that, for each A A” and each u e B,
FHW)YC U, and f7YG,)CV,. If y is a point of ¥ with f~(y)C U,
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then y is covered by f¥(W). If we have transformations @ A > A,
@oi Ay—> Ay, then (p,;)" = fgf.

2.6. THEOREM. Let f: XY be an OP-mapping on an absolute G,
space X. Then f is compact-covering (1).
Proof. X can be joined with ¥ as in the following system.:

r=xty Syt "y, — 1
where each fi: X;->Y; is an open mapping and each g;: Yi> X, is
a perfect one. Let G;, i =1, 2, ..., be a defining sequence of open coverings
of X ag in Lemma 2.4. Since a closed set of X is absolute @,, it is sufficient
to prove the theorem for the case when Y is compact and non-empty. Set

G = Uy = {Up: aedy}.

Set

1) o AL=A,

2) FHFe(Wg)) = Wy gy = {Uy g0 ae Ay i1ty
where

3) Usitte = Xip1 =9 Yi— {fi( Usgp): Bea}).

Since fo(Uy,)* = ¥u, U, has a finite subcollection U, = {Uy,.: o € By}
such that

(4) (U fF=Y and U, #0, aecB,.
Set
(3) Bﬁ = Bl,n-l s B:E:n—l = Bl,n—-2’

Then we reach a finite subset B(+ @) of Ay . Set
Usyy = { Uy a €By}.
Then the following holds:

(6) f{(q‘l’{i)#a 91'_1(%;,#1)#-

By (4) and (6)

) F(Ug )= T.

Let Uy = {TUy,: ac4,} be an open collection of X such that
(8) U = Unf®, Ty < WHAS,.

() Tt is to be noted that Arhangel’skii [2], Theorem 14, already proved a special

case c:f this theorem as follows: An open mapping on an absolute G space is compact-
covering.
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Set _

@) A=Ay, =1 n—1,

(10) gg(fi(%zi)) = Wy s41 = {Us, 11,68 @€ A2,w’+1} .

Then by (6) fa(Us,) ™ covers Y. Hence there exists a finite subcollection
Uy = {Upgt @ € Bay} Of Uy, such that £(Us, ¥ = Y. By a similar way
to obtain B, we can get a finite gubeollection Wy, = {Uy,: @ € By} of Uy,

such that f(Up)¥= ¥. ' ,
Continuing this process infinitely we obtain a sequence Uy

= {Up,: aeByl i=1,2,.., of finite open collections of X satisfying
the following conditions:

(11) Wy < i1y

(12) f(UpfF =Y.

Set

%ﬁq::Li’ ﬂLi:‘L'
To prove L is compact let 7 be the maximal filtre of L. Since Uy, 18
o finite covering of L;, there exists an aeB, such that U, ,~LeJ.
Sinee U, refines §; by (11), then () {F: F e 5} # 0, which proves L is
compact.

To prove f(L)= ¥ let y be an arbitrary point of_Y. By (11) there
exists ¢it%: Bj,,,—> B, such that ¢i"*(a)=pg yields U, 11,0 C Uigg Set
(13) C;={aeBy: Uy, ~fy) # 9},

By (12) every C; is not empty and {C;} forms an inverse subsystem of
{B,; "'} Sinee invlim(, is not empty, it contains an element <az)>.
Then we have a sequence:

Fizf_l(y)r‘ﬁiau i=1,2,..
Since F; refines §; by (11) and {F;} has a finite intersection property,
then [ F; # @. Pick a point # from () Fy. Since F;C L, ,, N FCL.
Thus # ¢ L and f(z) = y. The proof is finished.

2.7. CorOLLARY. If X is a member of OP(absolute G;) and f is an
OP-mapping defined on X, then f is compact-covering.

3. OCP-system.

3.1. DEFINITION, A gystem

71 g f2 gn— 1
X, 55V, Xy o 2 X5 Y

is said to be an OCP-system if each f; is an OC-mapping and each g i
a perfect one. A sequence:

1) {Wi={U;: aeds}: i=1,...,n}
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is said to be a canonical one for this system if the following four con-
ditions are satisfied.

(i) Each W; is an open collection of X;.
(ii) Ai+1 = Af.
(i) Wy, 15 g7f«(Us). Under our convention in Notation 2.5

U, = X«;*‘.‘Iiﬂ( Y, — U {fiul Ui—l,p)'- Be a}} .
(iv) gi-l(cl]"i+1)# = fi(%i)#'

If there exists another canonical sequence

2) o V=V aeBd:i=1,..,n}
and a refine transformation ¢;: B;—A; for each ¢, then the sequence

(3) {Pry s 0n}

is said to be a refine transformation from the sequence (2) to the sequence (1).
If the sequence (3) satisfies the condition:

(4) @ia) D ¢ 1(a), aeB;

for each 4, then (3) is said to be an expanding sequence. If the condition (4)
is satisfied for some ¢, say j, then ¢; is said to be an expansion of g;_,;.
If ¢, is a refine transformation and (3) is expanding, then it can easily
be seen that (3) is a refine transformation.

3.2. LEmma. Consider an OCP-system:

7 g f2 In—- bz
X575 25X, Y,

Let K be a compact set of Yn. Let

Ui ={U;r aedi}r i=1, .., n}
be & canonical sequence with A, finite and with Fa(Wn)¥D K. Then there
exists a canowical sequence

|Vi={Vy: aeBi}:i=1,.., n},

with By finite, which refines {U: i =1, ...,n} by an expanding sequence
{piz =1, ...,m} of ransformations g;: Bi—~ A such that fal V¥ D K and
such that @, is of type IL with respect 10 fu, U, Uy

Proof (by induction).. Let VU, = {V,,: @By} be a finite open
collection of X, with fu(V,J¥D K and @,: B, >4, 2 transformation

of type II with respect to fn, VU, Us. Such VU, and ¢, exist by
Lemma 1.3. Set

1) . B, .= {{a,Bred, ;XBy: ae (B} 5
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(@ Vosny = Un-sa " Fia0tsVang)» 7 =<5 B> € Bnos s
(3) Vpro= Va1t ¥ € Baoa)
Define @, 150 By 1p>4,4 by:
(4) Prra{<a, B) = a.
Then ¢, gives a refine transformation from V,_,, to U,_,. Set
(5) Bpo= By 1z
(6) Vo = Gh1 faes(Vn-1,2) = {Vnoa? @ € Bo}.

If f € B,, and ¢,,(f) = y, then V,;, C U, and ¢;,(U,,) C U {fus(Up_s,):
aey}. If we seb
B' = {{a, f>: ae ‘Pm(.s)}j

then V,; = V5. Thus U CUE. Since it is evident that VF D U,
we have

(M UH = VE,

and hence fu(U,,)*D K. Since g;2(V,)* D f, 4(V,_,.)¥ by (2) and
ItV = g4 (V,0)# by (7), then 911(%‘11,2)#3.701;—1(:1}11,—1,2)# and hence
Iorta(VeF = fa V). Thus {Vn12) Uyt I8 canonical.

Let 6 be a finite subset {<as, fid: i=1,...,8} of B, ,,. Define
@pat Bps—> Ay by:

(8) Pna(0) = U{pm(B): i=1,...,5}. ‘

Since ¢f_;5(6) = {oy, ..., @} -and {og, s 0 C U {pu(Be): ¢=1,..,5},
then ¢,, is an expansion of ¢, ,,. Set

{9) o, By =061, gmlf)=ri, Ufpei=1,.,s}=¢.

Then ¢,,(6) = ¢ and

Vass C U s facaVnorzg): =1, .0, 8}
CU{Vmp: i=1,...,58}
C U{Unyﬁ i=1,..,8CU,.
Thus the first condition for #na t0 be of type IT with respect to fy, Vg, Us

is satisfied. The remaining required condition can be verified analogous' v

s ly
and hence g,, is of type IT. It is of some interest to see that U, acted as
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a catalyzer to produce the canonical sequemee {U,_;,, V,,}. This step
is logically contained in the following general step. To consider this speciak
case will help greatly to understand the general case.

Put the induction assumption in the reverse way that there exist,
for ¢ with 1 < i< m, a canonical sequence

(10) Vne i1t = Vomtpgind @€ Buoipiadt =1, ., 4},
with B,_;,,; finite, for the system:
Xﬂ_i_!_l Fn—is1 Y e Ini+1 N In-1 Xn ﬁ) Y,

and an expanding sequence

D= {p,_ 1142 §=1,...,4}, Where Pr—itiit Bririi=>Anirss
satisfying the following three conditions.
(11) @ gives a refine transformation from (10) to {Us, ..., Wn}.
(12)  @ni is of type IL with respect to fn, Uniy Uen.
(13) F( U D K .

Set k ‘
(14) B, i1 =1{{a, 7 e Ap ;X By 115 de@u_s314(B)},
(18) Voizgry = Unia 0 f22i022iVaiyrip) s ¥ =< 8> € By siy1»
(16) Up—iivr = Vp—iitry’ 7 € Buoiirals
(17) Bn—i+j,i+1 = BZ-:'+1—1,¢+17 j =1,.., i,
(18) Uyt 1i41 = Jom ip i1 Jrm i i—1 Un— i jn,i41)
= {Va—itiit1at @€ By spisrats  J=1y.1.

We have now the following diagram, where we are going to define
transformations ¢, ;,,. The double arrow indicates that the range of the:
corresponding transformation is the top of the column.

Wpy Wpoggn  Wpgps o Uy
Pr-id i Pr—ited [
oiinn Up_gpns - Vpogras oo U
| Pr—i+1,i41 Pn—itedil )T%.i-u
Clyn—i,i+1 cUn—i-H,i+1 an—-i+2,i+1 see CUn,t'-!—l
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Our final goal is to complete the following diagram:

Wy, oy R | S Uy U,
’ Tlpm Tq’z.n—x P2, 1\%-1-2 T’Pm
cu’nl
o
| Pz
cUn-—l,z ‘Un?.
$ Png
CUWL—Z,E cU‘ﬂ-—l 3 CIJHS
N N
T%—s n—1 T'Vn—l,n—-l T’an—l
cf%‘n—l co’ﬂ’l,—9 n—1 c}gn—l,n-—l CUH n—1
j ,Ir‘?’zn | Pp-2,n T%—1 n Pnn
[Uln qj2n cUn-—zn, CUn—] n LUnn
Define ¢, ;;110 By i1 >4,_; by:
{19) Pr-sirla, ) =a.

Then ¢,_;;., is a refine transformation from Uy iyipr 0 Us,_;. Leb y be
an element of B

n—1i+1, z+1
(20) Y= {{ay, B> o, {ag, B0} -
Define ¢, 4,41t B “irirr>Ap_ i by
(21) Pr—it+1,i+1 7) U {‘pn—'i+1 3 ﬁk) = 7 seey S‘} .
By (19)
(22) 975—12,{-;-1(7’) = {au ey as} .
By (14)
{23) {oy vy a} C U {97n~i+1,i(/3k): k=1,..,s}.

By (21), (22) and (23) Pn—iy1,041 18 a0 expansion of ¢,
(24)
Then

(25)

tiv1e Seb

Prit ittt = Pnoipgipry  J=1, ., i—1,

{Prsiz1y Prit1,i417 s Poipr)
is an expanding sequence and hence a refine transformation.
By a similar way to get (7) the following holds.

(26) cl),n#’;—i+1 i CU'#

n—3i+1,i+1 -

icm®

Minimal class generated by open compael and perfect mappings 241
Since V,_;.;,; can be assumed to be a subcollection of U, ;y ;.. for
j=1,..,1 and the sequence (10) is canonical, then with the aid of (26),

- KR .
(27) Uil teg841 = {Ijn#—r+1 i J=1,.,1,
and the sequence
(28) - Vi f=1, i1
is canonical. By (27) and (13) '
fn(cun,'[-i-l)# = fn(cUni):ﬁ: JOK.

Let y be an arbitrary element of B,_,,,;., with the expression (20).
Then the image of y under g,_;., .., has the expression (21). Set

(29) ProiprilBr) =0, F=1,..,8
Sinee Vo is1,68,C Un—ivrog 20T k=1, ;8 a0d Vo ry500,C U Voo sinig
k=1,..,s by (15), then
(30) Vairni1, C UVa—itnig: k=18
C U {Tnipng: E=1, .08}

Set

(31) U{b: k=1, ..,8}=95.

Then ¢,_;iq,:44(y) = 6 by (21) and (29), and

(32) U{Tn—irrg k=1, $}C Upsrns -

By (30) and (32)

(33) Vi-ssritny C U Vamitrig: F=1s vy $EC Upiiag-

The inequalities (33) tells us that we can insert a finite sum of elements
of U, ;.4 which are transformed to subsets, of type Uy _ir1ser Of
U,_is15, between an element of UV, gy, taken arbitrarily, and its
image element of U, This fact is as can easily be seen inherited to
the next stage:

P

Pr—i+ni+l . Fn—i+mi
Lun——i—{-‘z,’i CU‘"n—-H—?.

RV

n—i42,1+1
and so on. We finally reach the last stage:

Prsit1 Pni

. - U, — Wy

n,1+1

Theé inherited property for this system assures that ;. is of type II,
since gg; is of type IT by induction assumption. Thus the induction is
eompleted and we can get a nice canonical sequence

34) Uiy Uspy vevy Unar s
17 — Fundamenta Mathematicae, T. LXXVIII
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accompanied by a sequence of index sets:
Biny Bony ey Bun

and by an expanding sequence of transformations:

Prns Pony 0y Pon -
Set

Bi= B, i=1,..,m,
Pi=0Qm, t=1,..,n,
‘Uiz{V,.quim:asBi}, i:l’__.’n.

Then these satisfy all of the required conditions and the proof is finighed.
In this argument we started from U,, accompanied by g, of type II.

Look at the two diagrams in the preceding proof. If we start from

Vn—it1,is Unoigsis -y Unt accompanied bY @n_ii1is Poogysis -y Pui all
of which are of type II, then the resultant ¢,_;. ;4 ..., ¢un are of type IT
by a quite similar argument. So we get the following.

3.3. LmvmMmA. Let the OCP-system in Lemma 3.2 be given. Let K and
{Uy, ..oy Wn} be those in Lemma 3.2. Let

{Wi={Wy: aeCi}: i=j,...,n},
be a canonical sequence for the system:
X0y % x, Iy,
with C; finite and fu( W* D K, and
{w1y s pn},  where i Ci—> Ay,

an expanding sequence such that each v is of type IT with respect to f;, Wy, Us;.
Then there exist a canonical sequence

{Vi={Vii: aeBi}: i=1,..,n)

)

with By finite, which refines {Wq} by an expanding sequence
{Pry s ou}, where g Bi—>A4;,

such that fuo(Vn)* D K and such that @4 18 of type IX with respect to f;, Vs, Uy
for i=j, .., n.

3.4. ‘LEMMA. Consider the OCP - system in Lemma 3.2. Let K and {Wr}
be ﬂu_zse in Lemma 3.2, where A, is not necessarily finite. Let G be an open
covering of X;. Then there ewist a canonical sequence

{Vi={Vy: aeBi: i=1,..,n},
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with By finite, and a sequence
{pe: 1=1, ..., 0}
of tramsformations @iz Bi—>A; satisfying the following conditions.
() =05 i=1, .., n—L

(i) {@ry ) @u} 8 @ refine transformation from {Vi, .., Uy} to
{Wogy ery on}

(iii) fa(Un)¥D K.

(iv) VU, refines S.

Proof. Let W,= {W,: aeC} be an open collection of X, with
Wi = U, which refines SAUy. Let y;: 0;—>4, be a transformation
giving a refine one from W, to U,. Set

1) Cipy=0%, i=1,..,0—1,
(2) Wiy = {Wipat ae Cipa} = ifi(Wy), i=1,.., n—L1.

Since {U} is canonical, £ Usy) ¥ = g7(Uy¥ and henee f,(W,JF = g LU,
Thus W= UF. In general we obtain

(8) WF=UF, i=1,.,n.
Let W, be a finite subeollection of W, with

(4) FAQUALISY o

Set

W, = {Wpo= Wt ae 0},
C_,={ael, ;s aefel},
Cpp={ael, s aefeCyi},

O ={aeC;: aefeC}.

Set
‘1]3;_1‘: {W,—l,a = Wa-1, “f;i1g;i1( ‘ll);,)# aeCy i},
Wyo = {Wpsa= Wasa A Frlagnltal W, J#: ae Oy}
W) = (Wi, = Wi nfT 0T (W)F: ae O}
Then ‘
() Fl W = g7 (Wi ¥, i=1,.,n—1.
Set

B, = (i, BH_I:B;?, i=1,..,n—1,
Uy = {Vi= Wit aeBy},

17+
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Uiy = Vet @€ By} = ifvy, i=1,..,n—1,
pr=w|B, @u1=9, i=1,..,n—1.
Then it is easy to see that {VU;} accompanied by {B:} and {p} satisfies

the required condition and the proof is finished.

3.5. Lmama. Let A, B, € be index sets, p: C— B, ¢z B> A transforma-
tions and p,: 0¥ —B¥, g1 BY—~ AV their expansions. Then pp,: 07— AV s
an expansion of gp: C—A.

Proof. Let C, be a finite subset of ¢. Then

(1) (0} Cyi(0)

as sets of B, since y, is an expansion of y and (Cy) = ¢¥(C,) as an element
of B7. Similarly

2) oy Co) C rpu(G)
as sets of A. Since gy(Cy) C o, (C,) by (1), then by (2)
3) #9(Co) C oy (Ch) -

Since @p(C,) = ¢"y"(C,) as an element of A¥ and (py)’ = ¢"y” by
Notation 2.5, we can see by (3) that @,y, is an expansion of gy. The proof
is finished.
As an immediate corollary of this lemma we obtain the following.
3.6. LEMMA. Let the following three systems of indew sets be given:
Ay, .y Ay, where A, =AY,
By, ...;Bn, where B, ;= B},
-0y ey Oy where Oy, = CF.
Let two systems of transformations:

@={(p1,..., 90""}7 (‘28 Bi“>Ai,
=1y, .., P}, it Ci—>By,

t.oe given in S’lfch o way that each @, is an expansion of ¢; and each vy, , is
15 an expansion of yi. Then the composition
OF = {p1p1, ey Putpu}

z; a transformation of {Cs} to {As} such that each @, v, is an empansion
of Piyi.

) 3.7. LEMED‘L Consider the OCP - system in Lemma 3.2. Let K and {Us}
¢ the same as in Lemma 3.2. Then there exist a canonical sequence

{CU¢= {Vw‘ a€B1}I ’I/——-l, ey n}

H
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with B; finite, and an expanding sequence
{p1y - Puy  where g Bi— Ay,
satisfying the following conditions.
(i) Bach p; is of type IL with respect to fiy, U, Us.
(ii) fa(Vn)FD K.
Proof (by induction). When n = 1, the assertion is true by Lemma 1.3.

So we consider the case when n >1. Let P; be the assertion that there
exist a canonical sequence

[Wy={Wy: ae Ci}: i=1, ey} s
with O; finite, and an expanding sequence
{1y - P} 5 where it O;—+Aq,

satisfying the following conditions.
(1) i is of type II with respect to fi, Wiy Us; fOr 4= n—7, ..., 0
@) falWa)¥D K.

Then P, is true by Lemma 3.2. Put the induction assumption that
P; is true, where 0 < j< n. Let us deduce P,,, from P;. Consider the
system:
3) Xy Y, X, T
By Lemma 1.3 there exist an open collection

Cpjm1 = {Lpejrat @€ Dn—i—l}

of X, ; , with
(4) fn—y‘—-l(’: —7—1)# = f'n—j‘—l( Ku)n"i‘l)#
and a transformation 8,_; ;i Dy_jo1—=Cp_jy of type II with respect
10 fuojors Enmjm1s Wn—ja- Set

(8) Di=Dy, 4i=n—j,usn,

(6) Oi=07_4, t=Dn—Jy.u, N,

(7 £;={Li: aeD}=gis PN (IR R AR ey PRPE
By (4) Wi = ¥ for 4 =n—j, .., n. Especially

(8) FlE DK .

Thus

(9) {Cp i1y ovr Cut
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is canonieal. {0,_;_y, -, 0,} gives & refine transformation of {0 i1y orvy Lu}
t0 {W,_j_yy -y W,}. By Lemma 3.4 there exist a canonical sequence

[ Mg = {M;: ae B} i =n—j—1, ..., n}
for the system (3), with B finite, and a sequence

{Enﬂ'—l! oy En}

of transformations &: B;—D; satisfying the following three conditions. :

(10) E= 8., G=n—j,.yn.

(11)  {&s_j_1s ey &} 15 2 refine transformation from {6, ;_;, ..., M}
to {ﬁn—i—li vy En} .

(12) FalHon)ED K .

We have now the following diagram:

CU"n—i—IHAu-—j—l . Cll:nH.An

¥a-j-1 . ¥n
‘\Dn_j,_lH G’n;-f—l . ‘IDn L d Cn
Tﬂﬂ-ﬂ'-l by
ﬁn-—f—l And 'Dn—j'—l tn R 'va
Spmjr, Tén
-M>n._,7'_,1 B —fl e -/K:n “«r .E,»
Set

(13) ge=pibi&, i=n—j—1,..,n.

Then by Lemma 3.5 the sequence

(14) {Qn-'—y'—lﬁ A @n}

}: expanding. Since 6,_;_; is of type II, o,_,_, is of type II with respect
f0 f,,.”,_l, .M:?_,-_l, Up_j_y- By (1) p¢ is of type LI with respect to fi, Mo, Wy
OF %= 7n—3},..,n Apply Lemma 3.7 to the system:

.

U, ... oy o W,
Toﬂ‘i—l To,,

Sy o K,

Then the catalyzer A, _. M i .
i1y e produces, with the aid
of type II, a ca,noniea,l7 seque’ncen ’ MO gy s o

(15) {00={04: acF}: 1= 1,..,n}
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and an expanding sequence
(16) {My -y 7m}, Where 7 Fi-> Ay,

giving a refine transformation from (15) to {W}, such that Fa(Os)¥D K
and 7, is of type IT with respect to fiy 01, Wy for 4= n—j—1, ..., 0. Py, 8
thus deduced and the induction is completed. We know now P, is true,
which assures the validity of the lemma. The proof is finished.

We are now completely ready to prove the next main theorem.

4. OCP (p-spaces).
4.1. TErorEM. Let an OCP-system:

1y g Ip— b7
X, Y, e — Xy > Yy

be given, where X, is a p-space. Set f=falnos - g1fr- Then [ is compact-
covering. )

Proof. Let K be an arbitrary non-empty compact set of ¥. Let 3,
4=0,1,2, ..., be a pluming of X,. Let G; be an open collection of fX,
such that 6F = % and &< %;. Set '

(1) gy = Go| Xa = {Upat 0 € Ant,

2) Ag iy = A, =1, n—1,

3) g, 141 = Fif i Wpg) = {Upirr,et @€ Agiaty =1, n—1.
Then Ui = X, for each i. Hence

4) {Wpyy -ery Woon}

is canonical and of course fu(Usp,)¥ D K. By Lemma 3.4 there exists
o canonical sequence

(5) {03 = {V? aedy}: i=1,..,n},
with Aj; finite, and a sequence

(6) {?’;17 ey ‘P;n}

of transformations g Aj;— Ay satisfying the following four conditions.

(M Prion =P, =1, n—1.

(8)  {@lyy s @iy is @ refine transformation from {Uii, .. V) to
{UWgyy «e s Wopn}-

(9) Fu V¥ D K .

(10) Vp< G| X, -
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Apply Lemma 3.7 to the sequence (5). Then there exist a canonical
sequence

(11) {Wyy = {Uyt e 4y} i=1, _ n},

with 4,; finite, and an expanding sequence

(12) {ous o emb s Pt Ay~ ALy,

satisfying the following three conditions.

(13)  Bach ¢, is of type II with respect to fi, Wy, Uj,. v

(14)  {p,;} gives a refine transformation from {U;} to {V;;}.

(15) Ful U ¥ DK .

Continuing applications of Lemma 3.4 and Lemma 3.7 one after
the other in this. manner we get two canonical sequences:

Vi={Viy={Vyt aedi}: j=1,..,n}, i= l,‘2‘, ey

and two sequence of transformations:

Ui={Wy={Uy acdis}: j=1,0,n), i=0,1,2,..,

(16) ¢;:{¢;j:j:1,...,1z}, i = 1,2,...,

17 D= {py: j=1,..,n}, i=1,2,..,

satisfying the following eleven conditions for 1 =1,2,..and j=1, ..., %.
(18) Ay is finite.

(19)  Aj; is finite.

(20) 99:'11 A;i—>Ai—1,i-

(21) @iy A4y

(22) @iy =] :

(23) @ gives a refine transformation from ¥; to U,_,.

(24) @y is an expanding sequence giving a refine transformation from
U; to Vi.

(28)  fa(Win)¥D K.

(26)  fa(Vin)¥D K.

(27) @1 is of type II with respect to fiy Wiz, Uy,
(28) U, refines §;|X,.

Set
(29) Vi= 0,0, = {y,; = PPyt J=1, ., 0}
Then

(30). ¥:is an expanding sequence
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by Lemma 3.6 which gives a refine transformation from U; to U;_, by
(23) and (27). Moreover by (22) and (27)

(81) each yy is of type IT with respect to f, Uy, U
By (24) and (28)

(32) U, refines G¢| X, .

‘We have now the following diagram:

1,7 °

Wy Apy oo W 4,

Yo i *an
Usgy ¢ Agy vor Ubgy, > Ag,
Y31 Yan

Usgy ¢+ Agy oon Uiy > Ay,

? 3

i |
Set:
(33) Ai={Ka, vy any €Ay X . XA qeaye..can}, $=1,2,..
To show that
(34) y,1'+1(Ai+1) C 4,
let By, ..., Bny be an arbitrary element of 4., and <ay, ..., x> it8 image
under ¥,,,. Since ¥, = {$s11, vy Yig1my 18 expanding by (30),

0y = "/’i+1,1(ﬁ1) € "/’i+1,1(/32) = '{’Z+1,1(ﬁ2) c "Pi+1,z(ﬁ2) = Oy

* Analogously a, € a; € ... € ap. Thus (34) is valid. Let us show that

(35) A #09.

Since K. O, we can find by (25) an element ay ¢ s such that fo(Ui,) ~

~K # @. Hence a, # @. Since {Wy, ..., U} is canonical, A%, ;= Au.

Hence there exists an a,_, € 4;, , Wwith ¢, ¢, and with
JaOn-1fn1(Uinr0p0) " K # 9.

Continuing in this manner we get 4 sequence o € a, € ... € an, Where oy Ay,
such that '

(36) fngn—l .. gj'f?'(Uﬁa’-) nK # Qi -7= 1’ vy W

This will be a meaningful fact later. At any rate (ay, ..., ey thus obtained
is an element of A; and (35) is true. Since each A is finite by (18), each
A; is finite. Therefore by (34) and (35)

(87 {4, ¥}

forms an inverse system consisting of non-empty finite sets.
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For each i and each (aj, .., any € 4; st
(38) W(an) = U‘L'nanl W(aj a”) = U'iiﬂ,- ’r\fﬂ'_lg;l(v‘/(af+l an)}y
j=1,...,n—1.
Then we get an open set W(a, ... az) of X,;. Set

(39) Bi= o e At f(W(0) n K # O} .
Then by (36) .

(40) B #0.

Set

(41) Wi= | {W(o): deBi},
(42) ) L= W:.

Then L is a compact set of fX;. By the definition of W( )’s in (38), by
the definition of ¥, in (29) and by the fact that each yi; is a refine transfor-
mation by (31), the equalities, ¢ e B; and ¥i(o) =1, implies = e B;_,, for
each i. In other words

(43)  {Bs; ¥:i|By} forms an inverse system.

To show LC X, let % be an arbitrary point of L. Set

p——

(44) 07, = {O‘i € B'L: ’{;}' € W(O‘q;)} .
Then C; + @ and
(45) {0y ¥i|0;} forms an inverse system.

Since (; # 0 for each ¢, invlimC; # @. Pick an element {o;) from
invlim 0;. Then

(46) e W(oy).

Set

(47) 01 = {0y, vy Cimy, t=1,2,..
Since

(48) fn(W(ain)) :)fn(W(ai+l,'n)) y t=1,2,.,

by (31) and (38), and fo(W(am)) ~ K #@ for i=1,2,.. by (38) and
(39), then

(49) (N (W () nE £ 08.

*
Pick a point y, from this intersection. Then we can get a point @, from Xs
with
(50) flon) =yn and @z, e(| Wiam)
by Lemma 2.3. l
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[y

Consider next the compact set g7t (%.). Since

Wl(a;p10m)2 Wlasam1%is1n)

for each i by (31) and «;, , ea,, for each ¢, then
(51) (N Faa W (@sn-s0an))) ~ ga2a(,) # O
1
Here we insert the notice that, for each j with 1 <j <=,

W50 @) D W(0ipg 5 Q) -

This can easily be seen by (31) with the consideration of definition (38).
Here is another note: If p; e X; and p; e[) W(ai ... am), then

%
Froa( W (@g o1 o @ia)) ~ g725(p;) # @ for each i. This can be seen by (38)
and the fact that a; ... € asn for each 7.
With the aid of these two notices we continue the argument as in
the above to obtain points z;e Xi, y:ie ¥y, 1= 1,...,n, satisfying the
following three conditions.

(52) wye\ Wlag o ain), J=1,..570.
i

(53) 1€ (N FW (a5 - am))) S 7 @) s G=1, .01,

1t

(54) fle) =y, Jj=1,.,n.
By (47), (49), (52), (53) and (54),
(85) 2 e() W(e) and flz)eK.

Since W (o1) C Uy, bY (38) and (47) and the right term refines G by (32),
we can find for each 4 an element Gy of §; with

(56) W(o) CGs.

Since §; refines J¢;, we can find for each 7 an elerﬁent H; of ¥; with
(67) G:CH;.

By (55), (86) and (57), ‘

(58) w e Hy:

Since #, is a point of X, and '{Jei} is a pluming, then

(59) N HCX,,

by Lemma 1.5. By (46), (56) and (57),

(60) e Hi.

By (59) and (60), 7 ¢ X;. Since ¥ was an arbitrary point of Z, then L C X,.
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To show f(L)D K let us start with taking an arbitrary point g,
of K. Set

Dip = {o-e¢ A’ @n e fu Uinal} s i=1,2,..

Then Di, # © by (25). Since v gives a refine transformation from. fu(Wis)
t0 fa(Wiy,) DY (31), then pin(Dun) Cppgpn(Diam) Thus

(61) Dinj "p'i+1,niDi+1m: ";? 1,2,..}

forms an inverse system. Since Din is finite by (18), invlim.Dy, # @. Pick
an element (B, Bons -~ from invlim Dy, . Since gu € M Ful Uingen) and e is

%
of type IT with respect t0 fa, Win, Wiy, DY (31), We can find a point
Pn € Xn such that

(62)  pne() Uinga and  fa(Pn) = In

by Lemma 2.3. Pick an arbitrary point ¢, from " g;1,(ps). Since
{Wigz =1, ...,n} is canonical for each 1,

(63) g;n,-il(pn) C e {fn—l( U'i,n—l,a): ae€ ﬂm} ) § = 1’ 2’ s
Set .
(64) Dipa= {a€Bm: G € fal Ui,n—l,a)} , 1=1,2,..

Then D, , it a non-empty finite set of 4;,_, by (63). Since .,
gives a refine transformation from f,_y(Usip_y) 50 froma Wiy m—a) by (31),
then

PiprnaDiginea) C Dgny  Tor =1, n—1.
Thus
(65) {Dins Pirin-1| Digrn—? i=1,2,..}
forms an inverse system. Pick an element (8, ;> from invimD;, .
The ¢, , 18 now in () fr_y(Usn1p.,) Continuing in this manner, we

get two point sequences:

piEXi, qiEYz, 'i=1,...,n,
and
Biuedy, j=1,.,m i=1,2,.,

satistying the following five conditions.

(66) G €97 (Piv), P=1,.., n—1.
(67) P Usgpyy  J=1,0sm.

1
(68) - filp)=a¢, j=1,.,n.
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{69) g€ ,:‘1 filUsigy) s G=15 im0
{70) BueBupew€Pin, 1=1,2,..
{71) VylBi) = Bimsgy  1=2,3, 0y =10 m.

Set ;
(72) Ti= (Bigs s Py, 1=1,2,..
Then by (70) =, is an element of 4;. By (66), (67) and (69),
{73) preWim), i=1,2,..

Since gn < f(W (v:)) and gs € K, then 7; ¢ B; by the definition (39)-of B;.
Thus by (73) and (42),

(74) prel.
Since f(py) = ¢ Dy (66) and (68), then g,  f(L). Since ¢, was an arbitrary
point of K, then f(I)D K. The proof is finished.

4.2. CoROLLARY. If X is a member of OCP(p-spaces) and f is an
OCP -mapping defined on X, then f is compaci-covering.

5. Application of Theorem 4.1.

5.1. Lmmuma. If f: X Y is an open compaci-covering mapping and X is
of countable type, then X is of countable type.

5.2. LEMMA. If f: XY is a perfect mapping and X is of countable
type, then X is of countable type.

These two lemmag are easy exercises.

5.3. Lemma (Coban [15], Theorem 10) (). If X is a p-space, then
X s of countable type.

5.4. THEOREM. Let ¥ be an arbitrary element of OCP (p-spaces). Then
Y s of countable type.

Proof (by induction on n). Let

! [4 On-1 o 7
XY S Y, > Xy > T,

_be an OCP-system, where X, is & p-space and Yn= Y. When n=1,

Y, is the image of X,, which is of countable type by Lemma 5.3, under f;.
Since f, is an open.compact-covering mapping by Theorem 2.1, ¥, is of
countable type by Lemma 5.1 Put the induction hypothesis that ¥,_, is
of countable type, where n—1 > 1. By Lemma. 5.2 X, is of countable
type, since g,_, is perfect. Since f, is an open compact-covering mapping
by Corollary 4.2, ¥, is of countable type by Lemma 5.1. The proof is
finished.

() The referee kindly noted that this lemma was proved by Coban. Cf. Lemma 8.3.
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5.5. Levma (Arvhangel'skil [13], Theorem 3.21). If X is of countable

type and the countable sum of compact metric sets, then X 1s melric.

5.6. TemorEM. If ¥ ¢ OCP (Moore) and Y is o-compact, i.e. the count-
able sum of compact sets, then Y is metric.

Proof. Bach compact set of ¥ is the continuous image of some
compact set of a Moore space by Theorem 4.1 (cf. Section 8). Since each
compact set of & Moore space is metrie, each compact set of Y is metric.
Thus Y is the countable sum of compact metrie sets. Since Y is of count-
able type by Theorem 3.4 (cf. Section 8), Y satisfies the condition of
Lemms 5.5 and is metric. The proof is finished.

5.7. TaporEM. If ¥ ¢ OCP(p-spaces) and ¥ is countable, then Y is
metric.

Proof. Since Y is of countable type by Theorem 5.4, Y is metric
by Lemma 5.5 and the proof is finished.

5.8, TamorEM (CH). If ¥ ¢ OCP (Moore), then w(X), the weight of ¥,
cannot exceed its power |Y|.

Proof (by induction on n). When Y is countable, Y is metric by
Theorem 5.6. Consider the case when Y is uncountable. Let ¥ be a Moore
space having a development {Us}. For each point y of ¥ and each ¢ pick
an element U (y, 1) of Wy withy e U(y, 4). Then {U(y,9): ¥ € Y,i=1,2,.}
is a base whose power is at most |¥|. Hence w(Y) < |X|. To consider
next the general case let the following be an OCP-system starting from
a Moore space X, and ending at Y= Y:

PR AN S G AL A o

To prove the theorem by induction on n let us congider the case

when Y = Y,. Let f; be the composition of open compact mappings:

hg: Z¢—>Zi+1, i=1,...,m,
such that Z, = X,, Z,,, = ¥; and f; = hn .. h;. By Theorem 4.1 (cf.
Section 8) each point-inverse of each h; is the continuous image of a comn-
pact Moore space and hence of a compact metric space. Hence it is com-
pact metric and has at most the continuum power v. Since
IZi+1‘ <z < lZ«:+11'N = \Zi+1| ?
then |Z = |Z;,| for i=1,..,m, and hence |X,|= |¥,]. Let 3, be
a base of X, with |B,| < [X;|. Since f,($,) is a base of ¥,,
w(¥y) < (B < 1Bi] < 1| = [T
and the theorem is true for »n = 1. .

Put the induction hypothesis that the theorem is true for ¥, i,
where n >1. By the same reason as was observed above it is true that
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|1 = |Xal = | ¥ul| and w(Xn) > w(Ys). Let B be a base of ¥, , with
oo = |B| < |¥,_4|. Since g;_(B) is a base of X,, then

w(X,) < g a(B) < B < Xyl = [Tl -

Since f,0%_,(®) is a base of ¥y, then w(¥a) < [fngh-1(B)] < [Ya|. Thus
the induction is completed. The proof is finished.

6. Pointwise paracompact spaces in OC(Moore) and OC(p -spaces).

6.1. TEEOREM. Let Y be a member of OC(Moore). If ¥ is pointwise
paracompact, then Y is a Moore space.

Proof. Let X be a Moore space and f an OC-mapping of X to Y.
Let {U} be a development of X. Set Uy= {U,: aed,}. Let U,
= {V,,: a€A;} be a point finite open covering of ¥ with

(1) . Ve CHUL) aed,.
Set
(2) Wla = Ula hf—l(vlu) H ae 'Al M

Then we have an open collection W; = {W,,: ae 4} of X. Since
(3) FW) ="V, aedy,

by (1), then f(W,) covers Y. By Lemma 1.3 there exist an open collection
D! = {D},: a e Ay} of X and a transformation ¢': Ay—A, such that

(4) f(ﬂ);)# =Y,

(8) ¢ is of type II with respect to f, Dy, Wy

Set Dy = UpAD, = {Dp,: ae 4;}. Let ¢ A, A, be a transformation
giving a refine one from D, to D;. Set ¢f = ¢'p”". Then ¢t is of type IT
with respect to f, D,, W,. By a similar way as in getting W, from Uy,
we can get, from D,, an open collection W, = { W, a e Ay} of X such that

(6) Woo C Dy aed,,
(1)  f(W,) is a point finite open covering of Y.

By (3) and (6) ¢ is of type II with respect to f, W, W,. Continuing in
this manner, we obtain a sequence

W= {Wyr acdd, +1=1,2,..,
of open collections of X and a sequence

i+1. . -
(pﬁ' : AH_I—)A“ ’1,—1,2,...,
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of transformations satisfy;j:\g the following three conditions for each 3.
{8) f(y) is a point finite open covering of Y.

9 Wz < W .

(10) @ttt is of type IT with respect to f, Wiy, W;e

To show that f(Ws), 1=1,2, ..., constitute a development of Y as-
sume the eontrary. Then there exist a point 4 of ¥ and an open neighbor-
hood U of y such that

(- Sly, f(W)—T #0, i=1,2,..
Set
(12) Bi={aecdy yef(Wy), fWa—U#0}y, i=1,2,..

Then each By is finite by (8) and non-empty by (11). Moreover it is evident
that {Bi} forms an inverse subsystem of {4; @it} Thus invlim B; # @.
Pick an arbitrary element (8;) from invlimB;. Since y €[] f(Wy,), then
there exists by Lemma 2.3 a point # of X with

(13) f@)=y and @e() Wy

Since {W,,} forms a neighborhood base of z by (9), then {f(W,,)} bas
to be a neighborhood base of y, which contradicts to the inequalities:

f(We)—U#0, i=1,2,..
The proof is finished. .

Sinee every paracompact Moore space is metrie, the following is
a direct consequence of this theorem.

6.2. THEOREM. Let ¥ be.a member of OC(Moore). If Y is paracompact,
then Y is metric. .

6.3. Lemma (Burke-Stoltenberg [6], Theorem 2.2). A completely
reqular space Y is a strict p-space (2) if and only if ¥ has o sequence Vi,
i=1,2,..., of open coverings of Y satisfying the following two conditions.

(1) @, =1 8y, V) is compact for each point y of X.

(i) {S(y, Vs)} is a neighborhood base of Q.

6.4. THEOREM. Let Y be a member of OC(p-spaces). If ¥ is a point-
wise paracompact, completely regular space, then Y is a p-space (**).

_(u) Accnrd.ing to Arhangel’skii [3], Definition 5.1, a p-space X is said to be
a sirict p-space if it has a pluming {A;} such that for each z ¢ X and for each m there

e

exists an n with S(z, Wy,) C S (z, Wa).

. (**) F.rom this theorem we can see at once that Michael space [11] introduced in
Section 0 is not even an element of OC(p-spaces).

-4 ©
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Proof. Let f: X—->Y be an OC-mapping, where X is a p-space.
Tet %, i =1, 2, ..., constitute a pluming of X. Let §; be an open col-
lection of BX such that for each ¢ ‘

(1) Q:FD X ? §i< ¥ ? §i+1 < G;.
Set
@ - W=SIX, i=1,2,., W={T, acd].

Let VU, = {Vi.: a€A;} be a point finite open covering of ¥ with

3) VeCf(Uy), aecd;.
Set
4) W, = {W,,= Uy ﬁf—l(vla): aed;}.

Since f(Wy) = Vies 0 € A, by (3) and (4), then f(W,), which is identical
with U,, covers Y. Set

Uy = {Upst @€ Ag} = UpA Wy .
Applying Lemma 1.3 to U, we obtain an open collection &, = {Boy: a € Ay}
of X and a transformation ¢': A,—A; such that f(6¥ = ¥ and such
that ¢’ is of type LI with respect to f, 8, Us. Let p: A;— A; be a transfor-
mation giving a refine one from W, to W, Let U= {Vy,: acd,} be
a point finite open covering of ¥ with V,,Cf(By), acd,. Set
W, = {Wa, = B, A Vo)t o€ Ag},
¢ =gyt A4y
Then f(W,), which is identical with %U,, is a point finite open covering

of ¥ and ¢} is of type II with respect to f, W,, W,. Continuing in this
manner, we obtain a sequence

Wy {Wr aedsy, +=1,2,..,

of open collections of X and transformations

. it Ay, >Ay, 1=1,2,.,
satisfying the following three conditions for each 4.
(8)  f(W) is a point finite open covering of Y.
(6) @it is of type II with respect to f, Wiy, W;.
{(T) Wy << U
Set
(8) V= {Vie=F(W): acdi}, i=1,2, .

18 — Fundamenta Mathematicae, T. LXXVIIT
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To show that this sequence satisfies the two conditions in Lemma 6.3

let ¥ be an arbitrary point of ¥ and @, the intersection in Lemma 6.3. Set:

9) Bi={acds yeVy},

Then by (5) B is finite and non-empty. Since it can easily be seen from (9)
that

i=1,2,..

(10) ¢ (B, )C B, i=1,2,..

{B;} forms an inverse subsystem of {d:; ¢i"'}. Set

(1) Wi= {Wy aeB}, i=1,2,.., L=[)Wi.
Then I is closed in X, since W, , C W; by (6) and (10). Set
(12) K= Wi.

Then K is a compact set of X. To show that K C X let 7 be an arbitrary
point of K. Set

(13) Ci={aeBurecW,}, i=1,2,

Let a be an arbitrary index of C,., and f= gt (a). Then Ze W, .,
and W;,,,C W,,. Hence 2 ¢ Ww, which shows that f e C; since pi™(0,,,)
C B: by (10) and (13). Thus

(14) ¢§+1(0i+1) c C;,

which shows that {C;} forms an inverse subsystem of {B;}. Pick an
arbitrary element {¢;> from invlim ¢;. Then

(15) Te) Wi
Sinee y €[} V,,, there exists by (6) and Lemma 2.3 a point © of X with
(16) ‘ Jl@y=y and we) Wy,

Since W; refines 3, by (7), (2), (1), then there exists for each i an element H;
of 3¢ with ‘

an Wi C Hy .

Since & ¢ | H; by (16), then (| H; C X. Since 2 () H, by (15) and (17),
then « ¢ X. Thus we know that K CX. Sinee L is closed in X and LCK
by (11) and (12), then I is compact.
Let us show that @, is compact. Since B; is finite, then
8y, Vipr) C 8y, V1)
by (9) and (10). Henoe Q,is closed To show f(L) D @, let y' be an arbitrary
point of Q,. Set

(18) D;={aeBi: 4y eV},

i=1,2,..,

i=1,2,..
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Then each D; is non-empty and {Ds} forms an inverse subsystem of {B;}.
Pick an arbitrary element (f;> from invlimD;. Since y'e() V,,, there
exists a point @’ of X with o'« [ W, and f(2') = y'. Since 2’ ¢ L by (11),
then 4’ e f(L). Since y’ was an arbitrary point of @, then @, C f(L) and @,
is now compaact.

To show {S(y,V:)} forms a neighborhood base of @, assume the

contrary. Then there exists an open neighborhood V of @, such that
(19). By, V)=V #£0, i=1,2,..

Set :

(20) Bi={aeB: V,—V #0}, i=1,2,..

Then each F; is non-empty and {E;} forms an inverse subsystem of {B;}
by (6). Hence invlimF; # @ and we can pick an element {y;> from
invlim B;. Since y <) Vﬁ,‘, there exists, by Lemma 2.3, a point z, of X
with

(21) @e Wa,,  fl@)=1y.

Set ,
(22) Py, =) SB(wy, W)y 8(zy, We) = Uy, i=1,2,..
Since W; is point finite by (5),

(23) U,,CU;, i=1,2,..

Since as can easily be seen f(Pg)C@Q,, then P, Cf(V).

Let U be an open set of X with U~ X =fV). If U; is not
contained in f~*V) for .any 4, then U,—U #@ for any ¢ Hence
{U+—U: i=1,2,..} is a decreasing sequence of non-empty compact
sets by (23) and the intersection of them, say F, is not empty. Since each
U; is a finite sum of elements of W; by the point finiteness of W;, then
by (7), (2) and (1) we obtain

(24) TiC 8w, J0r), i=1,2,..
Since () §(#,, %) C X, then (N T, C X. Thus
F=N0—U=(NT—U)nX
= Ti— V) = Poy—f (V) =
which is impossible. Hence f~XV) contains some Uy; i.e.
(25) 8 (%, W) CFYV).
Since W’%C S{zy, W) by (21), then by (25)
(26) Vig, = (W) C V..

18*
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Sinee y, € Fy, then V ,%—V # @, which contradicts to (26). We conclude
therefore that {8(y, V;)} is a neighborhood base of @,. Since the two
conditions of Lemma 6.3 are now satisfied, then ¥ is a p-space. The
proof is finished.

6.5. THEOREM. Let f: X =Y be an OC-mapping, where X is a p-space
and Y is a pointwise paracompact space. Then there exists a G; set W of X
such that f(W)=Y and f|W is a compact mapping.

Proof. Let W, Vi, A1, Bi, ¢it, W; be those constructed in the
preceding proof. Set

W= Wk

Then W is a G, set of X. Let y be an arbitrary point of ¥ and L the set
defined by (11) in the preceding proof. To prove f(y) ~ W C L let « be
an arbitrary point of f~*(y) » W. Set

S;={acdpg 2eW,}, i=1,2,..

Since x ¢ W, implies y € V,,, then §; C B;. Thus ze W; for each i and
hence 2 ¢ L, which shows f(y)~ WCL. It is evident that WD L.
Therefore v

W=7 WnL=f"(y) L.

Since L is compact, then f*(y) ~ L is compact and hence f™(y) ~ W is
compact. Since f(y) ~L # @ by the preceding proof, then f(y)n W
# @. Since y was an arbitrary point of Y, the inequality f(y) ~ W # O
implies f(W)= Y. The proof is finished.

7. Problems.

7.1. PrROBLEM. Are all members of OC(metric) pointwise para-
compact? .

7.2. PROBLEM. Are all members of OC(metric) developable?

7.3. PROBLEM. Are all members of OC(metric) or OCP (metric)
p-spaces?

These three problems are corresponding ones, in the sense stated
in the introduction, to those for MOBI and MOBOS raised by Arhan-
gelfskii [3];, § 5. An affirmative answer for Problem 7.1 would imply an
affirmative one for Problem 7.2 by our Theorem 6.1. The first half of

Problem 7.7 and Problem 7.12 below are also essentially due to Arhan-
gel'skil {3], § 5.

7.4. NoraTiox. Let € be a class of spaces. Let oc(C) be the class

of all images of elements of C under open compact mappings.
7.5. PrOBLEM. Is oc(oc(metric)) strictly larger than oc(metric)?
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Bing [5], Example B, shows that oc(metric) contains an element
which is not metrie. A space X is a member of oc(metric) if and only
if X is pointwise paracompact and developable, by Hanai [10], Theorem 5.

7.6. ProBLEM. If a completely regular space X is a member of
oc({p-spaces), then is X a p-space?

7.7. PROBLEM. OC (metric) = OCP (metric)?

7.8. ProBLEM. OC(p-spaces) = OCP (p-spaces)?

Recently Worrell [12] constructed a completely regular space which
is not a p-space but the image of a p-space under a perfect mapping.
This space shows that OCP(p-spaces) is strictly larger than the class
of p-spaces.

7.9. ProBLEM. Are OOC( ),
countably productive?

All of them are finitely productive by their definition.

7.10. ProBLEM. Let Y ¢ OCP(p-spaces). Then w(Y) < |Y]|?

7.11. ProBLEM. Let X be a pointwise paracompact p-space. Then
is X the image of a paracompact p-space under an open compact mapping? '

Coban [8], Theorem 3, solved this problem in the affirmative for the
case when X is, moreover, normal or hereditarily pointwise paracompact.

7.12. ProBLEM. Let X be a member of OC(metric) or OCP (metric).
Is every closed set of X a Gy set? Does the family of Baire sets of X coincide
with the family of Borel sets?

7.13. ProBrLEM. Let X ¢ OCP(Moore). If X has the property L(x,),
a >0, i.e. if every open covering of X has a subcovering consisting of «,
elements, then w(X) < y,?

7.14. ProBrEM. Let X be a pointwise paracompact completely
regular space. If X is a member of OP (absolute G,), then is X absolute G,?

7.15. ProBLEM. Let X be a pointwise paracompact completely
regular space. If X iy a member of OCP(p-spaces), then is X a p-spaces?

7.16. ProBLEM. Is each element of OP(absolute G;) the image of
a paracompact absolute @, space under an open compact-covering
mapping? If it is true, find an equivalent intrinsic definition.

7.17. PropLEM. Let f: XY be an OC-mapping, where X is a metric

OP( ), OCP( ) treated in this paper

" space and Y is a pointwise paracompact space. Then is there a @, cross-

section of ¢ In other words, is there a G, set X’ of X with f(X') =¥
and with f| X' one-one? ' -

Let f: XY be an open compact mapping, where X is of countable
type. Then it is natural from Theorem 4.1 to quote whether f is compact-
covering. The referee kindly informed that Proizwolow [17] solved this
problem (in the negative).
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8. Supplement. In this paper p-spaces are assumed to be completely
regular. We can weaken this condition to be merely regular as follows:

8.1. DEFINITION. A space X is said to be a weak p-space if it is regular
and has a sequence Uy, =1,2, ..., of open coverings of X satisfying:

o0 o
¥relUjeW, i=1,2,.., then (i) ﬂ U; is compact and (ii) () U;C U

=1 =1
n
with U open implies [ U;C U for some n. This sequence is said to be
i=1
a defining one. ‘

This econdition was introduced by Burke [14], Theorem 1.3, to
characterize completely regular spaces to be p-spaces. It can easily be
seen that the space T in Engelking [16], Example 4 in p. 85, is an example
of a weak p-space which is not a p-space. Since every Moore space
(which is assumed to be merely regular) is evidently a weak p-space,
the class of weak p-spaces offers a class containing all p-spaces and all
Moore spaces. The author does not know whether each Moore space is
completely regular. The property to be a weak p-space is inherited under
the operations taking G sets, closed sets, perfect preimages and count-
able products. Replacing p-spaces in the preceding sections with weak

p-spaces, each proposition for p-spaces is true for weak p-spaces with -

trivial miner change in the proof. Especially corresponding to Theorems
4.1 and 5.4 the following are true: (i) An OCP-mapping on a weak
p-space is compact-covering. (ii) Each element of OCP (weak p-spaces)
is of countable type. The latter needs Lemma 8.3 below instead of
Lemma 5.3.

Levmma 8.2. Let X be a weak p-space with a defining sequence
{Wi={U;: aecd: i=1,2,..}. Let By be a finite subset of A; and

@it By~ B; a transformation such that ¢it*(a) = implies Uy, ,C Uy

z

and such that {as» € invlim {By; ¢i™'} implies () Uy, # @. Set
i=1

U= {J{Uyu aeBy}y, K=[ U;.

Then K is compact and {Us} forms a neighborhood base of K in X.

Proof. It suffices to consider the case: K # &. Let ¥ be a maximal
filtre of subsets of K. Set

Ci={aeBy;: Up,nKeF}.

Then C; # @ and {C:} forms an inverse subsystem of {B:}. Pick an ele-
ment (a;> from invlim C;. Set

L=\ Uy,

=1
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Then I is a non-empty compact set with L C K. Let F be an arbitrary
element of F. Assume F' n L = @. Then F ~ U, = O for some j, & contra-
diction. Thus a point of L adheres &, which proves that K is compact.

To prove {U:} forms a neighborhood base of K in X assume the
contrary. Let U be an open set of X with KCU and with U;—U # @
for any 4. Set

D¢={aeB1: Uia—'-Uaé@}.

Then D; # @ and {D;} forms an inverse subsystem of {B}. Pick an ele-
ment (B> from invliimD;. Set

o]
M=) Uy.
i=1
Since M C K, then U, C U for some k, a contradiction. The proof is
finished.

LemMa 8.3. A weak p-space X is of countable type. -

Proot. Let @ be a non-empty compact set of X and {U;} a defining
sequence of open coverings of X. Let U= {_Uﬁ,: ae A} be an open
covering of X such that (i) U refines Uy, (i) ab;,, refines U, and (iii)
all but a finite number of elements of Uy do not meet @. Then {Us} is
also a defining one. Let ¢i*': 4, ,—4; be a transformation such that
@i (a) = B implies U, 4, C Uy Seb

B¢={aeA4: U,.n@ # @},

Then B; # @ and {B} forms an inverse subsystem of {4 @it} Since
the condition of Lemma 8.2 is satisfied, K defined in Lemma 8.2 is
a compact set of countable character. Since QCE, X is of countable
type and the proof is finished. '

Added in proof. The author has just solved Problems 7.10, 7.13, 7.14, 7.15,
7.16 in.the affirmative with same of them in move general form.
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On decomposing the plane into s, connected
or one-to-one curves

by
Jack Ceder (Santa Barbara, Calif)

Abstract. The following results are proven: (1) Assuming 2% = ¥, the plane is
the union of denumerably many connected curves whose set of axes consist of two
directions; (2) the plane is the union of denumerably many one-to-one curves; and (3)
assuming 2% < , the plane is the union of denumerably many one-to-one curves ‘whose
set of axes consist of (n-- 2)-directions.

A curve is a planar set with the property that each line in a certain
direction, called the axis of the curve, intersects the curve at most once.
In other words, for a suitable rotation of the coordinate axes the curve
is the graph of a real function. In 1919 Sierpiriski (see [4]) showed, assuming
the continuum hypothesis, that the plane is the union of denumerably
many curves whose set of axes consists of two perpendicular directions.
He later showed in [5] that the plane is the union of denumerably many
mutually congruent curves.

In 1963 Davies [1] succeeded in proving without any cardinality
assumptions that the plane is the union of denumerably many curves
whose set of axes is infinite. Moreover, under the hypothesis that 2% < s,
Davies [2] proved that the plane is the union of denumerably many curves
whose set of axes consists of n-}-2 directions. It is unknown whether
this conclusion can be improved to n-+1 directions, as suggested by
Sierpinski’s result when n = 1. It is the purpose of this paper to extend
the above results of Sierpinski and Davies to apply to some special types
of curves namely those which are connected (as planar subsets) and those
which are, one-to-one (i.e., graphs of one-to-one real functions).

Specifically we will establish the following results:

THEOREM 1. Assuming 2% = &,, the plane is the union of denumerably
many connected curves whose set of ames consists of two directions.

We conjecture that the above result remains valid infinitely many
axes when the continuum hypothesis is dropped.

THEOREM 2. The plane is the union of denumerably many one-to-one
curves whose set of ames is infinite.
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